<学術雑誌論文>
On the zero-run length of a signed binary representation

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
関連DOI
関連DOI
関連URI
関連情報
概要 Elliptic curve cryptosystems (ECC) are suitable for memory-constraint devices like smart cards due to their small key-size. Non-adjacent form (NAF) is a signed binary representation of integers used f...or implementing ECC. Recently, Schmidt-Samoa et al. proposed the fractional $w$MOF (Frac-$w$MOF), which is a left-to-right analogue of NAF, where $w$ is the fractional window size $w=w_{0}+w_{1}$ of integer $w_{0}$ and fractional number $w_{1}$. On the contrary to NAF, there are some consecutive none-zero bits in Frac-$w$MOF, and thus the zero-run length of the Frac-$w$MOF is not equal to that of the variants of NAF. In this paper we present an asymptotic formula of zero-run length of Frac-$w$MOF. Indeed, the average zero-run length of the Frac-$w$MOF is asymptotically $w\frac{2^{w_{0}+1}}{2^{w_{0}+1}-1}$, which is longer than that of the fractional $w$NAF.続きを見る

本文ファイル

pdf JMI2009A-4 pdf 183 KB 236  

詳細

レコードID
査読有無
主題
注記
タイプ
登録日 2009.10.20
更新日 2020.11.27

この資料を見た人はこんな資料も見ています