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Abstract. Elliptic curve cryptosystems (ECC) are suitable for memory-constraint devices like
smart cards due to their small key-size. Non-adjacent form (NAF) is a signed binary representation
of integers used for implementing ECC. Recently, Schmidt-Samoa et al. proposed the fractional
wMOF (Frac-wMOF), which is a left-to-right analogue of NAF, where w is the fractional window
size w = w0 + w1 of integer w0 and fractional number w1. On the contrary to NAF, there are some
consecutive none-zero bits in Frac-wMOF, and thus the zero-run length of the Frac-wMOF is not
equal to that of the variants of NAF. In this paper we present an asymptotic formula of zero-run
length of Frac-wMOF. Indeed, the average zero-run length of the Frac-wMOF is asymptotically

w 2w0+1

2w0+1−1
, which is longer than that of the fractional wNAF.
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1. Introduction

One of the research topics in elliptic curve cryptosystems
is how to enhance the speed of computing scalar multipli-
cation dP , where d is an integer and P is a point on the
elliptic curve. We deal with the representation problem of
integer

d =
n−1∑
i=0

di2i = (dn−1, dn−2, ..., d0), di ∈ T

for a given digit set T and some integer n. Here the bi-
nary representation of d chooses T = {0, 1}, but d can be
represented in many different ways if the digit set T is al-
lowed to have redundancy, e.g. T = {0,±1}. An efficient
scalar multiplication can be achieved by the representation
of integer d with a small Hamming weight (the number of
di ̸= 0) and a small digit set T .

The most popular class in the redundant representations
is Non-Adjacent Form (NAF) [10]. NAF is uniquely defined
by the property of didi+1 = 0 and di ∈ {0,±1} for any in-
teger i. It is known that NAF have the minimal Hamming
weight in the redundant representations of T ∈ {0,±1} and
the average density of non-zero digits in NAF is 1

3 . There-
fore, NAF is more efficient class than the binary representa-
tion for ECC. Next wNAF is an extension of NAF with the
redundant digit set Tw = {0,±1,±3, ...,±(2w−1− 1)} of d,
which has at most one non-zero digit among w consecutive
digits [10]. wNAF has the minimal Hamming weight in
the redundant representations of the digit set Tw, and the
average density of non-zero digits in wNAF is 1

1+w . More-
over, the window size w can be extended to the fractional
window size w = w0 +w1, where w0 is an integer and w1 is
a fractional number. Fractional wNAF (Frac-wNAF) uses

the redundant digit set Tw0+w1 = {0,±1,±3, ....,±(2w0−1−
1),±(2w0−1 + 1), ...,±((1 + w1)2w0−1 − 1)} of d, and thus
size of the digit set is flexibly chosen [7]. It is known
that Frac-wNAF has the minimal hamming weight in the
redundant representations of the given digit set Tw0+w1

and the average density of non-zero digits in Frac-wNAF
is 1

1+w0+w1
= 1

1+w . This method gives the most suitable
solution for the afore-mentioned problem.

On the other hand, the scalar multiplication is usually
computed from the most digit (left-to-right), but (Frac-
)wNAF is generated from the binary representation start-
ing with the lower digit (right-to-left) maintaining a prop-
agation digit. Therefore (Frac-)wNAF is not most suit-
able for the implementation on a memory-constrained de-
vice. Okeya et al. proposed the width-w Mutual Op-
posite Form (MOF), which is a left-to-right analogue of
wNAF, and wMOF has the minimal Hamming weight same
as wNAF [8]. Moreover, Schmidt-Samoa et al. proposed
Frac-wMOF which applies the fractional window method
to wMOF [9]. Frac-wMOF is the most suitable method
for the implementation of ECC.

1.1. Our Contributions

In this paper, we analyze the distribution of non-zero digits
of Frac-wMOF. On the contrary to Frac-wNAF, some con-
secutive non-zero digits appear in Frac-wMOF. The con-
secutive non-zero digits make the average zero-run length
of Frac-wMOF longer than that of Frac-wNAF, namely
w = w0 + w1. We try to estimate the asymptotic dis-
tribution of the digits appeared in Frac-wMOF. At first
the presentation of Frac-wMOF is decomposed into sev-
eral syntax blocks based on the conversion table of Frac-
wMOF. We prove that the blocks are related with an ir-
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reducible and aperiodic transit matrix of Markov chain.
From the stationary distribution of the transit matrix we
estimate the distribution of the consecutive non-zero digits
of Frac-wMOF. Finally we prove the average zero-run of
Frac-wMOF is asymptotically w 2w0+1

2w0+1−1
. We also present

some experimental data that evaluate this theoretical esti-
mation.

The organization of this paper is as follows: In Section
2, we describe the generation algorithm and some math-
ematical properties related to Frac-wMOF. In Section 3,
we estimate the density of the consecutive non-zero digits
and the zero-run length of Frac-wMOF. We also present
some experimental results of our zero-run length formula.
In Section 4, we state some concluding remarks.

2. Frac-wMOF

In this section, we review the definition and generation
method of Frac-wMOF, which is an analogue of Frac-wNAF.

2.1. wNAF, wMOF

Each positive integer can be uniquely represented by Booth
encoding. The Booth encoding of an integer d is an signed
binary representation d =

∑n
i=0 βi2i, βi ∈ T, T = {0,±1}

and B(d) = (βn, βn−1, ..., β0), which is obtained by the
bitwise subtraction B(d) = 2d ⊖ d [2]. It is easy to see
that the average density of non-zero digit is asymptotically
1/2. Here the Booth encoding of an integer d satisfies the
following two properties:

• the signs of adjacent non-zero digits (without consid-
ering 0 bits) are opposite.

• the most non-zero digit and the least non-zero digit
are 1 and -1 (we describe −1 as 1̄ from now on),
respectively, unless all digits are zero.

Okeya et al. showed that wNAF can be generated by
applying the window method with the window size w to
the Booth encoding in right-to-left [8]. On the other hand,
wMOF is a dual class of wNAF, which is defined as the rep-
resentation which applies the window method with the win-
dow size w to the Booth encoding in left-to-right. Here the
window method with the window size w is a method that
converts the consecutive w digits starting with the non-zero
digit into (w − 1) zero digits with one integer value after
scanning the Booth encoding one digit by one digit (we
skip to the next digit if the zero digit is scanned). Denote
by Table[w] the conversion table for generating wMOF. We
present the conversion tables for w = 3 and w = 4 as fol-
lows.

The conversion table Table[3] for window size 3
100 → 100 11̄0 → 010 11̄1 → 003 1̄11̄ → 003̄
1̄00 → 1̄00 1̄10 → 01̄0 101̄ → 003 1̄01 → 003̄

The conversion table Table[4] for window size 4
1000 → 1000 11̄10 → 0030 11̄01 → 0005 1001̄ → 0007
1̄000 → 1̄000 101̄0 → 0030 11̄11̄ → 0005 101̄1 → 0007
11̄00 → 0100 1̄11̄0 → 003̄0 1̄101̄ → 0005̄ 1̄001 → 0007̄
1̄100 → 01̄00 1̄010 → 003̄0 1̄11̄1 → 0005̄ 1̄011̄ → 0007̄

The number of an element in Table[w] is 2w. Here the
non-zero digit after the conversion appears in the lowest
digit (the right-side edge) or the highest digit (the left-side
edge) in the consecutive w digits. Therefore wMOF has the
consecutive non-zero digits (e.g. |0007|1000| in the above
table). Note that the length of the consecutive non-zero
digits is not longer than two. On the other hand, wNAF is
generated with a conversion table starting with the lower
non-zero digit (left-to-right). wNAF thus has no consecu-
tive non-zero digits, because a non-zero digit only appears
in the lowest digit (the right-side edge). The average zero-
run length of wNAF is obviously w. It is known that the
Hamming weight of wMOF is equal to that of wNAF, which
is the minimal in the redundant representation of the digit
set {0,±1,±3, ...,±(2w−1 − 1)}. The average density of
non-zero digits of both wMOF and wNAF is asymptoti-
cally 1

1+w [8].

2.2. Frac-wMOF

The wMOF utilizes the redundant digit set Tw = {0,±1,
±3, ...,±(2w−1−1)} defined for natural number w. A scalar
multiplication by wMOF should pre-compute the points
P2j+1 = (2j + 1)P for 0 ≤ j ≤ 2w−1 − 1, namely we
store 2w−2 points in memory. Therefore the memory size
for the pre-computation increases exponentially in w and
their size takes only the discrete values. It is not suitable
for memory-constraint devices. For example, we assume a
device which can only store 3 pre-computed points. The
number of the non-zero digits for w = 3 is 23−2 = 2, and
thus the memory space for one more point is free. However
we cannot choose the window size w = 4, which needs
24−2 = 4 points for the pre-computation.

Fractional wMOF can solve the problem successfully [9].
Now, for any positive integer q we try to construct the
digit set {0,±1,±3, ...,±(2q − 1)} with q elements. Let
w0 be an integer which satisfies 2w0−2 ≤ q < 2w0−1, and
let w1 be a fractional number w1 = q−2w0−2

2w0−2 . Here we
define the window size w of Frac-wMOF as w = w0 + w1.
This fractional number w1 is in the interval 0 ≤ w1 < 1,
and the window size which becomes an integer. The digit
set of Frac-wMOF with the window size w = w0 + w1 is
equal to Tw0+w1 = {0,±1,±3, ...,±(2w0−1 − 1),±(2w0−1 +
1), ...,±((1 + w1)2w0−1 − 1)}, and the number of the non-
zero digits in Tw0+w1 is q = (1 + w1)2w0−2 for the window
size w.

The conversion table of Frac-wMOF with the window
size w = w0 + w1 consists of two tables with an integer
window size, namely w0 and w0 + 1. If the consecutive
(w0+1) digits starting with the non-zero digit are contained
in digit set Tw0+w1 as integer, then the conversion table for
the window size w0+1 is used. Otherwise we should switch
to the conversion table for the window size w0. The number



Hisashi Yamada, Tsuyoshi Takagi and Kouichi Sakurai 29

of elements in the conversion table of Frac-wMOF is either
(1 + w1)2w0 for the window size w0 + 1 or (1− w1)2w0 for
the window size w0. For example, the number of the non-
zero digit for the window size w = 3 1

2 is (1 + 1
2 )23−2 = 3,

and their conversion table is as follows:

The conversion table Table[31
2 ] for window size 3 1

2
1000 → 1000 11̄10 → 0030 11̄01 → 0005 100 → 100
1̄000 → 1̄000 101̄0 → 0030 11̄11̄ → 0005 101̄ → 003
11̄00 → 0100 1̄11̄0 → 003̄0 1̄101̄ → 0005̄ 1̄00 → 1̄00
1̄100 → 01̄00 1̄010 → 003̄0 1̄11̄1 → 0005̄ 1̄01 → 003̄

Here we present an algorithm which generates Frac-wMOF
from a binary representation d.

Algorithm 1: Generation of Frac-wMOF [9]
Input: binary representation d = (dn−1, dn−2, ..., d0),

the window size w = w0 + w1,
Output: Frac-wMOF d = (µn, µn−1, ..., µ0).
1: B(d)← 2d⊖ d, i← n, β−1 ← 0, ... , β−w+1 ← 0;
2: while i ≥ 0 do
3: if βi = 0 then µi ← 0, i← i− 1 else do
4: if |

∑w0+1
j=1 βi+j−w0−12j−1| ≥ 2w0−1(1 + w1)

5: then (µi, ..., µi−w0+1)← Table[w0](βi, ..., βi−w0+1),
i← i− w0;

6: else (µi, ..., µi−w0)← Table[w0 + 1](βi, ..., βi−w0),
i← i− w0 − 1;

7: Return (µn, µn−1, ..., µ0)

In step 1, we compute the Booth encoding B(d) of in-
teger d and initialize some values. From step 2 to 6, we
compute the main loop in terms of scanning the digit βi for
i = n, n−1, ..., 1, 0. If i-th digit βi is zero, we assign µi = 0
and skip to the lower digit. Otherwise we scan (w0 + 1)
consecutive digits (βi, βi−1, ..., βi−w0) and check if or not
W =

∑w0+1
j=1 βi+j−w0−12j−1 in the conversion table of Frac-

wMOF, namely |W | ≥ 2w0−1(1+w1) in step 4. When W is
not contained in the conversion table, we convert w0 con-
secutive digits (βi, βi−1, ..., βi−w0+1) using the conversion
table Table[w0] in step 5. Otherwise (w0 + 1) consecutive
digits (βi, βi−1, ..., βi−w0) are converted by Table[w0 +1] in
step 6.

Frac-wMOF representation of integer d is a class which
has the minimal Hamming weight in the digit set Tw0+w1 .
Denote by H(n) and L(n) the average number of non-zero
digits and the average length for integers at most n bits,
respectively. It is known that H(n) = 1

1+w0+w1
n + cH +

O(2−n) and L(n) = n + cL + O(2−n), where cH , cL are
some constants [9].

2.3. Blocks in Frac-wMOF

We discuss the average length of the consecutive non-zero
digits in Frac-wMOF.

From Algorithm 1 we define the following blocks ap-
peared in Frac-wMOF

0︸︷︷︸
1

, 0.. ∗ ..0︸ ︷︷ ︸
w0

, 0... ∗ ...0︸ ︷︷ ︸
w0+1

,

where ∗ is the non-zero digit in the digit set Tw0+w1 . The
above three blocks are denoted by I, II, and III, respec-
tively. The digits of Frac-wMOF is composed by one of
the syntax blocks I, II, and III. Block I is µi = 0 in step
3 of Algorithm 1, which is generated for βi = 0. If βi ̸= 0
holds, then either II in step 5 or III in step 6 is generated
instead of I. Let (1−R), R be the appearance probability of
blocks II, III, respectively. This probability depends only
on the window size w = w0+w1. In this paper we deal with
the asymptotic behavior of blocks I, II, and III for enough
large n of input d = (dn−1, dn−2..., d0) in Algorithm 1. Let
Q1, Q2, Q3 be the asymptotic appearance probabilities of
the above each block I, II, III.

The appearance probability R of the block III in Al-
gorithm 1 can be estimated in the following. In step 5
and 6 of Algorithm 1 we use the conversion table Table[w0]
and Table[w0 + 1], respectively. The choice of the con-
version tables depends on the (w0 + 1) consecutive digits
(βi, βi−1, ..., βi−w0) in step 4, and some elements in each
conversion table are never used. The appearance probabil-
ity R is estimated by the number used in each conversion
table. At first note that there are 2w0+1 possible elements
in step 4. Step 6 is processed if |W | < 2w0−1(1 + w1)
holds in step 4, where W =

∑w0+1
j=1 βi+j−w0−12j−1. There-

fore we use 2w0 + w12w0 elements in the conversion table
Table[w0 + 1] in step 6 of Algorithm 1, Consequently, the
appearance probability is R = 2w0+w12

w0

2w0+1 = 1+w1
2 from

above consideration.

2.4. Stationary Distribution of Blocks

The stationary distribution of the syntax blocks Q1, Q2, Q3

of Frac-wMOF can be estimated by the same way appeared
in [9].

At first we try to construct a transition matrix of the
syntax blocks I, II or III. If the current state is the block I,
the lower block is either I, II or III. There is no propagation
digit among the blocks. The appearance probability of the
block I after I is equal to 1

2 , which is the probability that the
highest digit in the block I is zero. The probability that
II or III appears after I is 1

2 (1 − R) or 1
2R, respectively.

Next, recall that the block II appears if |W | ≥ 2w0−1(1 +
w1) holds in step 4, where W =

∑w0+1
j=1 βi+j−w0−12j−1.

Therefore the lowest digit βi−w0−1 of the consecutive (w0+
1) digits that will be converted to II is always non-zero.
It means that the lower block after II is only either the
block II or III. Therefore, the probability that the lower
block after II becomes III or II is R or 1−R, respectively.
The appearance probability of the blocks after III can be
estimated in a similar way of the case for I. The probability
that the lower block of III becomes I, II, and III is 1

2 , 1
2R,

and 1
2 (1−R), respectively.

From the above discussion, we have obtained the tran-
sition matrix of the syntax blocks I, II, III, which is the
following 3× 3 matrix.
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I II III

I 1
2

1
2 (1−R) 1

2R

II 0 1−R R

III 1
2

1
2 (1−R) 1

2R

As 0 < w1 < 1 holds, this Markov chain is irreducible
and aperiodic, and thus its stationary distribution can be
determined as

(Q1, Q2, Q3) =
(

R

R + 1
,

1−R

R + 1
,

R

R + 1

)
=

(
1 + w1

3 + w1
,

1− w1

3 + w1
,

1 + w1

3 + w1

)
.

The convergence speed to the stationary distributions Q1,
Q2, Q3 is O(2−n), where n is the bit length of the input
integer in Algorithm 1.

If w1 = 0, we can discuss the stationary distribution of
the syntax blocks of wMOF from similar above considera-
tion.

3. Zero-Run Length in Frac-wMOF

In this section, we discuss the average length of the consec-
utive non-zero digits in Frac-wMOF, and then we estimate
the average zero-run length in Frac-wMOF.

3.1. Zero-Run Length

We defined the notations used in this paper in the following.
Let d be an integer d at most n bits (i.e. d = 0, 1, 2, ..., 2n−
1), and let M(d) =

∑n
i=0 µi2i = (µn, µn−1, ..., µ0) be the

Frac-wMOF of integer d with width w. We call di the i-
th digit of µ, and the zero digit is a digit of µi = 0 for
i = 0, 1, 2, ..., n. The Hamming weight of M(d), which
is denoted by h(M(d)), is the total number of the non-
zero digits of µi, namely h(M(d)) = #{µi ̸= 0|M(d) =
(µn, µn−1, ..., µ0)}. Let l(M(d)) be the digit length of M(d)
which is the largest i with µi ̸= 0 among i = 0, 1, 2, ..., n for
d ̸= 0 (we define l(M(0)) = 0). Recall that the length of
the consecutive non-zero digits of Frac-wMOF is not longer
than two. The consecutive non-zero digits have the form
0, µj , µj−1, 0, where both µj ̸= 0 and µj−1 ̸= 0 for some j.
Denote by Let c(M(d)) be the number of the consecutive
non-zero digits appeared in M(d). The zero-run length
zr(M(d)) of M(d) is defined by

zr(M(d)) =


l(M(d))− h(M(d))

h(M(d))− c(M(d))− 1 (if d is odd)

l(M(d))− h(M(d))
h(M(d))− c(M(d)) (if d is even)

Next we define the average number of non-zero digits
H(n), the average digit length L(n), and the average num-
ber of the consecutive non-zero CT (n) for Frac-wMOF of

all integers at most n bits as follows:

H(n) =
∑2n−1

d=0 h(M(d))
2n

,

L(n) =
∑2n−1

d=0 l(M(d))
2n

,

C(n) =
∑2n−1

d=0 c(M(d))
2n

.

Finally, the average zero-run length ZR(n) for Frac-wMOF
of all integers at most n bits is defined by

(1) ZR(n) =
L(n)2n −H(n)2n

H(n)2n − 2n−1 − C(n)2n
.

3.2. The Detailed Probability of Each Block

We consider the case that the lowest digit (or the highest
digit) of bocks II, III becomes the non-zero digit ∗ ∈ Tw.
Denote by Q

(r)
2 (or Q

(l)
2 ) the probability of (0...0∗) (or

(∗0...0)) in the block II. Denote by Q
(r)
3 (or Q

(l)
3 ) the prob-

ability of (0...0∗) (or (∗0...0)) in the block III. These nota-
tions are used for the estimating density of the consecutive
non-zero digits in Frac-wMOF.

We estimate the probabilities Q
(l)
2 , Q

(r)
2 , Q

(l)
3 , Q

(r)
3 that

the lowest or highest bit in the blocks II, III becomes a
non-zero digit. Let ∗ be the non-zero digit in the digit set
Tw. We consider the probability that the pattern (0...0∗)
appears in the block II. After converting the consecutive
w0 digits (βi, βi−1, ..., βi−w0+1) in Algorithm 1, the lowest
digit becomes a non-zero digit with probability 1

2 . The
pattern (0...0∗) appears if the lowest digit is a non-zero
digit, and thus Q

(r)
2 = (1−w12

w0−1)
(1−w1)2w0 = 1

2 . Here, the pattern
(∗0...0) appeared in the block III is only either (10...0) or
(1̄0...0). The total number of elements in the block II is
2w0+1 − (1 + w1)2w0 = (1 + w1)2w0 . Therefore, we obtain
Q

(l)
2 = 1

(1−w1)2w0−1 .
The number of the pattern (0...0∗) appeared in the block

III is equal to 2w0+1

2 − (1−w1)2w0 = w12w0 , where 2w0+1

2 is
the half of 2w0+1 possible elements in step 4 of Algorithm
1 and (1 − w1)2w0 is the total number in the block III.
Therefore, the conditional probability Q

(r)
3 is w12

w0

(1+w1)2w0 =
w1

1+w1
. There are only two elements whose pattern in the

block II becomes (0...0∗) as we discussed in the case of the
block III. Therefore, the conditional probability is Q

(l)
3 =

2
(1+w1)2w0 = 1

(1+w1)2w0−1 .

3.3. Distribution of Consecutive Non-Zero Dig-
its

We analyze the average number of consecutive non-zero
digits appeared in Frac-wMOF in the following.

Theorem 1. The average number of consecutive non-zero
digits in Frac-wMOF converted from integers at most n bit
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is
C(n) =

1
(1 + w)2w0+1

n + cC +O(2−n)

for the window size w = w0 + w1 and some constant cC .
Proof. At first the stationary distribution and the length
of three blocks I, II, III is Q1, Q2, Q3 and 1, w0, (w0 + 1),
respectively. Therefore the average length of the above
three blocks appeared in Frac-wMOF is

X = Q1 + w0Q2 + (w0 + 1)Q3 =
2(1 + w)
3 + w1

.

Next we estimate the average length of the consecutive
non-zero digits in the three blocks, which is denoted by Y .
The consecutive non-zero digits are only the following 4
patterns.

| (0...0∗)︸ ︷︷ ︸
w0+1

| (∗0...0)︸ ︷︷ ︸
w0+1

|, | (0...0∗)︸ ︷︷ ︸
w0+1

| (∗0..0)︸ ︷︷ ︸
w0

|,

| (0..0∗)︸ ︷︷ ︸
w0

| (∗0...0)︸ ︷︷ ︸
w0+1

|, | (0..0∗)︸ ︷︷ ︸
w0

| (∗0..0)︸ ︷︷ ︸
w0

|,

where ∗ is one of the non-zero digits in digit set Tw. There-
fore Y can be estimated by the probabilities Q

(r)
2 , Q

(l)
2 ,

Q
(r)
3 , Q

(l)
3 in the previous section, namely we have

Y = Q3Q
(r)
3

{
1
2
RQ

(l)
3 +

1
2
(1−R)Q(l)

2

}
+Q2Q

(r)
2

{
RQ

(l)
3 + (1−R)Q(l)

2

}
=

1
(3 + w1)2w0

.

In this paper we assume that Frac-wMOF is converted
from integers at most n bits and the average estimation
is calculated over all integers at most n bits. The average
lengths X and Y are converged in the speed O(2−n) be-
cause of the stationary distributions Q1, Q2, Q3. Therefore
the average density of the consecutive non-zero digits can
be estimated by

Y

X
=

1

(3 + w1)2w0

3 + w1

2(1 + w)
=

1

(1 + w)2w0+1
.

From the above facts, the average number of the consecu-
tive non-zero digits in Frac-wMOF converted from integers
at most n bits is C(n) = 1

(1+w)2w0+1 n + cC + O(2−n) for
some constant cC .

3.4. Average Zero-Run Length in Frac-wMOF

We can prove the following theorem from the discussion in
the previous sections.
Theorem 2. The average zero-run length of Frac-wMOF
converted from integers at most n bits is

w
2w0+1

2w0+1 − 1
+O(n−1)

for the window size w = w0 + w1.

Proof. Denote by ZR(n) the average zero-run length of
Frac-wMOF converted from integers at most n bits. From
the definition in Section 3, we are able to evaluate ZR(n)
by the following formula. ZR(n) = L(n)2n−H(n)2n

H(n)2n−2n−1−C(n)2n ,
where L(n) = n + cL + O(2−n), H(n) = 1

1+wn + cL +
O(2−n), and C(n) = 1

(1+w)2w0+1 n + cC +O(2−n) appeared
in Theorem 1. By dividing this equation by n2n we obtain

ZR(n) =
L(n)

n − H(n)
n

H(n)
n − C(n)

n − 1
2n

.

Therefore, the average zero-run length of Frac-wMOF with
window size w = w0 + w1 is equal to

ZR(n) = w
2w0+1

2w0+1 − 1
+O(n−1).

In the case of w = 2, Han et al. proved the average zero-
run length of 2MOF converted from integer at most n bits
is 16

7 for n→∞ [5]. The zero-run formula in Theorem 2 is
a natural extension of their result.

3.5. Comparison

We compare Frac-wNAF with Frac-wMOF in the following.
Table 1 describes the average density of the non-zero digits
(Non-Zero Density) and the zero-run length (Zero-Run) of
both Frac-wNAF and Frac-wMOF.

Table 1: Comparison of Frac-wMOF with Frac-wNAF
Scheme Non-Zero Density [9] Zero-Run Length

Frac-wNAF 1
1+w0+w1

w0 + w1

Frac-wMOF 1
1+w0+w1

(w0 + w1)
2w0+1

2w0+1−1

The average density of non-zero in Frac-wMOF is equal
to that of Frac-wNAF [9], but their average zero-run length
is different due to the consecutive non-zero digits appeared
in Frac-wMOF. Indeed, the average zero-run length in Frac-
wMOF is 2w0+1

2w0+1−1
times longer than that in Frac-wNAF.

For example, when we assume w = 3 1
2 , the average zero-

run length in Frac-31
2MOF is 56

15 , that value is longer than
7
2 which is the average zero-run length in Frac-31

2NAF.

3.6. Experiment Results

In order to evaluate the formula of the zero-run length of
Frac-wMOF in the previous section, we present some ex-
perimental data for random inputs of the fixed bit lengths
and several window size w = w0 + w1.

The zero-run formula in Theorem 2 aims at evaluating
the asymptotic behavior of Frac-wMOF for integers at most
n bits. Therefore, the first experiment chooses an enough
large length n = 1, 000, 000, in which we count the average
zero-run of Frac-wMOF converted from a randomly chosen
integer of one million bits. Next the practical key length of
elliptic curve cryptosystems is usually chosen larger than
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160 bits, and the scalar multiplication deploys many dif-
ferent ephemeral random integers. Therefore, the second
experiment chooses n = 160 and evaluated the average
zero-run length for one million randomly integers. In Ta-
ble 2 we present the experimental results.

Table 2: Experiment Results
w Theoretical Values Experimental Values

1 million bits 160 bits

2 2.286 2.286 2.265

3 3.200 3.200 3.143

3 1
2 3.733 3.733 3.654

4 4.129 4.129 4.009

4 1
4 4.387 4.387 4.252

4 1
2 4.645 4.645 4.494

4 3
4 4.903 4.903 4.734

5 5.079 5.080 4.863

5 1
8 5.206 5.204 4.979

5 1
4 5.333 5.335 5.096

5 3
8 5.460 5.460 5.212

5 1
2 5.587 5.587 5.329

5 5
8 5.714 5.716 5.444

5 3
4 5.841 5.840 5.560

5 7
8 5.968 5.975 5.675

6 6.047 6.050 5.693

The experimental values for n = 1, 000, 000 coincide with
the theoretical ones with the error rates under 0.12%. On
the other hand, the experimental values for n = 160 differ
from the theoretical ones with the error rates about several
percents. This differences arise from the convergence speed
O(n−1) of the zero-run formula in Theorem 2.

4. Conclusion

In this paper, we presented an asymptotic formula of zero-
run length of Frac-wMOF, which is a left-to-right analogue
of Frac-wNAF. We classified the chain of Frac-wMOF into
several syntax blocks and evaluated their asymptotic dis-
tributions using the Markov chain. The average zero-run
length of Frac-wMOF converted from integers at most n

bits is w 2w0+1

2w0+1−1
for window size w = w0 +w1 and n→∞.

We also showed some experimental results for Frac-wMOF
of one million digits and 160 bits.
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