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Abstract

A method to reduce the mean integrated squared error for kernel distribution
function estimators is proposed. It can be shown that the asymptotic bias of the
proposed method is considerably smaller in the sense of convergence rate than that
of the standard kernel distribution function estimator. Even though the rate of
convergence of variance does not change, the variance of our proposed method is
smaller up to some constants. The idea of this method is using a self-elimination
technique between two standard kernel distribution function estimators with dif-
ferent bandwidths, with some helps of exponential and logarithmic expansions. By
doing that, vanishing the first term of the asymptotic bias is possible. As a result,
mean squared error can be reduced.

Key Words and Phrases: Bias Reduction, Convergence Rate, Distribution Function, Exponen-

tial Expansion, Kernel Method, Nonparametric Estimation, Logarithmic Expansion.

1. Introduction

Nonparametric methods are gradually becoming popular in statistical analysis of
many fields problems, such as in Economics, Biology, and Actuarial Science. In most
cases, this is because of the lack of information about the variable being analysed.
Smoothing concerning functions, such as density or cumulative distribution, play a spe-
cial role in the nonparametric analysis. Knowledge of the density function or distribution
function, or their estimates, allows one to characterize the random variable more com-
pletely. Especially for the distribution function, we can derive some other characteristics
of random variables from that, such as quantiles, survival function, hazard rate, etc.

Let X1, X2, ..., Xn be independently and identically distributed random variables
with an absolutely continuous distribution function FX and a density fX . The classical
nonparametric estimator of FX has been the empirical distribution function defined by

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x), x ∈ R, (1)

where I(A) denotes the indicator function of a set A. It is obvious that Fn is a step
function of height 1

n at each observed sample point Xi. When considered as a pointwise
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estimator of FX , Fn(x) is an unbiased and strongly consistent estimator of FX(x). For
the global point of view, the Glivenko-Cantelli Theorem implies that

sup
{
|Fn(x)− FX(x)|

∣∣x ∈ R
}
→ 0 a.s.

as n → ∞. For details, see section 2.1 of Serfling (1980). However, given the information
that FX is absolutely continuous, it seems to be more appropriate to use a smooth and
continuous estimator of FX rather than the empirical distribution function Fn.

Parzen (1962) and Rosenblatt (1956) introduced kernel density estimator as a
smooth and continuous estimator for density function. It is defined as

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, x ∈ R, (2)

where K is a function called as kernel and h > 0 is called as bandwidth, which is a
smoothing parameter that controls the smoothness of f̂h. It is usually assumed that
K is a symmetric (about 0) continuous nonnegative function with

∫∞
−∞ K(v)dv = 1, as

well as h → 0 and nh → ∞ when n → ∞. Since distribution function is actually an
integral of density function, this kernel density estimator gave an idea to define a kernel
distribution function estimator. Nadaraya (1964) defined it as

F̂h(x) =
1

n

n∑
i=1

W

(
x−Xi

h

)
, x ∈ R, (3)

where W (v) =
∫ v

−∞ K(w)dw. It is easy to prove that this kernel distribution func-
tion estimator is a continuous function, and satisfies all the properties of a distribution
function.

Several properties of F̂h(x) are well known. The almost sure uniform convergence

of F̂h to FX was proved by Nadaraya (1964), Winter (1973) and Yamato (1973), while
Yukich (1989) extended this result to higher dimensions. Watson and Leadbetter (1964)

proved the asymptotic normality of F̂h(x), and Chung-Smirnov property was established
by Winter (1979) and Degenhardt (1993), i.e.

lim sup
n→∞

√
2n

log log n
sup

{
|F̂h(x)− FX(x)|

∣∣t ∈ R
}
= 1 a.s.

Moreover, it has been shown by several authors that the asymptotic performance of
F̂h(x) is better than that of Fn(x), see Azzalini (1981), Reiss (1981), Falk (1983), Singh
et al. (1983), Hill (1985), Swanepoel (1988), Shirahata and Chu (1992), and Abdous
(1993).

A typical measure of accuracy of F̂h(x) is the MISE (Mean Integrated Squared
Error), defined as

MISE(F̂h) = E

[∫ ∞

−∞
{F̂h(x)− FX(x)}2w(x)dx

]
, (4)

where w is a weight function. Several authors have derived an expression forMISE(F̂h).
In particular, Swanepoel (1988) derived an expression for w(x) = 1, Jones (1990) derived
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it for w(x) = 1
fX(x) , and Altman and Léger (1995) considered a general weight function

w(x).

Under the conditions that fX (the density) has one continuous derivative f ′
X , it

has been proved by the above-mentioned authors that, as n → ∞,

Bias[F̂h(x)] = h2 f
′
X(x)

2

∫ ∞

−∞
z2K(z)dz + o(h2), (5)

V ar[F̂h(x)] =
1

n
FX(x)[1− FX(x)]− 2h

n
r1fX(x) + o

(
h

n

)
(6)

where r1 =
∫∞
−∞ yK(y)W (y)dy. It is easy to show that r1 is a nonnegative number.

Because we have a relationship

MISE(F̂h) =

∫ ∞

−∞
[Bias2{F̂h(x)}+ V ar{F̂h(x)}]dx, (7)

if we choose w(x) = 1, then it is easy to conclude that

MISE(F̂h) =
h4

4

[∫ ∞

−∞
z2K(z)dz

]2 ∫ ∞

−∞
[f ′

X(x)]2dx

+
1

n

∫ ∞

−∞
FX(x)[1− FX(x)]dx− 2h

n
r1 + o

(
h4 +

h

n

)
provided all the integrals above is finite.

There have been many proposals in the literature for improving the bias property
of the standard kernel density estimator. Typically, under sufficient smoothness condi-
tions placed on the underlying density fX , the bias reduces from O(h2) to O(h4), and
the variance remains of order 1

n . Those density estimators that could potentially have
greater impact include bias reduction by geometric extrapolation by Terrel and Scott
(1980), variable bandwidth kernel estimators by Abramson (1982), variable location es-
timators by Samiuddin and El-Sayyad (1990), nonparametric transformation estimators
by Ruppert and Cline (1994), and multiplicative bias correction estimators by Jones et
al. (1995). One also could use, of course, a so-called higher order kernel functions, but
this has a disadvantage that negative values can be found in the density estimates and
distribution function estimates. Hence, using higher order kernel for improving kernel
distribution function estimator seems not a very good idea.

Because of the good performances of the method of Terrel and Scott (1980) for
density estimator, in section 2 we use a similar idea to improve the standard kernel
distribution function estimator. However, instead of using a fixed multiplication factor
for the bandwidth, we use a general term for that. It can be shown that the proposed
estimator, F̃X , has a smaller bias in the sense of convergence rate, that is O(h4). Fur-
thermore, even though the rate of convergence of variance does not change, the variance
of our proposed method is smaller up to some constants. At last, we can conclude that
our proposed estimator has improved MISE. Some simulation studies are discussed in
the section 3, and detailed proofs can be found in the appendices.
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2. MISE Reduction by Geometric Extrapolation

In this section, we shall apply geometric extrapolation method to the kernel distri-
bution function estimator, in order to reduce bias. The idea of reducing bias by geometric
extrapolation is doing a self-elimination technique between two standard kernel distri-
bution function estimators with different bandwidths, with some helps of exponential
and logarithmic expansions. By doing that, vanishing the h2 term of the asymptotic
bias is possible, and the the order of convergence changes to h4.

Before we can start our main purpose, we need to impose some assumptions, they
are:

A1. The kernel K is a nonnegative continuous function, symmetric about 0, and it
integrates to 1

A2. The integral
∫∞
−∞ w4K(x)dw is finite

A3. The bandwidth h > 0 satisfies h → 0 and nh → ∞ when n → ∞

A4. The density fX is three times continuously differentiable, and f
(4)
X exists

A5. The integrals
∫∞
−∞

[f ′
X(x)]2

FX(x) dx and
∫∞
−∞ f ′′′

X (x)dx are finite.

The first and third assumptions are the usual assumptions for the standard kernel dis-
tribution function estimator. Since we shall use exponential and logarithmic expansions,
we need A2 and A4 to ensure the validity of our proofs. For the last assumption, it is
necessary to make sure we can calculate MISE.

We now ready to begin the explanation about how to modify the standard kernel
distribution function estimator and reduce its bias. First, we consider the following
theorem.

Theorem 2.1. Let Jh(x) = E[F̂h(x)] and a( ̸= 1) be a positive number. Under the
assumptions A1 - A4, we have

[Jh(x)]
t1 [Jah(x)]

t2 = FX(x) +O(h4), (8)

where t1 = a2

a2−1 and t2 = − 1
a2−1 .

Remark 1. The function Jah(x) is an expectation of the standard kernel distribution

function estimator with ah as the bandwidth, that is, Jah(x) = E[F̂ah(x)], where

F̂ah(x) =
1

n

n∑
i=1

W

(
x−Xi

ah

)
, x ∈ R.

Furthermore, the term after FX(x) in (8) is in the order h4, which is smaller than the
order of bias of the standard kernel distribution function estimator. Even though this
theorem does not state about a bias of some estimator, it will lead us to the idea to mod-
ify the standard kernel distribution function estimator. About the explicit asymptotic
formula of O(h4), we shall present it in the appendices.



Error Reduction for Kernel Distribution Function Estimators 57

The theorem 2.1 gives us an idea to modify kernel distribution function estimator
which will have, intuitively, similar property of bias. Hence, we propose a new estimator
of distribution function as

F̃X(x) = [F̂h(x)]
a2

a2−1 [F̂ah(x)]
− 1

a2−1 . (9)

This idea is actually straightforward, using the fact that the expectation of the operation
of two statistics is asymptotically equal (in probability) to the operation of expectation
of each statistic. Even though we do not use any concept of converge in probability in
our proofs, the idea is still applicable by using Taylor Expansion instead.

Remark 2. As we can see, the number a acts as the second smoothing parameter here,
because it controls the smoothness of F̂ah (since it is placed inside the function W ),

and determines how much the effect of F̂h and F̂ah as a part of their power. Larger a
means the effect of F̂h is larger for F̃X , and vice versa. Furthermore, when a → ∞, we
shall find that F̃X → F̂h. Oppositely, when a really close to 0, the effect of F̂h is almost
vanished. However, different with bandwidth h, the number a is purely our choice and
does not depend on the sample size n. Letting a too close to 0 is not wise, since it acts
as a denominator in the argument of function W .

Now, for the bias of our proposed estimator, we have the theorem below. As
expected, this leading term in this formulas is actually the same as the explicit form of
O(h4) in theorem 2.1 (see appendices).

Theorem 2.2. Under the assumptions A1 - A4, the bias of F̃X(x) is given by

Bias[F̃X(x)] = h4a2
b22(x)− 2b4(x)FX(x)

2FX(x)
+ o(h4) +O

(
1

n

)
, (10)

where

b2(x) =
f ′
X(x)

2

∫ ∞

−∞
w2K(w)dw and b4(x) =

f ′′′
X (x)

24

∫ ∞

−∞
w4K(w)dw.

Remark 3. The factor FX(x) gives us some uncertain feelings that this bias may be
unbounded in some points of real line. However, even though we did not state it in the
theorem, the assumption A5 ensures us that the bias is valid and bounded a.s. on the
real line. Furthermore as we expected before, the bias is in the order of h4. This order is
same as if we use forth order kernel function for the standard kernel distribution function
estimator. However, since in some points in real line we may find negative estimates if
we use those kind of kernel function, our proposed estimator is more appealing.

Next, we discuss about the property of variance. Interestingly enough, there is
no differences between the variance of our proposed estimator and the variance of the
standard kernel distribution function estimator, in the sense of convergence order, as
stated in the theorem below.

Theorem 2.3. Under the assumptions A1 - A4, the variance of F̃X(x) is given by

V ar[F̃X(x)] =
1

n
FX(x)[1− FX(x)]− 2h

n

(a4 + 1)r1 + a2r2
(a2 − 1)2

fX(x) + o

(
h

n

)
, (11)
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where

r1 =

∫ ∞

−∞
yK(y)W (y)dy and r2 =

∫ ∞

−∞
y

[
K(y)W

(y
a

)
+

1

a
W (y)K

(y
a

)]
dy.

Remark 4. Actually in many cases, we usually omit the h
n term and just denote it

as O
(
h
n

)
. However, since the dominant term of the variance of the standard kernel

distribution function estimator and our proposed method are same, we need the second

order term to compare them. It is easy to show that a2

(a2−1)2 r2 ≥ 0 and a4+1
(a2−1)2 ≥ 1 when

a < 1 (which is suggested). Hence, up to some constants, the variance of our proposed
estimator is smaller than the kernel distribution function estimator’s variance.

As we can see, since both of the bias and the variance of our proposed estimator
are smaller, then we can conclude that the MISE of out proposed estimator is smaller
than the MISE of the standard kernel distribution function estimator. The following
theorem 2.4 below states that clearly.

Theorem 2.4. Under the assumptions A1 - A5, the mean integrated square error
of F̃X is smaller than the MISE of F̂h. It is given by

MISE(F̃X) = h8a4
∫ ∞

−∞

[
b22(x)− 2b4(x)FX(x)

2FX(x)

]2
dx

+
1

n

∫ ∞

−∞
FX(x)[1− FX(x)]dx− 2h

n

(a4 + 1)r1 + a2r2
(a2 − 1)2

+ o

(
h8 +

h

n

)
.

3. Simulation Study

In this section, we present the results of our simulation study to support the the-
oretical discussion. In this simulation study, we generated random samples from the
standard normal distribution, normal distribution with mean 1 and variance 2, Laplace
distribution with mean 0 and scale parameter 1, and Laplace distribution with mean 1
and scale parameter 2. The size of each sample is 50, and we did 1000 repetitions for
each case. We ran cross-validation method to choose bandwidth. We calculated AISE
(Average Integrated Squared Error) as an estimator for MISE.

Table 1: AISE of Standard Kernel DF and Proposed Method
Estimators N(0, 1) N(1, 2) Lap(0, 1) Lap(1, 2)
standard 0.06523 0.07502 0.09098 0.08511
a=0.01 0.03106 0.034894 0.03043 0.04096
a=0.1 0.03127 0.035002 0.03066 0.04149
a=0.25 0.03199 0.0397 0.04353 0.04488
a=0.5 0.04837 0.0469 0.04499 0.04902
a=0.75 0.04917 0.04761 0.04940 0.04947
a=2 0.05415 0.05017 0.06899 0.06760
a=3 0.05745 0.05032 0.0695 0.06826

In the results, we can see that the proposed method gives us good results, especially
if we use smaller a. However, the difference between the result of a = 0.1 and a = 0.01
is not much.
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4. Conclusion

This paper has proposed a modification of the standard kernel distribution func-
tion by using geometric extrapolation, which reduce the order of convergence of the bias
from O(h2) to O(h4). It is demonstrated that the elimination of h2 can be done by
self-elimination technique. The variance is not much influenced, but still we can show
that the variance of our proposed estimator is smaller than that of the standard ker-
nel distribution function estimator. As a result, the MISE of the proposed method is
reduced. Moreover the result of the simulation study reveal the superior performance
of the proposed estimator, especially if we choose a small enough. However, choosing a
too small and close to 0 is not wise, since it acts as denominator, and the improvement
is not much. Actually, because our estimator has two smoothing parameters, h and a,
we cannot use usual methods to choose both of them. Establishing new procedure for
choosing h and a simultaneously will be a good study to be considered.

Acknowledgement
The authors gratefully acknowledge JSPS Grant-in-Aid for Exploratory Research

No.15K11995 and Scientific Research(B) No.16H02790

References

Abdous, B. (1993). Note on the minimum mean integrated squared error of kernel esti-
mates of a distribution function and its derivatives. Comm. Statist. Theory Methods
Vol. 22, 603-609.

Abramson, I. S. (1982). On bandwidth variation in kernel estimates - a square root law.
Ann. Statist. Vol. 10, 1217-1223.
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A Appendices

A1. Proof of Theorem 2.1

Let Jh(x) = E[F̂h(x)], and extend the expansion until h4 term. In detail,

Jh(x) =

∫ ∞

−∞
W

(
x− v

h

)
fX(v)dv

= W

(
x− v

h

)
FX(v)

∣∣∣∣∞
−∞

+
1

h

∫ ∞

−∞
FX(v)H

(
x− v

h

)
dv

=

∫ ∞

−∞
FX(x− hw)K(w)dw

=

∫ ∞

−∞
K(w)

[
FX(x)− hwfX(x) + h2f ′

X(x)
w2

2

−h3f ′′
X(x)

w3

6
+ h4f ′′′

X (x)
w4

24
− ...

]
dw

= FX(x) + h2b2(x) + h4b4(x) + o(h4)

= FX(x)

[
1 + h2 b2(x)

FX(x)
+ h4 b4(x)

FX(x)
+ o(h4)

]
,

where b2(x) =
f ′
X(x)
2

∫∞
−∞ w2K(w)dw and b4(x) =

f ′′′
X (x)
24

∫∞
−∞ w4K(w)dw. By taking a

natural logarithm and using its expansion, we have

log Jh(x) = logFX(x)

[
1 + h2 b2(x)

FX(x)
+ h4 b4(x)

FX(x)
+ o(h4)

]
= logFX(x) + log

[
1 + h2 b2(x)

FX(x)
+ h4 b4(x)

FX(x)
+ o(h4)

]
= logFX(x) +

∞∑
k=1

(−1)k−1

k

[
h2 b2(x)

FX(x)
+ h4 b4(x)

FX(x)
+ o(h4)

]k
= logFX(x) + h2 b2(x)

FX(x)
+ h4 b4(x)

FX(x)
+ o(h4)

− 1

2F 2
X(x)

[
h4b22(x) + 2h6b2(x)b4(x) + h8b24(x) + o(h8)

]
+ ...

= logFX(x) + h2 b2(x)

FX(x)
+ h4 2b4(x)FX(x)− b22(x)

2F 2
X(x)

+ o(h4).

Next, if we define Jah(x) = E[F̂ah(x)], i.e.

log Jah(x) = logFX(x) + a2h2 b2(x)

FX(x)
+ a4h4 2b4(x)FX(x)− b22(x)

2F 2
X(x)

+ o(h4),
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we can set up some conditions to eliminate the term h2 but keep the term logFX(x).
Since

log[Jh(x)]
t1 [Jah(x)]

t2 = t1 log Jh(x) + t2 log Jah(x)

= (t1 + t2) logFX(x) + (t1 + a2t2)h
2 b2(x)

FX(x)

+(t1 + a4t2)h
4 2b4(x)FX(x)− b22(x)

2F 2
X(x)

+ o(h4),

the conditions we need are t1+ t2 = 1 and t1+ a2t2 = 0. It is obvious that the solutions
are t1 = a2

a2−1 and t2 = − 1
a2−1 , and we get

log[Jh(x)]
a2

a2−1 [Jah(x)]
− 1

a2−1 = logFX(x)− h4a2
2b4(x)FX(x)− b22(x)

2F 2
X(x)

+ o(h4).

To neutralize the natural logarithmic function, we can use exponential function and its
expansion, then we have

[Jh(x)]
a2

a2−1 [Jah(x)]
− 1

a2−1

= exp[log{Jh(x)}
a2

a2−1 {Jah(x)}
− 1

a2−1 ]

= exp

[
logFX(x)− h4a2

2b4(x)FX(x)− b22(x)

2F 2
X(x)

+ o(h4)

]
= exp[logFX(x)] exp

[
−h4a2

2b4(x)FX(x)− b22(x)

2F 2
X(x)

+ o(h4)

]
= FX(x)

∞∑
k=0

(−1)k

k!

[
h4a2

2b4(x)FX(x)− b22(x)

2F 2
X(x)

+ o(h4)

]k
= FX(x)

[
1 + h4a2

b22(x)− 2b4(x)FX(x)

2F 2
X(x)

+ o(h4) + ...

]
= FX(x) + h4a2

b22(x)− 2b4(x)FX(x)

2FX(x)
+ o(h4)

= FX(x) +O(h4).

A2. Proof of Theorem 2.2

In order to investigate the bias of our proposed estimator, we rewrite

F̂h(x) = Jh(x) + Y

and F̂ah(x) = Jah(x) + Z, where Y and Z are random variables with

E(Y ) = E(Z) = 0,

V ar(Y ) = V ar[F̂h(x)], and V ar(Z) = V ar[F̂ah(x)]. These forms are actually reason-
able, because of the definition of Jh(x) and Jah(x). Then, by the expansion

(1 + p)q = 1 + pq +O(p2),
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we have

F̃X(x) = [F̂h(x)]
a2

a2−1 [F̂ah(x)]
− 1

a2−1 = [Jh(x) + Y ]
a2

a2−1 [Jah(x) + Z]
− 1

a2−1

= [Jh(x)]
a2

a2−1 [Jah(x)]
− 1

a2−1

[
1 +

Y

Jh(x)

] a2

a2−1
[
1 +

Z

Jah(x)

]− 1
a2−1

= [Jh(x)]
a2

a2−1 [Jah(x)]
− 1

a2−1

[
1 +

a2

a2 − 1

Y

Jh(x)
+O

{
Y 2

J2
h(x)

}]
×
[
1− 1

a2 − 1

Z

Jah(x)
+O

{
Z2

J2
ah(x)

}]
= [Jh(x)]

a2

a2−1 [Jah(x)]
− 1

a2−1

×
[
1 +

a2

a2 − 1

Y

Jh(x)
− 1

a2 − 1

Z

Jah(x)
+O{(Y + Z)2}

]
= [Jh(x)]

a2

a2−1 [Jah(x)]
− 1

a2−1 +
a2

a2 − 1

[
Jh(x)

Jah(x)

] 1
a2−1

Y

− 1

a2 − 1

[
Jh(x)

Jah(x)

] a2

a2−1

Z +O[(Y + Z)2].

Hence,

E[F̃X(x)] = E

[
{Jh(x)}

a2

a2−1 {Jah(x)}
− 1

a2−1 +
a2

a2 − 1

{
Jh(x)

Jah(x)

} 1
a2−1

Y

− 1

a2 − 1

{
Jh(x)

Jah(x)

} a2

a2−1

Z +O{(Y + Z)2}
]

= [Jh(x)]
2[Jah(x)]

−1 +
2Jh(x)

Jah(x)
E(Y )−

[
Jh(x)

Jah(x)

]2
E(Z)

+O[E{(Y + Z)2}]

= FX(x) + h4a2
b22(x)− 2b4(x)FX(x)

2FX(x)
+ o(h4) +O

(
1

n

)
,

and the bias is

Bias[F̃X(x)] = h4a2
b22(x)− 2b4(x)FX(x)

2FX(x)
+ o(h4) +O

(
1

n

)
.
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A3. Proof of Theorem 2.3

Before we derive the variance, we need to calculate Jh(x)
Jah(x)

first. Once again by

using (1 + p)q = 1 + pq +O(p2), we get

Jh(x)

Jah(x)
=

FX(x)
[
1 + h2 b2(x)

FX(x) + h4 b4(x)
FX(x) + o(h4)

]
FX(x)

[
1 + a2h2 b2(x)

FX(x) + a4h4 b4(x)
FX(x) + o(h4)

]
=

1 + h2 b2(x)
FX(x) + h4 b4(x)

FX(x) + o(h4)

1 +O(h2)

=

[
1 + h2 b2(x)

FX(x)
+ h4 b4(x)

FX(x)
+ o(h4)

]
[1 +O(h2) +O(h4)]

= 1 + h2 b2(x)

FX(x)
+ h4 b4(x)

FX(x)
+ o(h4) +O(h2) = 1 +O(h2).

The calculation of the variance is

V ar[F̃X(x)] = V ar

[
{Jh(x)}

a2

a2−1 {Jah(x)}
− 1

a2−1 +
a2

a2 − 1

{
Jh(x)

Jah(x)

} 1
a2−1

Y

− 1

a2 − 1

{
Jh(x)

Jah(x)

} a2

a2−1

Z +O{(Y + Z)2}
]

= V ar

[
a2

a2 − 1
{1 +O(h2)}

1
a2−1Y − 1

a2 − 1
{1 +O(h2)}

a2

a2−1Z

]
+O[V ar{(Y + Z)2}]

= V ar

(
a2

a2 − 1
Y − 1

a2 − 1
Z

)
[1 +O(h2)] +O

(
1

n2

)
= V ar

(
a2

a2 − 1
Y − 1

a2 − 1
Z

)
+O

(
h2

n
+

1

n2

)
= V ar

[
a2

a2 − 1
F̂h(x)−

1

a2 − 1
F̂ah(x)

]
+ o

(
h

n

)
.

Because this is just a variance of linear combination of two standard kernel distribution
function estimators, the order of the variance does not change, that is 1

n . For the explicit
formula of the variance, first we calculate

a4

(a2 − 1)2
V ar[F̂h(x)] +

1

(a2 − 1)2
V ar[F̂ah(x)]−

2a2

(a2 − 1)2
Cov[F̂h(x), F̂ah(x)].
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Since we already knew about the formulas of V ar[F̂h(x)] and V ar[F̂ah(x)], we only need
to take a look to the covariance part, that is

Cov[F̂h(x), F̂ah(x)] =
1

n2

n∑
i=1

n∑
j=1

Cov

[
W

(
x−Xi

h

)
,W

(
x−Xj

ah

)]

=
1

n
Cov

[
W

(
x−X1

h

)
,W

(
x−X1

ah

)]
=

1

n

[
E

{
W

(
x−X1

h

)
W

(
x−X1

ah

)}
−E

{
W

(
x−X1

h

)}
E

{
W

(
x−X1

ah

)}]
.

Because,

E

[
W

(
x−X1

h

)]
= E

[
W

(
x−X1

ah

)]
= FX(x) +O(h2),

we only need to calculate

E

[
W

(
x−X1

h

)
W

(
x−X1

ah

)]
=

∫ ∞

−∞
W

(
x− v

h

)
W

(
x− v

ah

)
fX(v)dv

= W

(
x− v

h

)
W

(
x− v

ah

)
FX(v)

∣∣∣∣∞
−∞

−
∫ ∞

−∞
FX(x)

[
− 1

h
K

(
x− v

h

)
×W

(
x− v

ah

)
− 1

ah
W

(
x− v

h

)
K

(
x− v

ah

)]
dv

=
1

h

∫ ∞

−∞
FX(x)

[
K

(
x− v

h

)
W

(
x− v

ah

)
+

1

a
W

(
x− v

h

)
K

(
x− v

ah

)]
dv

=

∫ ∞

−∞
FX(x− yh)

[
K(y)W

(y
a

)
+

1

a
W (y)K

(y
a

)]
dy

=

∫ ∞

−∞
[FX(x)− hyfX(x) + o(h)]

[
K(y)W

(y
a

)
+

1

a
W (y)K

(y
a

)]
dy

= FX(x)

[∫ ∞

−∞
K(y)W

(y
a

)
dy +

1

a

∫ ∞

−∞
W (y)K

(y
a

)
dy

]
− hfX(x)r2 + o(h),

where r2 =
∫∞
−∞ y

[
K(y)W

(
y
a

)
+ 1

aW (y)K
(
y
a

)]
dy. For the first term of the right-hand

side, we have∫ ∞

−∞
K(y)W

(y
a

)
dy = W

(y
a

)
W (y)

∣∣∣∣∞
−∞

− 1

a

∫ ∞

−∞
W (y)K

(y
a

)
dy

= 1− 1

a

∫ ∞

−∞
W (y)K

(y
a

)
dy.

Thus we get

E

[
W

(
x−X1

h

)
W

(
x−X1

ah

)]
= FX(x)− hfX(x)r2 + o(h).
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As a result, we can show that

Cov[F̂h(x), F̂ah(x)] =
1

n
FX(x)[1− FX(x)]− h

n
fX(x)r2 + o

(
h

n

)
,

and then

V ar[F̃X(x)] =
1

n
FX(x)[1− FX(x)]− 2h

n

(a4 + 1)r1 + a2r2
(a2 − 1)2

fX(x) + o

(
h

n

)
.

A4. Proof of Theorem 2.4

Because we have a relationship

MISE(F̂h) =

∫ ∞

−∞
[Bias2{F̂h(x)}+ V ar{F̂h(x)}]dx,

we obtain

MISE(F̃X) = h8a4
∫ ∞

−∞

[
b22(x)− 2b4(x)FX(x)

2FX(x)

]2
dx

+
1

n

∫ ∞

−∞
FX(x)[1− FX(x)]dx− 2h

n

(a4 + 1)r1 + a2r2
(a2 − 1)2

+ o

(
h8 +

h

n

)
,

where

b2(x) =
f ′
X(x)

2

∫ ∞

−∞
w2K(w)dw and b4(x) =

f ′′′
X (x)

24

∫ ∞

−∞
w4K(w)dw.
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