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 Radial Basis Function  Network in Reproducing Kernel Hilbert Space 
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Abstract: The present study employs an idea of mapping data into a high dimensional feature 
space which is known as Reproducing Kernel Hilbert Space (RKHS), then performs Radial Basis 
Function (RBF) network in the feature space where the new basis function will be obtained and 
finally, Orthogonal Least Squares (OLS) method is employed to select a suitable set of centers 
(regressors) from a large set of candidates in order to obtain a sparse regression model in the fea-
ture space. The proposed method is employed to the simple scalar function estimation problems 
and nonlinear system identification problem by simulations. 

Keywords: Reproducing kernel Hilbert space, Orthogonal least squares algorithm, Radial basis 
function, Neural networks

 1. Introduction 

 A kernel-based algorithm's idea of implicitly non-
linear mapping the data into a high-dimensional fea-
ture space RKHS has been a very fruitful one in the 
context of support vector machine (SVM)1). The 
basic insight gained by Vapnik was that problems 
that are difficult to solve in low dimensions may be-
come much easier if the data is mapped to a high-
dimensional space. The kernel-based algorithm is 
a nonlinear version of a linear algorithm where the 
data has been previously (nonlinearly) transformed 
to a higher dimensional space in which we only need 
to be able to compute inner products . However, 
the direct computation in the high-dimensional fea-
ture space is very time-consuming or impossible. 
Therefore, Mercer kernels are employed to make the 
calculation in feature space practical. Such tech-
nique has been adopted in many studies other than 
SVM such as Kernel Principal Component Analy-
sis (KPCA)2) showing a high performance nonlin-
ear form of PCA.The attractiveness of the kernel-
based algorithm stems from their elegant treatment 
of nonlinear problems and their efficiency in high-
dimensional problems, where they allow to work in 
a simple (linear) way. Transforming the data non-
linearly to a higher dimensional space ensures that 
a linear algorithm can be used over it to obtain a 
linear explantion of the data. 

  Radial Basis Function neural network has been
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successfully applied for nonlinear function approx-
imation and data classification in wide range ar-
eas. A standard RBF network has a feedforward 
structure consisting of two layers, a nonlinear hid-
den layer and a linear output layer. The nodes or 
basis functions in the hidden layer operate on the 
distance from an applied input data vector to an 
internal parameter vector called a center. In prac-
tices the centers are often chosen to be a subset of 
input data. The output layer implements a linear 
combiner and only adjustable parameters are the 
weights of this linear combiner of the basis function 
responses. These parameters can be determined by 
using the linear least squares (LS) method. 

 Orthogonal decomposition is well known to be a 
numerically robust method for solving least squares 
problem and can be applied to obtain the weighted 
parameter of RBF network. OLS was extended to 
select suitable RBF network centers from a large 
number of candidates by evaluating an error reduc-
tion ratio in a forward selection algorithm. The net-
work is then built up by adding center, which has 
the largest error reduction ratio in each step until 
the adequate network has been constructed. Each 
selected center maximizes the increment to the ex-
plained variance or energy of the desired output and 
does not suffer numerical ill-conditioning problem 
that occurs frequently in random selection of cen-
ters. 
  This study proposes a combining between the 
idea of mapping the data into the feature space 
and RBF network. Firstly map the data into the 
high-dimensional feature space then apply the RBF 
network in feature space. By use of Mercer kernel,



it can compute the distance between input vector 
and centers, which are mapped into feature space, 
without mapping both of them explicitly. The new 
basis function will be derived and illustrated in the 
section 3. Finally, perform OLS subset regression 
procedure to select the centers in feature space and 
obtain the parsimonious regression model in the fea-
ture space. 

 2. Radial Basis Function Network 
 Assume that fr(x) is centered then a basic archi-

tecture of RBF network with N inputs and a scalar 
output is illustrated in Fig.1. 

              nr 

 fr(x) = i~(II x — CiII)(1) 
i=1

Fig.1 Radial basis function network.

where x E RN is an input vector, 0(•)  is a 
given function, II • II denotes the Euclidean norm, Ai, 
0 < i < nr, are the weights or parameters, ci E RN, 
1 < i < nr, are known as the RBF centers, and nr 
is the number of centers. In the RBF network, the 
function form 0(•) and the centers ci are assumed to 
have been fixed. The values of weights Ai can be de-
termined by using the linear least squares method. 
There are many kinds of c(.) function available such 
as thin-plate-spline function, 

0(v) = v2 log(v),(2) 
Gaussian function, 

0(v) = exp(—v2/ 32).(3) 
All data samples xt, t = 1, • • • , M will be used as 
centers ci to initialize a model set. This means that 
nr equals to M.

 3. RBF network in RKHS 
 This study, firstly map the data nonlinearly into 

the feature space F by the nonlinear function as 
following, 

4)* : RN F, x H 0* (x). (4) 

Note that the feature space F could have an arbi-
trarily large, possibly infinite, dimensionality. Fea-
ture space can be regarded as Reproducing Kernel 
Hilbert Space'). Then perform the radial basis func-
tion network in feature space as following: 

nr 

MO* (X)) = E Aio(II o*(x) — o*(ci)II7-i)• (5) 
                i=1 

II • II7-i denotes norm in Hilbert space. From (5), 
consider term of I I o* (x) —Cb* (ci )II7cas following, 

II0*(x) = ((0*(x) — 0*(ci), 0*(x) — Cb*(ci))) 2 
= (0* (x) • tb* (x) 

—20* (x) • 0*(ci) + 0*(ci) • 0*(ci)) 2 • (6) 

Compared to (1), it is clear that the term of 11 x — ci I I 
is directly calculated with N dimensional data x 
and ci . However, the feature space has large or 
infinite dimensionality. Moreover, 0* (x) and 0* (ci) 
cannot be explicitly mapped. These make the direct 
calculation of dot product in feature space impossi-
ble. 

By use of Mercer kernel"), it makes such calcula-
tion of dot product in feature space possible with-
out mapping the data explicitly. This way can avoid 
dealing with the mapped data explicitly, which may 
be perhaps impossible or intractable in terms of 
memory and computational cost. 

 Let K be Kernel matrix, which is known as Gram 
matrix, 

k(xi,xi) k(xi,x2) ... k(x,,xM) 
k(x2, xi) k(x2, x2) •.. k(x2, xM) 

K =. 

k(xM,xi) k(xM,x2) •.. k(xM,xM) 

                       (7) 
Kernel matrix K is composed of the kernel function 
of data xt, 1 < t < M. It is clearly seen that K is 
symmetric and semi-positive definite matrix. These 
mean its all eigenvalues are real and non-negative. 
Here, a function that generates symmetric positive 
definite Gram matrix for any finite sample data, is 
a valid kernel function"). 

 This study employs Gaussian kernel function



k(x , y) = exp( Ilx20.1112 ). With Gaussian kernel 
 function,  the  component  K(i,j),  where  i  =  j,  has 

value equal to one. 
Then any occurrence of 0* (x) • (/)* (y) is replaced 

by kernel function k(x, y). Hence, (6) can be rewrit-
ten in the term of kernel function as, 

110*(x) 
= (k(x , x) — 2k(x, ci) k(ci, 

                       (8) 
From above, it is clear that kernel function makes 
the calculation of dot product in feature space prac-
tical without dealing with mapping explicitly the 
data into the feature space. In practice, firstly de-
fine a kernel function k(x , y) directly, then the fea-
ture space will be defined implicitly corresponding 
to kernel function4). Then, use RBF network (5) to 
construct a linear regression model as, 

nr 

d(t) = pi(t)Oi €(t),(9) 
- 1 

where d(t) is the desired output for t = 1 to M, the 
0 are parameters, and the pi(t) are known as the re-
gressors which are some fixed functions of 0* (x(t)): 

Pi(t) = Pi (0* (x(t))).(10) 
Here pi(0* (x(t))) is regarded as 0(110*(x(t)) — 
0*(ci)117-t) and the error signal €(t) is assumed to 
be uncorrelated with the regressors pi(t). 
From 9 and 10, 

nr 

d(t) = Eei0(10.(.(t))+0.(ci)IIN)+E(t), (11) 

where the proposed basis function pi (t), can be de-
rived as following, 

 pi (t) = exp(— Ho* (x) — o* (c,)112 ) 02 

= exp( k(x,x) — 2k(x, ci) k(ci, ci)) 
02 

       ( k(x,x))exp(k(ci, ci)exp2k(x, ca) = exp) 
     02 02 ) 02 ) 

   (—)(;          1)exp(2k(ox2,ci)      =exp-exp--
12 

   = exP(2k(x' c)         —exp o2i)    = exp(2(1 — k(x,ci))) 
               32          1 — k(x, Ci))1

2    =exp                     2 

  ( 

             exp(IIX—Cill2 )12   = exp 2'72). 
                02 

Figure 2 and Fig.3 plot the proposed basis func-

tion when the center is fixed to value of -0.0690. 

 4. Orthogonal Least Squares Learning

Fig.2 Basis function for various value of 02 with fixed 
cr (o- = 0,1).

Fig.3 Basis function for various value of cr with fixed 

02 (02 = 1.28).

    Algorithm 
 The problem of how to select a suitable set of 

RBF centers from the data set can be regarded 
as an example of how to select a subset of signif-
icant regressors from a given candidate set. An effi-
cient learning procedure for selecting a subset model 
from (9) can be derived based on the OLS method. 
Rewrite equation (9) into the matrix form as 

d= pe + E,(12) 

where 

d= [d(1) • • • d(M)]T 
P = [Pi' • *Pnri, 
Pi = [pi(1) • • •pi(m)1T, 1flr 
e = [el • • • eniT 
E -= [e(1) • • €(M)JT(13)



 Note  that  number  of  centers  nr  equals  to  M  since 
all M data samples are employed as centers to ini-
tialize the model. Vectors pi form a set of basis 
vectors, and the linear squares solution e satisfies 
the condition that the square of the projection PO 
is part of the desired output energy that can be 
counted by the regressors. Because different regres-
sors are generally correlated, it is not clear how an 
individual regressor contributes to this output en-
ergy. The OLS method involves the transformation 
of the set of p2 into a set of orthogonal basis vectors, 
and thus makes it possible to calculate the individ-
ual contribution to the desired output energy from 
each basis vector. The regression matrix P can be 
decomposed into 

P =WA(14) 

where A is an nr X r triangular matrix with l's on 
the diagonal and 0's below the diagonal, that is 

1 a12 a13 • • • 01n, 
0 1 a23 • a2nr 

                                                                                                   • 

 A= 0 0 • . • .(15) 
                                                                  •• 

     

• • • 1 an r-ln, 

      

. . 

_0 • • • 0 0 1 - 
and W is an M x nr matrix with orthogonal 
columns w2 such that 

WTW = H(16) 
where H is diagonal matrix with elements hi: 

hi = WTWi = E wi(t)wi(t), 1 i 5 ar. (17) 
t-=-1 

And (12) can be rewritten as 

d=Wg + E.(18) 

The OLS solution is given by 

4 = H-1wTd (19) 
or 

"y
i = w?7,' dl(wT w i), 1 <i <(20) 

The quantities and e satisfy the triangular sys-
tem 

Ae =(21) 

The OLS method is to use for subset selection of the 
candidate RBF centers. In practice, the number of 
data is often very large and centers are to be chosen 
as a subset of data set. All the candidate regressors 

= M can be very large and a suitable model-

ing may only require M,(<< nr = M) significant 
regressors. Because wi and w3 are orthogonal for 
i j and E is supposed to be uncorrelated with 
regressors, the sum of square or energy of d(t) is 

nr 

dTd = Eg,„,Twi+ETE. (22) 
i=1 

If d is the desired output vector after it has been 

centered, the variance of d(t) is given by 

m-ldTd = m-1 Egi!wwi+ m-iET E. (23) 
i=1 

It is seen that M-1 Einri gituTwi is the increment 
to explained desired output variance introduced by 

wi, and error reduction ratio due to wi can be de-

fined as 

[err] i = gw?"wil(dT d), 1 < < nr. (24) 
The ratio offers simple and effective means of seek-

ing a subset of significant regressors in a forward-

regression manner3). By adding one more regressor, 

it increases the explained variance of the dependent 

variable. And the iteration procedure is terminated 

at Math step when 1 — Eimsi [err]2 reaches a chosen 
tolerance p, where 0 < p < 1. This gives a sub-

set model containing M5 significant regressors. For 

more details of numerical iteration see3). 

 5. Simulation Results 

 Two examples were employed in the simulations 

to show the performance of the proposed method. 

Gaussian RBF and Gaussian kernel function were 

utilized in all simulations. 

 The first example is a modeling of the scalar func-

tion, 

f (x) = sin(2irx), 0 < x < 1. 
Two hundred data were generated from y = f (x) +6, 
where x was taken from the uniform distribution 
in (0, 1) and the noise e had a normal distribution 
with zero mean and variance 0.1. The first one hun-
dred data were employed as a training data set, the 
last one hundred data were employed for a possible 
cross-validation procedure. One hundred noise-free 
data (x) were also generated as the testing data 
set for model evaluation. The noisy training points 

y and the underlying function 1(x) are plotted in 
Fig.4. As each training data x was considered as 
a candidate RBF center, there were nr M = 100 
regressors in the initial regression model. The iter-
ation procedure stopped at 5th step. This produces 
5 terms model from 100 regressors model at the ini-



tial. A simulated function is illustrated in Fig.4. 

Figure 5 shows the proposed basis function of each 

first five chosen centers.

 Fig.4 Noisy training data set of f (x), the underlying 
function 1(x) and simulated f (x).

tributed in the interval [-1, 1] as random input u(k) 
for training procedure and illustrated in Fig.6. And 
Gaussian noises are generated with variance 0.01 
and zero mean. In order to understand clearly Fig.7 
shows only the first one hundred data of the ob-
served output and predicted output obtained from 
training procedure. Figure 8 shows one thousand 
input signal for testing procedure given by 

u(k) = sin(27rk/250) for k < 500 
u(k) = 0.8sin(2irk/250) + 0.2sin(27rk/25) 

for k > 500. 

Other than the error reduction ratio criteria, we can 
use AIC to decide the iteration procedure to termi-
nate. AIC criteria is given by 

AIC(i) = Mln&e (i) + 2 x i, 

where M is the number of training data samples, i 
is the iteration order and also the number of subset 
regressors at ith step of iteration. And 6-,2(i)  can be 
obtained in each ith iteration as 

          N        1 
 &e(i)=MLet. 

t=1 

There were nr = M = 1000 candidates in the ini-

tial model set for this example. The iteration ter-

minated at the 35th step when it detected that the 

the 35th step gave the least AIC. This generates 

35 terms sparse model from 1000 regressors model 

from the initial model. Figure 9 shows the ob-

served output and predicted output obtained from 

the proposed method.

Fig.5 Basis function plotted for the first five chosen cen-

      ters, 1. the first chosen center 0.0077, 2. the 

      second chosen center 0.8415, 3. the third chosen 

      center 0.0159, 4. the fourth chosen center 0.9826 

and 5. the fifth chosen center 0.0346.

 The second example is to apply the proposed 
method to nonlinear system identification problem') 
in order to show the performance of the proposed 
method. The model is assumed to be of the form 

yp(k + 1) = f [yp(k), yp(k — 1), yp(k — 2), 
u(k), u(k — 1)] + e(k) 

where the unknown function f has the form 
x1x2x3x5(x3 — 1) + X4   f[

x1,x2,x3,x4,x5]=1+
x3+4. 

One thousand input samples are uniformly dis-

Fig.6 Input signal for identification.

 6. Conclusions 

 The present study proposes OLS for RBF Net-

work in RKHS. The idea is from support vector ma-



Fig.7 Observed output and predicted output from iden-

       tification.

Fig.8 Input signal for testing.

Fig.9 Predicted output from testing.

chine of mapping the data into the high-dimensional 

feature space, which is known as Reproducing Ker-

nel Hilbert Space. Then, perform the sparse RBF 

network by OLS subset selection for RBF network 

approach. The curious fact about using Mercer 

kernel is that it does not need to know the un-

derlying feature map in order to be able to learn 

in the feature space. The new basis function de-

rived by means of kernel function are obatained and 

illustrated. The simulation results illustrate that 

this new learning strategy offers a powerful proce-

dure for fitting adequate and parsimonious regres-

sion model in RKHS for practical signal processing. 
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