<学術雑誌論文>
ERROR REDUCTION FOR KERNEL DISTRIBUTION FUNCTION ESTIMATORS

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
Crossref DOI
概要 A method to reduce the mean integrated squared error for kernel distribution function estimators is proposed. It can be shown that the asymptotic bias of the proposed method is considerably smaller in... the sense of convergence rate than that of the standard kernel distribution function estimator. Even though the rate of convergence of variance does not change, the variance of our proposed method is smaller up to some constants. The idea of this method is using a self-elimination technique between two standard kernel distribution function estimators with different bandwidths, with some helps of exponential and logarithmic expansions. By doing that, vanishing the first term of the asymptotic bias is possible. As a result, mean squared error can be reduced.続きを見る

本文ファイル

pdf 4Fauzi pdf 110 KB 463  

詳細

PISSN
EISSN
NCID
レコードID
査読有無
主題
登録日 2019.04.23
更新日 2020.10.22

この資料を見た人はこんな資料も見ています