作成者 |
|
|
本文言語 |
|
出版者 |
|
発行日 |
|
収録物名 |
|
巻 |
|
出版タイプ |
|
アクセス権 |
|
権利関係 |
|
関連DOI |
|
関連DOI |
|
|
関連URI |
|
|
関連URI |
|
関連HDL |
|
関連情報 |
|
|
概要 |
In regression analysis, the $L_1$ regularization such as the lasso or the SCAD provides sparse solutions, which leads to variable selection. We consider the variable selection problem where variables ...are given as functional forms, using the $L_1$ regularization. In order to select functional variables each of which is controlled by multiple parameters, we treat parameters as grouped parameters and then apply the group SCAD. A crucial issue in the regularization method is the choice of regularization parameters. We derive a model selection criterion for evaluating the model estimated by the regularization method via the group SCAD penalty. Results of simulation and real data analysis show the effectiveness of the proposed modeling strategy.続きを見る
|