| 作成者 |
|
|
|
|
|
| 本文言語 |
|
| 出版者 |
|
|
|
| 発行日 |
|
| 収録物名 |
|
| 巻 |
|
| 号 |
|
| 開始ページ |
|
| 終了ページ |
|
| 出版タイプ |
|
| アクセス権 |
|
| 関連DOI |
|
| 関連DOI |
|
|
|
|
|
| 関連URI |
|
|
|
|
|
| 関連ISBN |
|
| 関連HDL |
|
| 関連情報 |
|
|
|
|
|
|
|
| 概要 |
An anisotropic surface energy functional is the integral of an energy density function over a surface. The energy density depends on the surface normal at each point. The usual area functional is a sp...ecial case of such a functional. We study stationary surfaces of anisotropic surface energies in the euclidean three-space which are called anisotropic minimal surfaces. For any axisymmetric anisotropic surface energy, we show that, a surface is both a minimal surface and an anisotropic minimal surface if and only if it is a right helicoid. We also construct new examples of anisotropic minimal surfaces, which include zero mean curvature surfaces in the three-dimensional Lorentz-Minkowski space as special cases.続きを見る
|