<学術雑誌論文>
CONTEXTUAL CLUSTERING AND UNMIXING OF GEOSPATIAL DATA BASED ON GAUSSIAN MIXTURE MODELS AND MARKOV RANDOM FIELDS

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
Crossref DOI
関連DOI
関連URI
関連情報
概要 In supervised and unsupervised image classification, it is known that contextual classification methods based on Markov random fields (MRFs) improve the performance of noncontextual classifiers. In th...is paper, we consider the unsupervised unmixing problem with the introduction of a new MRF. First, spectral vectors observed at mixels are assumed to follow Gaussian mixtures. Second, vectors representing fractions of categories are supposed to follow an MRF over the observed area. Then, we derive an unsupervised unmixing method, which is also useful for unsupervised classification. When evaluated using a synthetic data set and a benchmark data set for classification, the proposed method performed well.続きを見る

本文ファイル

pdf p039 pdf 269 KB 451  

詳細

PISSN
EISSN
NCID
レコードID
査読有無
主題
タイプ
登録日 2012.03.14
更新日 2023.11.22

この資料を見た人はこんな資料も見ています