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Abstract

In supervised and unsupervised image classification, it is known that contextual classi-
fication methods based on Markov random fields (MRFs) improve the performance of non-
contextual classifiers. In this paper, we consider the unsupervised unmixing problem with
the introduction of a new MRF. First, spectral vectors observed at mixels are assumed to fol-
low Gaussian mixtures. Second, vectors representing fractions of categories are supposed to
follow an MRF over the observed area. Then, we derive an unsupervised unmixing method,
which is also useful for unsupervised classification. When evaluated using a synthetic data
set and a benchmark data set for classification, the proposed method performed well.

Key Words and Phrases:contextual clustering, Gaussian mixture, MRF, unmixing

1. Introduction

Image classification is an important issue, especially, in the remote sensing community.
For the case where training data are available, many classification methods have been studied
(see Lu and Weng (2007) for a comprehensive review referring to many relevant papers). Fur-
thermore, a machine learning approach has also been discussed, e.g., Nishii and Eguchi (2005);
Kawaguchi and Nishii (2007). It is now known that contextual classification methods based on
Markov random fields (MRFs) improve the performance of non-contextual classifiers.

When training data are unavailable, the application of clustering methods to feature vectors
(e.g.,K-means methods) is used to detect homogeneous regions in an image. In this paper, we
consider a soft-classification problem without training data. Suppose that we are required to
estimate fractions of categories covering each pixel for a multispectral image without training
data. This issue, calledunmixing, is usually solved by a linear equation derived by assuming
that the observed feature vector is composed of a convex combination of category reflectance
signatures, see Nielsen (2001). Other approaches such as independent component analysis are
also promising. Contextual unmixing methods for hyperspectral data have also been proposed,
e.g., Nasciment and Dias (2003), Jia and Qian (2007), and Moussaoui et al. (2007).

The purpose of this paper is to refine previous results by Nishii et al. (2008), which are
based on Gaussian mixture distributions and an MRF for fraction vectors. The remaining part
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Figure 1: Pixeli and its four neighbors (d(i, j) = 1), and eight neighbors (d(i, j) ≤
√

2)

of the paper is organized as follows. Section 2 states our assumptions regarding feature vectors
as well as fraction vectors. Section 3 gives the way how to maximize conditional densities.
A method of estimating each fraction vector is proposed in Section 4. Section 5 looks at the
possibility of a generalization of the distributional assumptions. The proposed unmixing method
is numerically examined using two data sets in Section 6. Section 7 concludes the paper.

2. Assumptions for unsupervised contextual unmixing

LetD be a set of pixels in a multispectral image. The pixels are numbered from 1 ton,
andD is denoted by{1, . . . ,n}. Note that the pixels are small unit areas on the surface of the
earth. Assume thatd-dimensional feature vectorxi is available at pixeli in D. Now, each pixel
is supposed to be a mixel ofG land-cover categoriesC1, . . . ,CG. Our interest here is to estimate
vector f i = ( fi1, ..., fiG)T denotingfractions of the categoriesCg covering pixeli. Obviously,
the fraction vectorf i should meet the following conditions:

fig ≥ 0 and
G∑

g=1

fig = 1. (1)

Note again that we are dealing with the casewithout training data (contextual unmixing
or contextual end-member detection). We will derive a contextual unmixing method under the
following three assumptions regarding features and fractions.

Assumption 1: (Gaussian mixtures for feature vectors)
Let f = ( f1, ..., fG)T denote a vector of fractions of the categories. Then, it is assumed that the
conditional distribution of feature vectorX = (X1, ...,Xd)T given fraction vectorf is expressed
by a Gaussian mixture:

p(x | f ) =
G∑

g=1

fgϕ(x;µg,Σg) (2)

wherep(x| f ) denotes a conditional probability density function, andϕ(x;µ,Σ) is a probability
density function of Gaussian distributionNd(µ,Σ) defined byϕ(x;µ,Σ) = (2π)−d/2|Σ|−1/2

× exp
{
−(x − µ)T Σ−1(x − µ)/2

}
.

Assumption 2: (MRF for category-fraction vectors)
Let {F1, ..., Fn} be a set of random vectors denoting category fractions. Assume that the con-
ditional distribution ofF i given all other fraction vectorsf l ; l , i depends only on all of the
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Figure 2: Optimal and quasi-optimal points

fraction vectors of its neighbors{ f j | j ∼ i}, where ”j ∼ i” means pixelj satisfies 0< d(i, j) ≤ r.

(Figure 1 gives two neighborhoods withr = 1,
√

2.) Here ”d(i, j) ≤ r” denotes that the distance
betweeni and j does not exceed a pre-assigned radiusr. More exactly, the joint distribution of
F i is expressed by

p
(
f 1, ..., f n

)
=

1
Z

exp

−β∑i ∼

∑
j

∥ f i − f j∥2
 (3)

whereZ is a normalizing factor andβ ≥ 0 denotesa granularity of MRF. If β = 0, the fraction
vectorsF1, ..., Fn are spatially independent. Ifβ is large, the spatial dependency becomes strong.

Assumption 3: (Conditional independence)
Let {X1, ..., Xn} be a set of random feature vectors. We assume that the conditional distribution
of {X1, ..., Xn} given feature vectors{F1, ..., Fn} = { f 1, ..., f n} is simply decomposed as

p(x1, ..., xn | f 1, ..., f n) =
n∏

i=1

p(xi | f i). (4)

3. Maximization of conditional densities

To estimate all fraction vectors, it is desirable if we can find the maximizer of the joint
posterior densityp( f 1, ..., f n | x1, ..., xn) w.r.t. f 1, ..., f n. However, this task needs the exact
expression of the normalizing factorZ in the formula (3). Therefore, the local posterior density
is maximized instead of the joint posterior.

Consider the conditional density off i given feature vectorxi and fraction vectors{ f j | j ∼
i}. From Assumptions 1-3, it holds that

p
(
f i | xi , f j , j ∼ i

)
∝

G∑
g=1

figϕ(xi ;µg,Σg) exp{−β∥ f i − f i∥2}

= f T
i ϕi exp{−β∥ f i − f i∥2} (5)
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whereϕi = (ϕ(xi ;µ1,Σ1), ..., ϕ(xi ;µG,ΣG))T , f i ≡
∑

j: j∼i f j/Ni , andNi is the number of neigh-

bors of pixeli. Note thatf i meets the conditions (1) since it is the averaged vector of neighboring
fractions. Now, our aim is to maximize the posterior (5) w.r.t.f i subject to the conditions (1).

If β = 0, the conditional density (5) is maximized at one of edge pointse1 = (1,0, ..., 0)T , ...,
eG = (0, ..., 0,1)T . Let eopt = (0, ..., 1, ..., 0)T be the optimal point, where mass 1 is assigned to
the category maximizingϕ(xi ;µg,Σg). Furthermore, it is obvious that the optimal fraction vector

converges tof i asβ tends to infinity. This implies that the optimal point at positiveβ may be
found in the segment connecting two pointseopt and f i . The optimal point found in the segment
would not be optimal (quasi-optimal), but the point is expected to be close to the optimal point.

The optimal pointf opt is numerically obtained from Matlab functionfmincon. How-
ever, the calculation time usingfmincon is one hundred times of that using the quasi-optimum
method.

Figure 2 illustrates the optimal pointseopt at β = 0 and f i asβ → ∞. The quasi-optimal
point f ∗opt is found in the segment connecting two points, and the current fraction vectorf i is
updated tof ∗opt.

An actual procedure to derive the quasi-optimal pointf ∗opt is given as follows. Putf i =

weopt + (1 − w) f i in the formula (5) for 0≤ w ≤ 1. Omitting suffix i, we define the following
target function ofw:

g(w) =
{
weT

optϕ + (1− w) f
T
ϕ
}

exp{−βw2∥eopt− f ∥2}

whereϕ = (ϕ(x;µ1,Σ1), ..., ϕ(x;µG,ΣG))T . If β∥eopt − f ∥ = 0, the optimal value maximizing
g(w) is given byw = 1. If β∥eopt− f ∥ > 0, the optimal value ofw can be derived by solving the
differential equationdg(w)/dw= 0, equivalently,

eT
optϕ − f

T
ϕ − 2β∥eopt− f ∥2 · w

{
weT

optϕ + (1− w) f
T
ϕ
}
= 0.

The solutionw is easily found through a root of a quadratic equation for 0< w < 1.

4. Proposal of contextual unmixing methods and evaluation

Based on the discussion in Section 2, we propose the following EM algorithm for estimat-
ing the fraction vectors.

Contextual unmixing procedure

S1. Fix β > 0, and a natural numberG.

S2. Find the initial estimates,µ(0)
g , Σ(0)

g and f (0)
i , using normal mixture models under the

spatially-independent assumption on the feature vectors{x1, ..., xn}.

S3. Repeat the following steps fromt = 0 until the convergence of the estimated parameters.

(a) M-step: (Repeat fori = 1, ..., n)
Through the method developed in Section 3, find the quasi-optimal fractionf i =

f (t+1)
i which maximizes the following conditional density:

p
(
f i

∣∣∣∣xi , f
(t)
j , j ∼ i

)
∝

G∑
g=1

figϕ(xi ;µ
(t)
g ,Σ

(t)
g ) exp

(
−β∥ f i − f

(t)
i ∥2
)
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where f
(t)
i ≡
∑

j: j∼i f (t)
j /Ni .

(b) E-step: Update parametersµ(t+1)
g andΣ(t+1)

g by re-estimated fractionsf (t+1)
i as

µ(t+1)
g =

∑n
i=1 r igxi∑n

i=1 r ig
, Σ(t+1)

g =

∑n
i=1 r ig(xi − µ(t)

g )(xi − µ(t)
g )T∑n

i=1 r ig

wherer ig ≡ f (t+1)
ig ϕ(xi | µ(t)

g ,Σ
(t)
g ).

The proposed contextual method is applicable for unmixing as well as clustering.
Our method for clustering is evaluated as follows.

1. Apply the unmixing procedure to a data set.

2. Allocate each pixel to the category with the maximum fraction.

3. Calculate the error rate defined by

clustering error rate=
the number of pixels categorized false

total number of pixels
.

Furthermore, unmixing is evaluated as follows.

1. Apply the unmixing procedure to a data set.

2. Calculate the error rate defined by

unmixing error rate=
1
2n

n∑
i=1

G∑
g=1

| fig − f̂ig|.

It is easily seen that the unmixing error rate coincides with the clustering error rate when frac-
tions f i and f̂ i are given by one of the edge pointse1 = (1,0, ..., 0)T , ... ,eG = (0, ..., 0, 1)T .

5. Generalization of distributional assumptions

The conditional distribution of feature vectorX given fraction vectorf is easily extended
in a general mixture distribution defined by

p(x | f ) =
G∑

g=1

fghg(x; θg) (6)

wherehg(x; θg) denotes a class-conditional probability density function specified by unknown
parameter vectorθg for g = 1, ...,G. Furthermore, the joint distribution of the fraction vectors is
extended as

p( f 1, ..., f n) =
1
Z

{
Γ(α1 + · · · + αG)
Γ(α1) · · · Γ(αG)

}n n∏
i=1

G∏
g=1

f
αg−1
ig exp

−β∑i ∼

∑
j

∥ f i − f j∥γ
 (7)

whereγ is a positive parameter andαg = 1 denotes a parameter of the Dirichlet distribution.
Note that the marginal distribution of the fraction follows the Dirichlet distribution.
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r2: 1, beta: 0, error rate: 0.41855r2: 1, beta: 3, error rate: 0.10627r2: 1, beta: 3, error rate: 0.074991

(a) True labels (b) (β,e) = (0,0.419) (c) (r, β, e) = (1,3,0.106) (d) (r, β, e) = (1,3,0.075)

Figure 3: Clustering of the synthetic data with three categories. True labels (a), non-contextual
clustering (b), and contextual clustering (c). The “r” and “e” respectively denote the radius of
neighborhoods and the clustering error rate.

6. Numerical examples

In this section, the method is examined through a synthetic data set and an IEEE benchmark
data set provided for supervised classification. For the initial parameter estimation in S2 of
Section 4,EM GM of the Matlab Toolbox∗ is used.
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Figure 4: Clustering error rates for two meth-
ods againstβ for the synthetic data (ra-
diusr = 1)

Figure 5: Clustering error rates againstβ with
radiusesr for the synthetic data

6.1. Application to a synthetic data set

Clustering
The proposed method is applied to four-dimensional data (d = 4) generated over the image
shown in Figure 3 (a) of size 91×91. There are three categories (G = 3) with n = 8281 samples
following N4(µg, I ) with µ1 = (0 0 0 0)T , µ2 = (1 1 0 0)T/

√
2, andµ3 = (1.0498−0.6379 0 0)T .

(See Nishii and Eguchi (2005) for a detailed explanation of the data.)
Figure 3 compares non-contextual clustering and contextual clustering. The clustering image

(b) obtained by the non-contextual method is very poor, whereas the proposed methods enable
very clear images (c) and (d), which were respectively derived by the quasi-optimization and the
numerical optimization.

Figure 4 compares two procedures based on the quasi-optimal method and the numerical
optimization discussed in Section 3. Clustering error rates are plotted against granularityβ with

∗ http://www.mathworks.com/matlabcentral/fileexchange/loadCategory.do
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g: 2 r2: 1, beta: 3, err rate: 0.15045g: 2 r2: 1, beta: 3, err rate: 0.042101

(a) True fraction ofC1 (d) (β,e) = (0,0.464) (g) (β, e) = (3,0.271) (j) (β,e) = (3,0.233)
g: 1 r2: 1, beta: 3, err rate: 0.23263g: 3 r2: 1, beta: 3, err rate: 0.042101

(b) True fraction ofC2 (e) (β, e) = (0,0.464) (h) (β,e) = (3,0.271) (k) (β,e) = (3, 0.233)
g: 3 r2: 1, beta: 3, err rate: 0.15755

g: 1 r2: 1, beta: 3, err rate: 0.042101

(c) True fraction ofC3 (f) (β, e) = (0,0.464) (i) (β,e) = (3,0.271) (l) (β,e) = (3,0.233)

Figure 6: Unmixing of synthetic data. Images based on the true fractionsf1, f2, f3 (a)-(c),
non-contextual unmixing (d)-(f), contextual unmixing (g) - (i) and (j) - (l). The “e” denotes the
unmixing error rate.

radiusr = 1. The non-contextual clustering (β = 0) with a clustering error rate of 0.210 is greatly
improved. The minimum value is attained atβ = 3, giving a clustering error rate of 0.106 by the
quasi-optimal method. The numerical optimization is time-consuming, but improves the error
rate to 0.075 . This method is superior to the quasi-optimization, as expected, but, the difference
is not so large.

Figure 5 depicts clustering error rates againstβ based on numerical optimization with ra-
diusesr = 1,

√
2, 2,

√
5,
√

8. As can be seen, the method withr = 1 or
√

2 performed well.
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Figure 7: Unmixing error rate againstβ with
radiusr = 1 for the synthetic data

Figure 8: Unmixing error rates againstβ with
radiusesr for the synthetic data

Unmixing
The proposed method can also be applied to four-dimensional data generated by the mixture of
the Gaussian populations. Figures 6 (a) - (c) give the true fraction rates of the three categories.

Figures 6 (d) - (f) show poor non-contextual unmixing images with an error rate of 0.464.
Figures 6 (g) - (i) show that the contextual unmixing method with quasi-optimization greatly
improves image quality. Figures 6 (j) - (l) show that the method based on the numerical opti-
mization gives the best result with an error rate of 0.233.

Figure 7 compares the numerical optimization and the quasi-optimization, revealing that the
former is superior. Furthermore, Figure 8 depicts clustering error rates againstβ based on nu-
merical optimization with five radiuses. The method withr = 1 gives the best result.

True labels of test data r2: 8, beta: 0, error rate: 0.26701r2: 8, beta: 20, error rate: 0.18698

(a) True labels of five categories (b) (β,e) = (0,0.267) (c) (r, β, e) = (
√

8,20,0.187)

Figure 9: Clustering of the benchmark data. True labels (a), non-contextual clustering (b), and
contextual clustering (c). The “r” and “e” respectively denote the radius of neighborhoods and
the clustering error rate.
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8 for the benchmark data

Figure 11: Clustering error rates againstβ with
radiusesr for the benchmark data

True labels of test data   g: 1g: 1, r2: 8, beta: 0, error rate: 0.11826g: 1, r2: 8, beta: 9, error rate: 0.075303

(a) True labels ofC1 (b) (β, e) = (0,0.269) (c) (r, β, e) = (
√

8,9,0.210)

Figure 12: Unmixing of the first category “beet”. True fraction (a), non-contextual unmixing
(b), and contextual unmixing (c). The “e” denotes the unmixing error rate.

6.2. Application to benchmark data set grssdfc 0006

The data set grssdfc 0006† consists of samples acquired by ATM and SAR (d = 15) with
five agricultural categories (beet, potato etc,G = 5) in Feltwell, UK. The data withn = 5760
samples are observed in a rectangular region of size 350× 250.

Clustering
Figure 9 gives the true labels with five categories (a), non-contextual clustering (b), and contex-
tual clustering (c). The error rate of non-contextual clustering (b) is improved by the proposed
contextual method from 0.267 to 0.187. Figure 10 compares the two optimization procedures.
In this case, the quasi-optimal method performs similarly to the numerical optimization, except
for the case ofβ = 14. This may come from a feature of the data set such that each patch is

† The data set grssdfc 0006 is provided by the IEEE GRS-S Data Fusion Committee.
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separated and covered by one of the five categories. Figure 11 depicts clustering error rates
againstβ based on numerical optimization with radiusesr = 2,

√
8, 4,

√
20,
√

32. It is seen that
the method withr =

√
20 or

√
32 works well. The main reason for a fairly large radius giving

small error rates is that all patches with the same category are separated.

Unmixing
Figure 12 gives fractions of the first category “beet”. The error rate of non-contextual unmixing
(b) is improved by the proposed contextual method from 0.269 to 0.210.

Figure 13 compares the two optimizing procedures with radiusr =
√

8. The quasi-optimal
solution performs similarly to the numerical optimization method. Note also that the optimal
granularityβ is around seven, and this is smaller than the optimal value for clustering. Figure
14 depicts unmixing error rates againstβ based on numerical optimization with five radiuses.
Again, the method withr =

√
20 or

√
32 works well.
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Figure 13: Unmixing error rate againstβ with
radiusr =

√
8 for the benchmark data

Figure 14: Unmixing error rates againstβ with
radiusesr for the benchmark data

7. Discussion

We have proposed a contextual clustering/unmixing method based on Gaussian mixture
and an MRF. Each fraction vector is estimated by maximizing the local conditional posterior
density through an EM algorithm. We have also proposed a quasi-optimal procedure to max-
imize the posterior. It is possible to extend the Gaussian assumption into mixture of general
densities. Also, the MRF is extendable into a more general one.

The method was applied to two data sets and evaluated as a contextual clustering/unmixing
method. Two data sets discussed in Section 5 were already analyzed by supervised contextual
classifiers by Nishii and Eguchi (2005). Naturally enough, our unsupervised method could not
exceed the capabilities of their supervised classifiers, but it performs satisfactorily. We also
found that contextual information significantly improves clustering/unmixing accuracy.

Our numerical experiments are carried out when the true numberG of categories is known.
If we choose a small numberG, true categories close each other are unified and constitute a new
category. This maynot lead to severe problems. However, if we choose a large numberG, there
are several true categories which are divided into two or more. Furthermore, this subdivision
affects all the true categories.

Thus, an important future issue is an efficient determination ofG as well as the granularity
β and the radiusr. Furthermore, comparison of the proposed method with existing unmixing
methods is also an important issue.
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