<プレプリント>
Finding a minimum spanning tree with a small non-terminal set

作成者
本文言語
発行日
開始ページ
終了ページ
出版タイプ
アクセス権
権利関係
関連DOI
関連URI
関連HDL
関連arXiv
概要 In this paper, we study the problem of finding a minimum weight spanning tree that contains each vertex in a given subset V_<NT> of vertices as an internal vertex. This problem, called Minimum Weight ...Non-Terminal Spanning Tree, includes s-t Hamiltonian Path as a special case, and hence it is NP-hard. In this paper, we first observe that Non-Terminal Spanning Tree, the unweighted counterpart of Minimum Weight Non-Terminal Spanning Tree, is already NP-hard on some special graph classes. Moreover, it is W[1]-hard when parameterized by clique-width. In contrast, we give a 3k-vertex kernel and O^∗(2^k)-time algorithm, where k is the size of non-terminal set V_<NT>. The latter algorithm can be extended to Minimum Weight Non-Terminal Spanning Tree with the restriction that each edge has a polynomially bounded integral weight. We also show that Minimum Weight Non-Terminal Spanning Tree is fixed-parameter tractable parameterized by the number of edges in the subgraph induced by the non-terminal set V_<NT>, extending the fixed-parameter tractability of Minimum Weight Non-Terminal Spanning Tree to the general case. Finally, we give several results for structural parameterization.続きを見る

本文ファイル

pdf 7347458 pdf 849 KB 11  

詳細

レコードID
主題
助成情報
登録日 2025.04.22
更新日 2025.04.28

この資料を見た人はこんな資料も見ています