作成者 |
|
|
|
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
巻 |
|
号 |
|
開始ページ |
|
終了ページ |
|
出版タイプ |
|
アクセス権 |
|
JaLC DOI |
|
関連DOI |
|
関連URI |
|
関連情報 |
|
概要 |
The present study employs an idea of mapping data into a high dimensional feature space which is known as Reproducing Kernel Hilbert Space (RKHS), then performs Radial Basis Function (RBF) network in ...the feature space where the new basis function will be obtained and finally, Orthogonal Least Squares (OLS) method is employed to select a suitable set of centers (regressors) from a large set of candidates in order to obtain a sparse regression model in the feature space. The proposed method is employed to the simple scalar function estimation problems and nonlinear system identification problem by simulations.続きを見る
|