<紀要論文>
On High-Discrepancy Sequences

作成者
本文言語
出版者
発行日
雑誌名
開始ページ
終了ページ
出版タイプ
アクセス権
概要 First, it is pointed out that the uniform distribution of points in $ [0, 1]^d $ is not always a necessary condition for every function in a proper subset of the class of all Riemann integrable functi...ons to have the arithmetic mean of function values at the points converging to its integral over $ [0, 1]^d $ as the number of points goes to infinity. We introduce a formal definition of the $ d $-dimensional high-discrepancy sequences, which are not uniformly distributed in $ [0, 1]^d $, and present motivation for the application of these sequences to high-dimensional numerical integration. Then, we prove that there exist non-uniform $ (infty, d) $-sequences which provide the convergence rate $ O(N^{−1}) $ for the integration of a certain class of $ d $-dimensional Walsh function series, where $ N $ is the number of points.続きを見る

本文情報を非表示

2006-11 pdf 151 KB 137 プレプリント版

詳細

レコードID
査読有無
関連情報
関連情報
主題
ISSN
DOI
NCID
注記
タイプ
登録日 2009.09.24
更新日 2017.01.24