<テクニカルレポート>
Wavelets with Orthogonality Conditions of Convolution Type

作成者
本文言語
出版者
発行日
雑誌名
出版タイプ
アクセス権
概要 An orthogonality condition of convolution type is derived for scaling functions satisfying a twoscale relation. In two spaces of the shifted scaling functions, one of which includes the other space, a...n inner product different from the $ L^2 $ inner product is introduced. The finer scaling function space is decomposed into the coarser one and its orthogonal complement. A wavelet function is constructed so that its shifted functions form an orthonormal basis in the orthogonal complernent. Such wavelets contain the Daubechies' compactly supported wavelets as a special case. Also, a symmetric and almost compactly supported wavelet is obtained.続きを見る

本文情報を非表示

doi-tr-131 pdf 548 KB 70  

詳細

レコードID
査読有無
関連情報
タイプ
登録日 2009.04.22
更新日 2017.01.20