作成者 |
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
巻 |
|
出版タイプ |
|
アクセス権 |
|
関連DOI |
|
|
関連URI |
|
|
関連情報 |
|
|
概要 |
In [3], Kotani proved analytically that expectations for additive functionals of Brownian motion $ {B_t, t geq 0} $ of the form $ E_0[f(B_t)g( int_0^t \varphi(B_s)ds)] $ have the asymptotics $ t^{-3}/...2 $ as $ t \rigtarrow infty $ for some suitable non-negative functions $ \varphi $, $ f $ and $ g $. This generalizes, in the asymptotic form, Yor’s explicit formula [9] for exponential Brownian functionals. In the present paper, we discuss this generalization probabilistically, by using a time-change argument. We may easily see from our argument that this asymptotics $ t^{-3}/2 $ comes from the transition probability of 3-dimensional Bessel process.続きを見る
|