作成者 |
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
巻 |
|
出版タイプ |
|
アクセス権 |
|
関連DOI |
|
|
関連URI |
|
|
関連情報 |
|
|
概要 |
We show that (A) If G = (V, E) is an Euler circuit, then the number of the maximum uniform partition of the line graph L(G) is (1/4) $ Sigma _ upsilon \varepsilon \u d^2_\u$ (-l)(-1 is added when mid... E mid is odd), where $d_nu$, is the degree of v. (B) If G is not an Euler circuit, then the number of the maximum uniform partition of L(G) is (1/4) $ Sigma _ upsilon \varepsilon \u d^2_\u - iota $, where $ iota $ is the number of vertices of odd degree.続きを見る
|