作成者 |
|
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
巻 |
|
号 |
|
開始ページ |
|
終了ページ |
|
出版タイプ |
|
アクセス権 |
|
Crossref DOI |
|
概要 |
This study extends ‘empirical transformation’ in kernel smoothing to conditional probability density and regression function estimations. We propose nonparametric conditional probability density and r...egression function estimators, which are based on an extension of ´Cwik and Mielniczuk (1989)’s method. We derived asymptotic properties of the proposed estimators and conducted a simulation that showed mean squared errors of conditional probability density and regression function estimators.続きを見る
|