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Abstract. An anisotropic surface energy functional is the integral of an energy density function over
a surface. The energy density depends on the surface normal at each point. The usual area functional
is a special case of such a functional. We study stationary surfaces of anisotropic surface energies
in the euclidean three-space which are called anisotropic minimal surfaces. For any axisymmetric
anisotropic surface energy, we show that, a surface is both a minimal surface and an anisotropic
minimal surface if and only if it is a right helicoid. We also construct new examples of anisotropic
minimal surfaces, which include zero mean curvature surfaces in the three-dimensional Lorentz-
Minkowski space as special cases.

Keywords. anisotropic, mean curvature, minimal surface, zero mean curvature surface, Lorentz-
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1. Introduction

Let γ : Ω → R+ be a positive C∞ function on a nonempty
open set Ω of the two-dimensional unit sphere S2 := {X ∈
R3 ; |X| = 1}. Let X : Σ → R3 be an immersion from a
two-dimensional oriented connected compact C∞ manifold
Σ (with or without boundary) to the three-dimensional eu-
clidean space R3. Denote by ν = (ν1, ν2, ν3) : Σ → S2 the
unit normal along X (in other words, the Gauss map of
X). If ν(Σ) ⊂ Ω, we say that X is compatible with γ and
we define the following functional.

F [X] =

∫
Σ

γ(ν) dΣ , (1)

where dΣ is the area element of X. Such a functional is
used to model anisotropic surface energies. Applications
can be found in many branches of the physical sciences
including metallurgy and crystallography ([14, 15]). We
will call F [X] the anisotropic energy ofX, and γ the energy
density function.

We call stationary surfaces of (1) for compactly-
supported variations γ-minimal surfaces. It is obvious that,
for γ ≡ 1, γ-minimal surfaces are usual minimal surfaces.

Denote byDγ andD2γ the gradient and the Hessian of γ
on Ω, respectively. Denote by 1 the identity endomorphism
field on the tangent space Tν(S

2). If the matrix D2γ+γ1 is
non-singular at each point ν in Ω, a mapping Y : Ω → R3

defined by Y (ν) = Dγ + γ(ν)ν is an immersion and Y
defines the uniquely determined immersed surface with unit
normal ν whose support function coincides with γ, that is
γ(ν) = ⟨Y (ν), ν⟩ holds. We say that Y is the standard body
for γ. (As for the terminology “standard body”, we quote

[12].) We will sometimes use the symbol Mγ to represent
the mapping Y or the image Y (Ω) of Y .

We say that γ : Ω → R+ satisfies the convexity condition,
if the matrix D2γ + γ1 is positive definite at each point ν
in Ω. In this case, the standard body Mγ for γ is strongly
convex (that is, the principal curvatures of Mγ are positive
everywhere), and the functional F appearing in (1) is called
a constant coefficient parametric elliptic functional, and
stationary surfaces are extensively studied in recent years.

In this paper, we do not assume the convexity condition.
By this generalization, we obtain a more variety of impor-
tant examples. For example, zero mean curvature immer-
sions in the Lorentz-Minkowski space R3

1 := {(x1, x2, x3) ∈
R3 ; ds2 = dx2

1 + dx2
2 − dx2

3} arise as γ-minimal surfaces
for a certain simple function γ as follows (cf. §3).
Theorem 1. Set Ω1 := {ν = (ν1, ν2, ν3) ∈ S2 ; |ν3| >√
2/2}, Ω2 := {ν ∈ S2 ; |ν3| <

√
2/2}. Define a func-

tion γ : S2 → R as γ(ν) =
√
|ν23 − ν21 − ν22 | =

√
|2ν23 − 1|.

Then, an immersion X : Σ → R3 with Gauss image ν(Σ) ⊂
Ω1 ∪ Ω2 is γ-minimal if and only if the mean curvature of
X is zero as an immersed surface in R3

1.

This result indicates that the recent investigations about
zero mean curvature surfaces in R3

1 changing their causal
type across null curves (regular curves whose velocity vec-
tor fields are lightlike) or lightlike lines from spacelike zero
mean curvature surfaces to timelike zero mean curvature
surfaces ([3, 6, 5, 4, 2]) should be very natural and rea-
sonable. Probably the most well-known example of such
surfaces is the right helicoid with the timelike axis as its
axis, which changes its causal type across a null curve from
a spacelike zero mean curvature surface to a timelike zero
mean curvature surface ([3, 6]). In §4, we will show a more
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general remarkable result as follows.

Theorem 2. Let γ : Ω → R+ be a positive C∞ function
on a nonempty open set Ω in S2. Assume that the matrix
D2γ + γ1 is non-singular at each point ν in Ω. Assume
also that γ is axisymmetric and not a constant function.
Let X : Σ → R3 be an immersion which is compatible with
γ. Then, X is both minimal and γ-minimal if and only if
it is a part of either a plane or a right helicoid whose axis
is parallel to the axis of γ.

This result is a generalization of [7, Theorem 4.2] and
a refinement of [9, Proposition III.1]. [7, Theorem 4.2]
proves that a spacelike plane and the spacelike part of a
right helicoid whose axis is parallel to the timelike axis
are only both a minimal surface in the euclidean space R3

and a spacelike zero mean curvature surface in R3
1. [9,

Proposition III.1] proves that a right helicoid is a γ-minimal
surface for any axisymmetric γ whose axis is parallel to the
axis of the helicoid itself.
Theorem 2 combined with Theorem 1 implies the follow-

ing:

Corollary 1. A spacelike plane and the spacelike part of a
right helicoid whose axis is parallel to the x3-axis are only
both a minimal surface in the euclidean space R3 and a
spacelike zero mean curvature surface in R3

1. Also, a time-
like plane and the timelike part of a right helicoid whose
axis is parallel to the x3-axis are only both a minimal sur-
face in R3 and a timelike zero mean curvature surface in
R3

1.

In general, it is not easy to construct examples of γ-
minimal surfaces. For any axisymmetric energy density
function γ, there exist γ-minimal surfaces which are also
symmetric with respect to the same axis as γ. The exis-
tence theorem and a certain kind of representation formula
of these surfaces were given in [8] and they were called
anisotropic catenoid. Although the convexity condition for
γ was assumed in [8], the method there works also for non
convex γ. In this paper, for certain classes of γ, we will give
another type of examples of γ-minimal surfaces which are
foliated by parallel circles but are not surfaces of revolution.
We will call them γ-minimal surfaces of Riemann-type after
Riemann’s minimal surfaces in R3.

Proposition 1. Let γ : Ω → R+ be a positive C∞ func-
tion on a nonempty open set Ω in S2. Assume that the
matrix D2γ + γ1 is non-singular at each point ν ∈ Ω. We
also assume that the standard body Mγ for γ is a quadric
surface of revolution. Then, there are γ-minimal surfaces
of Riemann-type.

From Theorem 1, we see that spacelike and timelike zero
mean curvature surfaces of Riemann-type in R3

1 are ob-
tained as special cases of surfaces given by Proposition 1.
Actually, for γ|Ω1 in Theorem 1, Mγ is a hyperboloid of
two sheets, and for γ|Ω2 , Mγ is a hyperboloid of one sheet
(§5, Lemma 5).
We should remark that zero mean curvature surfaces of

Riemann-type in R3
1 were studied also in [10, 11].

In §5, for γ satisfying the assumption in Proposition 1,
we will give explicit parameter representations of all γ-

minimal surfaces foliated by circles contained in parallel
planes which are orthogonal to the rotation axis of Mγ

(Proposition 3). Actually, Proposition 1 is a corollary of
Proposition 3.
Some of the results in this article can be generalized to

hypersurfaces in Rn+1.

2. Preliminaries

In this section, we give the definitions of the Wulff shape,
anisotropic mean curvature, and their fundamental prop-
erties and representation formulas. We quote [12, 1, 8] as
references.
Let γ : Ω → R+ be a positive C∞ function on a

nonempty open set Ω of the unit sphere S2. Assume that
the matrix D2γ + γ1 is non-singular at each point ν in Ω.
If Ω = S2, then, for any V > 0, there exists a uniquely

determined (up to translations inR3) convex surfaceW (V )
such that W (V ) attains the minimum of F among all
closed piecewise smooth surfaces in R3 enclosing the 3-
dimensional volume V ([13]). For the special value V0 :=
(1/3)

∫
S2 γ(ν) dS

2, W (V0) is called the Wulff shape for γ,
and we will denote it by W . In the special case where
γ ≡ 1, F [X] is the usual area of the surface X and W is
the unit sphere S2. In general, W is not smooth. W is
a smooth strongly convex surface if and only if γ satisfies
the convexity condition (see §1). In this case, W can be
parametrized by the smooth mapping

Y : S2 → R3, Y (ν) = Dγ + γ(ν)ν,

where we regard Dγ at ν ∈ S2 as a point in R3 in the
canonical manner. We remark that the outward unit nor-
mal to W at point Y (ν) coincides with ν. And the func-
tion γ coincides with the support function of W , that is
γ(ν) = ⟨Y (ν), ν⟩, where ⟨ , ⟩ is the inner product in R3.
This means that W is the standard body for γ.
Let X : Σ → R3 be an immersion. By parallel transla-

tion in R3, Dγ may be considered as a smooth tangent vec-
tor field along X. Let Xϵ = X+ ϵδX+O(ϵ2) be a smooth,
compactly supported variation of X. The anisotropic mean
curvature Λ of X is defined by the first variation formula
([8])

δF := ∂ϵF [Xϵ]ϵ=0 = −
∫
Σ

Λ⟨δX, ν⟩ dΣ , (2)

Λ := −traceΣ(D
2γ + γ1)dν = −divΣDγ + 2Hγ, (3)

where H is the mean curvature of X. Hence, γ-minimal
surfaces are immersed surfaces whose anisotropic mean cur-
vature Λ vanishes at every point. Since the first variation of

the “enclosed volume” V [X] := (1/3)

∫
Σ

⟨X, ν⟩ dΣ satisfies

δV [X] =

∫
Σ

⟨δX, ν⟩ dΣ ,

the equation Λ ≡ constant characterizes critical points of F
with the enclosed volume constrained to be a constant. If
Λ is constant, X is called a surface of constant anisotropic
mean curvature. In the case where γ ≡ 1, Λ = 2H holds.
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Now we extend the function γ in a homogeneous way to
a function γ̃ as follows.

(i) γ̃(X) = 0 if and only if X = 0.

(ii) positive homogeneity of degree one:

γ̃(rX) = rγ(X), ∀r ≥ 0, X ∈ Ω.

In the special case where γ(X) ≡ 1, γ̃(X) ≡ |X|.
Let us consider a surface which is a graph of a C∞ func-

tion φ : Σ (⊂ R2) → R as follows:

X : Σ → R3, X(x1, x2) = (x1, x2, φ(x1, x2)).

The unit normal ν = (ν1, ν2, ν3) to X is given by

ν =
(−φ1,−φ2, 1)

(1 + |Dφ|2)1/2
, (4)

where

φ1 := φx1 , φ2 := φx2 , Dφ := (φ1, φ2).

Lemma 1. Set φij := φxixj for i, j = 1, 2. Then

Λ =
∑

i,j=1,2

γ̃xixj

∣∣∣
X=(−Dφ,1)

φij (5)

holds. In the special case where γ̃(X) ≡ |X|, the right hand
side of (5) is

(1 + φ2
2)φ11 − 2φ1φ2φ12 + (1 + φ2

1)φ22

(φ2
1 + φ2

2 + 1)3/2
, (6)

which is the twice of the mean curvature H of X.

Proof. In the integrals below, we will write φ(u1, u2),
((u1, u2) ∈ Σ), in order to avoid confusion. We have

F [X] =

∫∫
Σ

γ(ν)(1 + φ2
1 + φ2

2)
1/2 du1du2

=

∫∫
Σ

γ̃
(
(−φ1,−φ2, 1)

)
du1du2.

Let Xϵ = (x1, x2, φ(ϵ, x1, x2)) be an arbitrary compactly-
supported variation of X. We will compute the first vari-
ation of F . We may suppose that Σ is the support of Xϵ

and Xϵ|∂Σ = X|∂Σ holds. We compute

δF =

∫∫
Σ

(
γ̃
(
(−φ1,−φ2, 1)

))
ϵ
du1du2

=

∫∫
Σ

γ̃x1 · (−φ1ϵ) + γ̃x2 · (−φ2ϵ) du1du2

=

∫∫
Σ

∂γ̃x1 |(−Dφ,1)

∂u1
φϵ +

∂γ̃x2 |(−Dφ,1)

∂u2
φϵ du1du2

−
∫∫

Σ

(γ̃x1φϵ)u1 + (γ̃x2φϵ)u2 du1du2.

By the partial differentiation, the last term of the above
equation becomes∫

∂Σ

(−γ̃x2φϵ du1 + γ̃x1φϵ du2) = 0,

because φϵ = 0 on ∂Σ. Therefore,

δF = −
∫∫

Σ

(γ̃x1x1φ11 + 2γ̃x1x2φ12 + γ̃x2x2φ22)φϵ du1du2

= −
∫∫

Σ

( ∑
i,j=1,2

γ̃xixj

∣∣∣
X=(−Dφ,1)

φij

)
⟨δX, ν⟩ dΣ, (7)

here we used (4) and the followings:

δX = (0, 0, φϵ), dΣ = (1 + |Dφ|2)1/2du1du2.

In view of (2), (7) implies (5). By a direct computation,
we obtain (6).

We will give another representation of the anisotropic
mean curvature. Let X : Σ → R3 be an immersion with
Gauss map ν. Let {e1, e2} be a locally defined frame on
S2 such that (D2γ + γ1)ei = (1/µi)ei. Note that the ba-
sis {e1, e2} at ν(p) also serves as an orthogonal basis for
the tangent plane of X at p. Let (−wij) be the matrix
representing dν with respect to this basis. Then

(D2γ + γ1)dν =

(
−w11/µ1 −w12/µ1

−w21/µ2 −w22/µ2

)
.

This with (3) gives

Λ = w11/µ1 + w22/µ2. (8)

Note that D2γ + γ1 is the inverse of the differential of
the Gauss map of Mγ and so its eigenvalues 1/µj are the
negatives of the reciprocals of the principal curvatures of
the standard body Mγ with respect to the outward unit
normal.
For an axisymmetric γ, µi’s are represented in terms of

γ as follows:

Lemma 2. Let γ : Ω → R+ be a positive C∞ function
on a nonempty open set Ω of the unit sphere S2. Assume
that the matrix D2γ + γ1 is non-singular at each point ν
in Ω. Assume also that γ is axisymmetric, say γ(ν) =
γ(ν3). Then the standard body Mγ for γ is also symmetric
with respect to the x3-axis. Denote by µ1, µ2 the principal
curvatures of Mγ with respect to the normal −ν. We let
µ1 be the curvature of the generating curve of Mγ . Then

µ−1
1 = (1− ν23)γ

′′ + µ−1
2 , µ−1

2 = γ − ν3γ
′ (9)

holds.

Proof. The proof is the same as the proof of the same for-
mulas for the case where γ satisfies the convexity condition
which was given in [8, Section 5].

3. Proof of Theorem 1

In this section, we give a proof of Theorem 1 which was
given in the introduction.
Denote by ⟨ , ⟩L the scalar product for the Minkowski

metric dx2
1 + dx2

2 − dx2
3 in R3

1. Let X : Σ (⊂ R2) → R3
1 be

a spacelike or timelike immersed surface. Let (u1, u2) be
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local coordinates of Σ. Denote by HL the mean curvature
of X. That is, HL is defined by

HL =
h̃11g̃22 − 2h̃12g̃12 + h̃22g̃11

2(g̃11g̃22 − g̃212)
,

where g̃ij :=
⟨
Xui , Xuj

⟩
L
, h̃ij :=

⟨
Xuiuj , ν

L
⟩
L

for i, j =

1, 2, and νL is the unit normal vector field along X for the
Minkowski metric. Let AL[X] be the area of X defined by

AL[X] :=

∫
Σ

dΣL, (dΣL := |det(g̃ij)| du1du2).

Let Xϵ be an arbitrary compactly-supported variation
of X. We will compute the first variation of AL. We may
suppose that Σ is the support of Xϵ and Xϵ|∂Σ = X|∂Σ
holds. Set the variation vector field as

δX := ∂ϵ(Xϵ)ϵ=0 = ξ + fνL,

ξ =
∑
i=1,2

ξiXui

 .

Then we have the following.

Proposition 2. In the above setting, it holds that

∂ϵAL[Xϵ]ϵ=0 = −2

∫
Σ

fHL dΣL.

Proof. We here give a proof in the case whereX is timelike.
By a similar argument, we can prove this in the case where
X is spacelike. We have

AL[Xϵ] =

∫
Σ

√
−g̃ϵ11g̃

ϵ
22 + (g̃ϵ12)

2 du1du2,

where g̃ϵij =
⟨
(Xϵ)ui , (Xϵ)uj

⟩
L
for i, j = 1, 2. Then,

∂εAL[Xϵ] =

∫
Σ

∂ε

(√
−g̃ϵ11g̃

ϵ
22 + (g̃ϵ12)

2

)
du1du2

=

∫
Σ

∂ε
(
−g̃ϵ11g̃

ϵ
22 + (g̃ϵ12)

2
)

2
√
−g̃ϵ11g̃

ϵ
22 + (g̃ϵ12)

2
du1du2

=

∫
Σ

∂ε
(
g̃ϵ11g̃

ϵ
22 − (g̃ϵ12)

2
)

2 (g̃ϵ11g̃
ϵ
22 − (g̃ϵ12)

2)
dΣL

=

∫
Σ

g̃ϵ22 ∂εg̃
ϵ
11 + g̃ϵ11 ∂εg̃

ϵ
22 − 2g̃ϵ12 ∂εg̃

ϵ
12

2 (g̃ϵ11g̃
ϵ
22 − (g̃ϵ12)

2)
dΣL

holds. By a direct calculation, we have

∂ε(g̃
ϵ
ij)ϵ=0 =

⟨
ξui , Xuj

⟩
L
+
⟨
Xui , ξuj

⟩
L
− 2fh̃ij

for i, j = 1, 2. Applying the divergence theorem, it follows
that

∂εAL[Xϵ]ϵ=0 =

∫
Σ

∑
i=1,2

(
g̃ij
⟨
ξui , Xuj

⟩
L
− fg̃ij h̃ij

)
dΣL

=

∫
Σ

(divξ − 2fHL) dΣL = −2

∫
Σ

fHL dΣL,

where we denote by (g̃ij) the inverse matrix of (g̃ij).

Proof of Theorem 1. First we assume that the surface is a
graph of a C∞ function φ : Σ (⊂ R2) → R as follows:

X : Σ → R3, X(x1, x2) = (x1, x2, φ(x1, x2)). (10)

The area element dΣL of X is given by

dΣL = |1− φ2
1 − φ2

2|1/2 dx1dx2.

On the other hand, the unit normal ν = (ν1, ν2, ν3) to X
and the area element dΣ of X for the euclidean metric are

ν =
(−φ1,−φ2, 1)

(1 + φ2
1 + φ2

2)
1/2

, dΣ = (1 + φ2
1 + φ2

2)
1/2 du1du2.

Hence,

dΣL =

(
|1− φ2

1 − φ2
2|

1 + φ2
1 + φ2

2

)1/2

dΣ = |ν23 − ν21 − ν22 |1/2 dΣ.

Therefore, by (2) and Proposition 2, Λ ≡ 0 if and only if
HL ≡ 0.
Next, we consider the case where the considered surface

Σ cannot be represented as a graph like (10). It is sufficient
to consider the case where the image of the Gauss map of
Σ is contained in the equator {(x1, x2, 0) ∈ S2}. In this
case, Σ is timelike. It is proved that Σ is represented as

X(s, t) = (x1(s), x2(s), t),

where C(s) := (x1(s), x2(s)) is a smooth plane curve. De-
note by κ the curvature of C. Note that γ can be repre-
sented as γ(ν) = γ(ν3). Then from (8), Λ(s, t) = γ(0)κ(s)
holds. On the other hand, HL = κ/2 holds. Hence, Λ ≡ 0
if and only if HL ≡ 0.

4. Proof of Theorem 2

Let (x1, x2, x3) be the standard coordinates in R3. We
assume that γ is symmetric with respect to the x3-axis
without loss of generality. So we can write γ = γ(ν3).
Assume that γ is not a constant function.
Denote by Σ the considered surface. First assume that

Σ is represented as x3 = φ(x1, x2). As in §2, we will write

φi := φxi , φij := φxixj , (i, j = 1, 2).

By the formula (5) and a simple but long computation, we
have

Λ = 2H
(
γ − γ′

(1 + φ2
1 + φ2

2)
1/2

− γ′′

1 + φ2
1 + φ2

2

)
+

γ′′(φ11 + φ22)

(1 + φ2
1 + φ2

2)
3/2

.

Hence, if Λ = H = 0 holds, then γ′′(φ11 + φ22) = 0 holds.
Since

0 = H =
(1 + φ2

2)φ11 − 2φ1φ2φ12 + (1 + φ2
1)φ22

2(φ2
1 + φ2

2 + 1)3/2
,
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we obtain

γ′′(φ2
2φ11 − 2φ1φ2φ12 + φ2

1φ22) = 0. (11)

Consider any contour line φ(x1(s), x2(s)) ≡ constant, (s is
arc length of the curve C : (x1(s), x2(s))), of Σ. Denote by
κ the curvature of C. Then,

Lemma 3.

|φ2
2φ11 − 2φ1φ2φ12 + φ2

1φ22| = |κ|(φ2
1 + φ2

2)
3/2 (12)

holds.

Proof. Denote by “ ′ ” the derivative with respect to s.
We differentiate φ(x1(s), x2(s)) ≡ constant with respect to
s to obtain

φ1x
′
1 + φ2x

′
2 = 0. (13)

Differentiate (13) again and use (x′′
1 , x

′′
2) = κ(−x′

2, x
′
1) to

obtain

φ11(x
′
1)

2 + 2φ12x
′
1x

′
2 + φ22(x

′
2)

2 = κ(φ1x
′
2 − φ2x

′
1). (14)

By using (13), (14), and the fact that (x′
1)

2 + (x′
2)

2 = 1,
we obtain (12).

Now we assume that the surface is not (a part of) a plane.
We remark that it is sufficient to prove that the surface is
a part of a right helicoid almost everywhere. So we assume
that ν ̸= (0, 0,±1) at any point in Σ, that is (φ1, φ2) never
coincides with (0, 0). Then, (11) combined with (12) shows
that γ′′ ≡ 0 or κ ≡ 0 holds. If γ′′ ≡ 0, then, by Lemma
2, µ1 ≡ µ2 holds. This means that the standard body Mγ

for γ is (a part of) a sphere, and hence γ is a constant
function, which contradicts the assumption. Hence κ ≡ 0
holds, and the curve C is a straight line. Therefore, Σ is a
ruled surface. Because only planes and right helicoids are
ruled surfaces which are minimal, Σ is a right helicoid.
If Σ is represented as x3 = φ(x1, x2) in a connected

neighborhood U of a point P0 ∈ Σ, then, by the above argu-
ment, U is a part of a right helicoid M . Since Σ1 := Σ∩M
is an open and closed subset of a connected set Σ, Σ1 = Σ
must hold. This means that Σ itself is a part of a right
helicoid.
If Σ is not represented as a graph x3 = φ(x1, x2) at any

point, then ν(P ) is in the equator of S2 for any P ∈ Σ.
Hence the Gauss curvature K of Σ vanishes at any point.
Since K ≡ 0 ≡ H, Σ is a plane which is parallel to the
x3-axis. □

5. Examples

Let γ : Ω → R+ be an axisymmetric positive C∞ func-
tion (say, γ(ν) = γ(ν3)) on a nonempty open set Ω in S2.
Assume that the matrix D2γ + γ1 is non-singular at each
point ν ∈ Ω.
In this section, we study a special type of cyclic surfaces,

that is, surfaces foliated by circles in parallel planes which
are orthogonal to the x3-axis. So our surfaces are repre-
sented as follows:

X(θ, t) = (r(t) cos θ + f(t), r(t) sin θ + g(t), t). (15)

As in Lemma 2, we denote by µ1, µ2 the principal curva-
tures of the standard body Mγ with respect to the normal
−ν, here µ1 is the curvature of the generating curve of Mγ .

Lemma 4. The anisotropic mean curvature of X in (15)
is given by

Λ =
r(r′′ + f ′′ cos θ + g′′ sin θ)− (f ′ sin θ − g′ cos θ)2

µ1 r{(r′ + f ′ cos θ + g′ sin θ)2 + 1} 3
2

− 1

µ2 r
√

(r′ + f ′ cos θ + g′ sin θ)2 + 1
. (16)

Proof. Let ν be the Gauss map of X as usual. Let {e1, e2}
be a locally defined frame on S2 such that (D2γ + γ1)ei =
(1/µi)ei. Note that the basis {e1, e2} at ν(p) also serves as
an orthogonal basis for the tangent plane of X at p. As in
§2, let (−wij) be the matrix representing dν with respect
to this basis. Then

(D2γ + γ1)dν =

(
−w11/µ1 −w12/µ1

−w21/µ2 −w22/µ2

)
,

and
Λ = w11/µ1 + w22/µ2 (17)

holds. So, we will compute the matrix (wij).
Let νM = (νM1 , νM2 , νM3 ) be the outward pointing unit

normal toMγ . SinceMγ is a surface of revolution, D2γ+γ1
has eigendirections corresponding to

E1 = (0, 0, 1)− νM3 νM , E2 = νM × E1 (18)

as long as the normal is not vertical. E1, E2 define an
orthonormal basis {e1, e2} on TS2 as long as X does not
intersect with the vertical axis.
Set g11 = ⟨Xθ, Xθ⟩, g12 = g21 = ⟨Xθ, Xt⟩, g22 =

⟨Xt, Xt⟩, h11 = ⟨Xθθ, ν⟩, h12 = h21 = ⟨Xθt, ν⟩, h22 =
⟨Xtt, ν⟩. And set

∆ := r′ + f ′ cos θ + g′ sin θ.

Then,

g11 = r2,

g12 = −rf ′ sin θ + rg′ cos θ,

g22 = (r′)2 + 2r′f ′ cos θ + 2r′g′ sin θ + (f ′)2 + (g′)2 + 1,

h11 =
−r√
∆2 + 1

,

h12 = 0,

h22 =
r′′ + f ′′ cos θ + g′′ sin θ√

∆2 + 1
,

and

ν = (ν1, ν2, ν3) :=
Xθ ×Xt

|Xθ ×Xt|
=

1√
∆2 + 1

(
cos θ, sin θ,−∆

)
.

We have

Ẽ1 := (0, 0, 1)− ν3ν =
1

∆2 + 1

(
∆cos θ,∆sin θ, 1

)
.
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Hence,

e1 =
Ẽ1

| Ẽ1 |
=

1√
∆2 + 1

(
∆cos θ,∆sin θ, 1

)
, (19)

e2 = ν × e1 = (sin θ,− cos θ, 0). (20)

Now we take a coordinate transformation θ(u, v), t(u, v) so
that, at an arbitrary fixed point (u0, v0),

∂X

∂u
= e1,

∂X

∂v
= e2

are satisfied. Then, we have

∂X

∂θ
θu +

∂X

∂t
tu = e1,

∂X

∂θ
θv +

∂X

∂t
tv = e2. (21)

Inserting Xθ = (−r sin θ, r cos θ, 0), Xt = (r′ cos θ +
f ′, r′ sin θ + g′, 1), (19), and (20) to (21), we obtain

J :=

(
θu θv
tu tv

)
=

 f ′ sin θ−g′ cos θ

r
√
∆2+1

−1
r

1√
∆2+1

0

 , det J > 0.

Let (wij), (w̃ij) be the Weingarten mappings for X(u, v),
X(θ, t), respectively. Then,

(w̃ij) = (gij)
−1(hij),

(wij) =

(
θu θv
tu tv

)−1

(w̃ij)

(
θu θv
tu tv

)
= J−1(w̃ij)J.

Hence, by a computation, we obtain

w11 =
r(r′′ + f ′′ cos θ + g′′ sin θ)− (f ′ sin θ − g′ cos θ)2

r(∆2 + 1)
3
2

,

w22 = − 1

r
√
∆2 + 1

.

This with (17) gives (16).

Now we assume that the standard body Mγ for γ is a
quadric surface of revolution. Then, by homothety and
translation, Mγ is one of the followings:

(I) a spheroid: x2
1 + x2

2 +
x2
3

a2
= 1,

(II) a hyperboloid of two sheets: x2
1 + x2

2 −
x2
3

a2
= −1,

(III) a hyperboloid of one sheet: x2
1 + x2

2 −
x2
3

a2
= 1,

(IV) a circular paraboloid: x3 = a(x2
1 + x2

2),

where a is a positive constant.

Lemma 5. The support functions γ of Mγ in the above
(I)–(IV) are respectively given by the followings:

(I) γ(ν3) =
√
1 + bν23 , (b := a2 − 1 > −1),

(II) γ(ν3) =
√

−1 + bν23 , (b := a2 + 1 > 1, 1√
b
< |ν3| ≤

1),

(III) γ(ν3) =
√
1− bν23 , (b := a2 + 1 > 1, |ν3| < 1√

b
),

(IV) γ(ν3) =
−1 + ν23

bν3
, (b := 4a > 0, ν3 ̸= 0).

Proof. (I) Represent the upper half of Mγ as

Y (x1, x2) =
(
x1, x2, a

√
1− x2

1 − x2
2

)
.

The outward pointing unit normal ν to Y is given by

ν =
1√

1 + (a2 − 1)(x2
1 + x2

2)

(
ax1, ax2,

√
1− x2

1 − x2
2

)
.

Hence, we obtain

γ = ⟨Y, ν⟩ =
√

1 + (a2 − 1)ν23 =
√

1 + bν23 ,

which proves (I).
Similarly, we obtain (II)–(IV).

Proposition 3. Let γ be a function given by the above
(I)–(IV). Then, there exist γ-minimal surfaces foliated by
circles contained in parallel planes which are orthogonal to
the x3-axis. Up to translations in R3, rotations around
the x3-axis, and symmetry with respect to a plane {x3 =
constant}, they are respectively represented as follows.
(I) Catenoid-type:

X(θ, t) =

(
cosh(ct)

c
√
1 + b

cos θ,
cosh(ct)

c
√
1 + b

sin θ, t

)
, c ̸= 0. (22)

Riemann-type:

X(θ, r) =

(
r cos θ +

∫
c1r

2dr√
c21r

4 + c2r2 − 1
, r sin θ,

√
1 + b

∫
dr√

c21r
4 + c2r2 − 1

)
, (23)

c1 ̸= 0, r ≥

(
−c2 +

√
c22 + 4c21

2c21

)1/2

. (24)

(II) Catenoid-type:

X(θ, t) =

(
sinh(ct)

c
√
b− 1

cos θ,
sinh(ct)

c
√
b− 1

sin θ, t

)
, (25)

c ̸= 0, t ̸= 0. (26)

Riemann-type:

X(θ, r) =

(
r cos θ +

∫
c1r

2dr√
c21r

4 + c2r2 + 1
, r sin θ,

√
b− 1

∫
dr√

c21r
4 + c2r2 + 1

)
, (27)

c1 ̸= 0, c2 > 2|c1|, r > 0. (28)

(III) Catenoid-type:

X(θ, t) =

(
sin(ct)

c
√
b− 1

cos θ,
sin(ct)

c
√
b− 1

sin θ, t

)
, (29)

c ̸= 0, sin(ct) ̸= 0. (30)
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Riemann-type:

X(θ, r) =

(
r cos θ +

∫
c1r

2dr√
c21r

4 + c2r2 + 1
, r sin θ,

√
b− 1

∫
dr√

c21r
4 + c2r2 + 1

)
, (31)

c1 ̸= 0, c2 < −2|c1|, 0 < r ≤

(
|c2| −

√
c22 − 4c21

2c21

)1/2

. (32)

(IV) Catenoid-type:

X(θ, t) = (ect cos θ, ect sin θ, t), c ̸= 0. (33)

Riemann-type:

X(θ, r) =

(
r cos θ +

∫
c1rdr√
c21r

2 + c2
,

r sin θ,

∫
dr√

c21r
4 + c2r2

)
, (34)

c1 ̸= 0, c2 > 0, r > 0. (35)

(I) Catenoid-type (I) Riemann-type

Figure 1: γ-minimal surfaces for γ(ν) as in (I) of Lemma 5.

(II) Catenoid-type (II) Riemann-type

Figure 2: γ-minimal surfaces for γ(ν) as in (II) of Lemma 5.

(III) Catenoid-type (III) Riemann-type

Figure 3: γ-minimal surfaces for γ(ν) as in (III) of
Lemma 5.

Remark 1. Let γ be a function given in (I), (II), or (III)
in Lemma 5. Set α :=

√
b+ 1 for (I), and α :=

√
b− 1

for (II) and (III). If we take the transformation x̃1 = x1,
x̃2 = x2, x̃3 = x3/α, then an immersion X = (x1, x2, x3) in
R3 is γ-minimal if and only if X̃ = (x̃1, x̃2, x̃3) is a minimal

(IV) Catenoid-type (IV) Riemann-type

Figure 4: γ-minimal surfaces for γ(ν) as in (IV) of
Lemma 5.

surface (for (I)), a spacelike zero mean curvature surface in
R3

1 (for (II)), a timelike zero mean curvature surface in R3
1

(for (III)), respectively. This is proved by the same way as
Example 4.4 in [8].

Remark 2. γ-minimal surfaces for γ given in (IV) in
Lemma 5 are graphs of harmonic functions (cf. [12]).

Proof of Proposition 3. Let µ1, µ2 be the principal curva-
tures of Mγ with respect to the normal −ν in the same way
as Lemma 2.
We represent the surface as

X(θ, t) = (r(t) cos θ + f(t), r(t) sin θ + g(t), t). (36)

Note that X is a surface of revolution around the x3-axis
if and only if f ≡ g ≡ 0 holds.
As in the proof of Lemma 4, we set

∆ := r′ + f ′ cos θ + g′ sin θ.

Then, the Gauss map ν of X is

ν(θ, t) :=
Xθ ×Xt

|Xθ ×Xt|

=
1

(∆2 + 1)1/2
(cos θ, sin θ,−∆).

(I) By a simple computation using Lemma 2, we obtain

1

µ1
=

b+ 1

(1 + bν23)
3/2

,
1

µ2
=

1√
1 + bν23

.

Since ν3 =
−∆

(∆2 + 1)1/2
, we obtain

1

µ1
= (b+ 1)

(
1 + ∆2

1 + (b+ 1)∆2

)3/2

, (37)

1

µ2
=

(
1 + ∆2

1 + (b+ 1)∆2

)1/2

. (38)

By Lemma 4 with (37) and (38), we see that Λ = 0 if and
only if

(b+ 1)(rf ′′ − 2r′f ′) cos θ + (b+ 1)(rg′′ − 2r′g′) sin θ

+ (b+ 1)(r′′r − (r′)2 − (f ′)2 − (g′)2)− 1 = 0

holds. This gives the following system of ordinary differen-
tial equations:

rf ′′ − 2r′f ′ = 0, (39)

rg′′ − 2r′g′ = 0, (40)

(b+ 1)(r′′r − (r′)2 − (f ′)2 − (g′)2)− 1 = 0. (41)
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From (39) and (40), we have

f ′ = c1r
2, g′ = c2r

2. (42)

First, assume f ′ = g′ = 0. Then, (41) is equivalent to

(r′′r − (r′)2)− 1

b+ 1
= 0. (43)

By a standard way, we see that the general solution of (43)
is

r =
cosh(c3(t+ c4))

c3
√
b+ 1

, c3 ̸= 0, (44)

which gives the formula (22).
Next, we assume that f ′ ̸= 0 or g′ ̸= 0 holds. Because of

(42), c2f
′ − c1g

′ = 0 holds. This implies that c2f − c1g =
constant. Since (c1, c2) ̸= (0, 0), by rotating the surface
around the x3-axis if necessary, we may assume that

f ′ = c1r
2 (c1 ̸= 0), g(t) ≡ 0 (45)

holds. Then, (41) is equivalent to

1 + (b+ 1)((r′)2 − r′′r + c21r
4) = 0.

From this, by a standard argument, we obtain

dr

dt
= ±

√
c21r

4 + c5r2 −
1

b+ 1
. (46)

Hence,

t = ±
∫

dr√
c21r

4 + c5r2 − 1
b+1

= ±
√
b+ 1

∫
dr√

c26r
4 + c7r2 − 1

, (47)

c6 :=
√
b+ 1c1 ̸= 0, c7 := (b+ 1)c5.

By using (45) and (46), we easily obtain

f = ±
∫

c6r
2 dr√

c26r
4 + c7r2 − 1

, c6 ̸= 0. (48)

(47) with (48) gives the formula (23). Moreover,

c21r
4 + c2r

2 − 1 ≥ 0

if and only if

r ≥

(
−c2 +

√
c22 + 4c21

2c21

)1/2

holds, which gives the condition (24).
(II) The proof is similar to the proof of (I). We have

1

µ1
=

−(b− 1)

(−1 + bν23)
3/2

= −(b− 1)

(
1 + ∆2

−1 + (b− 1)∆2

)3/2

,

1

µ2
=

−1√
−1 + bν23

= −

(
1 + ∆2

−1 + (b− 1)∆2

)1/2

.

We see that Λ = 0 if and only if

(b− 1)(rf ′′ − 2r′f ′) cos θ + (b− 1)(rg′′ − 2r′g′) sin θ

+ (b− 1){r′′r − (r′)2 − (f ′)2 − (g′)2}+ 1 = 0

holds. This gives the following system of ordinary differen-
tial equations:

rf ′′ − 2r′f ′ = 0, (49)

rg′′ − 2r′g′ = 0, (50)

(b− 1)(r′′r − (r′)2 − (f ′)2 − (g′)2) + 1 = 0. (51)

First, assume f ′ = g′ = 0. Then, (51) is equivalent to

(r′′r − (r′)2) +
1

b− 1
= 0. (52)

We have the following three types of general solutions of
(52):

r =
1√
b− 1

t+ c, (53)

r =
sinh(c1(t+ c2))

c1
√
b− 1

, c1 ̸= 0, (54)

r =
sin(c1(t+ c2))

c1
√
b− 1

, c1 ̸= 0. (55)

By a suitable translation, the corresponding surfaces are
given by

X(θ, t) =

(
t√
b− 1

cos θ,
t√
b− 1

sin θ, t

)
, (56)

X(θ, t) =

(
sinh(ct)

c
√
b− 1

cos θ,
sinh(ct)

c
√
b− 1

sin θ, t

)
, c ̸= 0, (57)

X(θ, t) =

(
sin(ct)

c
√
b− 1

cos θ,
sin(ct)

c
√
b− 1

sin θ, t

)
, c ̸= 0, (58)

respectively. Later, we will show that in order that the
surface is compatible with γ, the surface must be given by
(57), which gives the formula (25).
Next, we assume that f ′ ̸= 0 or g′ ̸= 0 holds. By rotating

the surface around the x3-axis if necessary, we may assume
that

f ′ = c1r
2 (c1 ̸= 0), g(t) ≡ 0 (59)

holds. Then, (51) is equivalent to

1− (b− 1)((r′)2 − r′′r + c21r
4) = 0. (60)

From this, by a standard argument, we obtain

dr

dt
= ±

√
c21r

4 + c2r2 +
1

b− 1
. (61)

Hence,

t = ±
√
b− 1

∫
dr√

c23r
4 + c4r2 + 1

, (62)

c3 :=
√
b− 1c1 ̸= 0, c4 := (b− 1)c2.
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By using f ′ = c1r
2 and (61), we obtain

f = ±
∫

c3r
2 dr√

c23r
4 + c4r2 + 1

, c3 ̸= 0. (63)

(62) with (63) gives the formula (27).
Next, we will check whether the surface is compatible

with γ or not. Note that the surface X is compatible with
γ if and only if its Gauss map ν = (ν1, ν2, ν3) satisfies
bν23 − 1 > 0 for all θ.
For the surface X given by (56), the Gauss map ν is

ν :=
Xθ ×Xt

|Xθ ×Xt|

= b−1/2
(√

b− 1 cos θ,
√
b− 1 sin θ,−1

)
.

This shows that bν23−1 ≡ 0, and hence X is not compatible
with γ.
For the surface X given by (57),

ν =
(
1 +

cosh2(ct)

b− 1

)−1/2(
cos θ, sin θ,−cosh(ct)√

b− 1

)
.

This shows that bν23−1 ≥ 0 always holds, and that bν23−1 >
0 for all θ if and only if t ̸= 0.
For the surface X given by (58),

ν =
(
1 +

cos2(ct)

b− 1

)−1/2(
cos θ, sin θ,− cos(ct)√

b− 1

)
. (64)

This shows that bν23 − 1 ≤ 0 always holds, and hence X is
not compatible with γ.
For the surface X given by (27), the Gauss map ν is

ν :=
Xθ ×Xr

|Xθ ×Xr|
, (65)

Xθ ×Xr =

( √
b− 1r cos θ

(c21r
4 + c2r2 + 1)1/2

,

√
b− 1r sin θ

(c21r
4 + c2r2 + 1)1/2

,

− r − c1r
3 cos θ

(c21r
4 + c2r2 + 1)1/2

)
. (66)

This shows that, bν23−1 > 0 for all θ if and only if c2 > 2|c1|
holds.
(III) The proof is again similar to the proof of (I). We

see that the condition Λ = 0 is equivalent to the condition
that the system of ordinary differential equations (49), (50)
and (51) holds.
First, assume f ′ = g′ = 0. Then, (51) is equivalent

to (52). Note that b − 1 > 0. The general solutions of
(52) are given by (53), (54), and (55), and corresponding
surfaces are given by (56), (57), and (58). Note that the
surface X is compatible with γ if and only if its Gauss map
ν = (ν1, ν2, ν3) satisfies 1 − bν23 > 0 for all θ. As we have
seen above, for the surfaces (56) and (57), bν23 − 1 ≥ 0
holds at every point. Hence, they are not compatible with
γ. Therefore, only the possibility is the case (58), which is
the same as the formula (29). The Gauss map ν for this

surface is given by (64), which shows that, 1− bν23 > 0 for
all θ if and only if sin(ct) ̸= 0.
Next, we assume that f ′ ̸= 0 or g′ ̸= 0 holds. By rotating

the surface around the x3-axis if necessary, we may assume
that f and g satisfy (59). Then, (51) is equivalent to (60).
Hence, we obtain the formula (31).
We will check whether the surface is compatible with γ

or not. The Gauss map ν is given by (65), (66) as in the
case (II). This shows that, 1− bν23 > 0 for all θ if and only
if both c2 < −2|c1| and

0 < r ≤

(
|c2| −

√
c22 − 4c21

2c21

)1/2

hold, which gives the condition (32).
(IV) The proof is again similar to the proof of (I). We

obtain

1

µ1
=

−2

bν33
=

2(∆2 + 1)3/2

b∆3
, (67)

1

µ2
=

−2

bν3
=

2(∆2 + 1)1/2

b∆
. (68)

By Lemma 4 with (67) and (68), we see that Λ = 0 if and
only if

(rf ′′ − 2r′f ′) cos θ + (rg′′ − 2r′g′) sin θ

+ (r′′r − (r′)2 − (f ′)2 − (g′)2) = 0

holds. This gives the following system of ordinary differen-
tial equations:

rf ′′ − 2r′f ′ = 0, (69)

rg′′ − 2r′g′ = 0, (70)

r′′r − (r′)2 − (f ′)2 − (g′)2 = 0. (71)

From (69) and (70), we have

f ′ = c1r
2, g′ = c2r

2. (72)

When f ′ = g′ = 0 holds, (71) is equivalent to

r′′r − (r′)2 = 0. (73)

The general solution of (73) is

r = ec1t+c2 ,

which gives the formula (33).
When f ′ ̸= 0 or g′ ̸= 0 holds, by rotating the surface

around the x3-axis if necessary, we may assume that

f ′ = c1r
2 (c1 ̸= 0), g(t) ≡ 0 (74)

holds. Then, (71) is equivalent to

(r′)2 − r′′r + c21r
4 = 0. (75)

From this, by a standard argument, we obtain

dr

dt
= ±

√
c21r

4 + c2r2. (76)
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Hence,

t = ±
∫

dr√
c21r

4 + c2r2
. (77)

By using f ′ = c1r
2 and (76), we obtain

f = ±
∫

c1r dr√
c21r

2 + c2
, c1 ̸= 0. (78)

(77) with (78) gives the formula (34).
Next, we will check whether the surface is compatible

with γ or not. Note that the surface X is compatible with
γ if and only if its Gauss map ν = (ν1, ν2, ν3) satisfies
ν3 ̸= 0 for all θ.
For the surface X given by (33), the Gauss map ν is

ν :=
Xθ ×Xt

|Xθ ×Xt|

=
(
1 + c2e2ct

)−1/2(
cos θ, sin θ,−cect

)
.

This shows that, ν3 ̸= 0 for all θ if and only if c ̸= 0.
For the surface X given by (34), the Gauss map ν is

ν :=
Xθ ×Xr

|Xθ ×Xr|
,

Xθ ×Xr =

(
cos θ

(c21r
2 + c2)1/2

,
sin θ

(c21r
2 + c2)1/2

,

− r
(
1 +

c1r cos θ

(c21r
2 + c2)1/2

))
.

This shows that, ν3 ̸= 0 for all θ if and only if c2 > 0 holds.
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