作成者 |
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
巻 |
|
出版タイプ |
|
アクセス権 |
|
関連DOI |
|
|
関連URI |
|
|
関連情報 |
|
|
概要 |
In this paper we present a set $ T_f^+ $ of rational numbers $ s in Q $ such that the minimal splitting fields $ L_s $ of $ X^3 - 3sX^2 - (3s + 3)X -1 $ are cyclic cubic fields with a given conductor... $ f $. The set $ T_f^+ $ has exactly one $ s $ for each field $ L $ of conductor $ f $. The Weil's height of every number $ S in T_f^+ $ is minimal among all of the rational numbers $ s in Q $ such that $ L_s = L $. If a cyclic cubic field $ L $ of conductor $ f $ is given, then we can choose the number $ s in S $ corresponding to $ L $ by sequencing the explicit Artin symbols.続きを見る
|