作成者 |
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
巻 |
|
開始ページ |
|
終了ページ |
|
出版タイプ |
|
アクセス権 |
|
Crossref DOI |
|
概要 |
Markov chain Monte Calro methods (MCMC) are commonly used in Bayesian statistics. In the last twenty years, many results have been established for the calculation of the exact convergence rate of MCMC... methods. We introduce another rate of convergence for MCMC methods by approximation techniques. This rate can be obtained by the convergence of the Markov chain to a diffusion process. We apply it to a simple mixture model and obtain its convergence rate. Numerical simulations are performed to illustrate the effect of the rate.続きを見る
|