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Wavelets with Orthogonality Conditions 
of Convolution Type 

Koichi Niijima and Koichi Kuzume 

Abstract- An orthogonality condition of convolution 
type is derived for scaling functions satisfying a two- 
scale relation. In two spaces of the shifted scaling func- 
tions, one of which includes the other space, an inner 
product different from the L2 inner product is intro- 
duced. The finer scaling function space is decomposed 
into the coarser one and its orthogonal complement. A 
wavelet function is constructed so that its shifted func- 
tions form an orthonormal basis in the orthogonal com- 
plernent. Such wavelets contain the Daubechies' com- 
pactly supported wavelets as a special case. Also, a 
symmetric and almost compactly supported wavelet is 
obtained. 

Since the discovery of wavelet by Moret [4], various wavelet 
theories have been developed. Among them, the nlultireso- 
lution analysis formulated by Mallat [3] is a very important 
concept to  construct wavelet bases. In the mutiresolution 
analysis, a scaling function satisfying a two-scale relation 
is first introduced and a wavelet basis is defined as a basis 
in the orthogonal complenlent of the scaling function space. 
Based on the nlultiresolution analysis, Daubechies has de- 
signed conlpactly supported orthogonal wavelets which give 
excellent filters for extracting high frequency conlponents 
from signals. Unfortunately, however, these wavelets do 
not have linear phase characteristics except for the Haar 
wavelet. In the signal processing, the linear phase charac- 
teristics is more important than the orthogonality. One way 
for designing wavelet bases with linear phase characteristics 
is to  relax ortlzogonality conditions. Unser and Aldroubi [5] 
have constructed biorthogonal wavelets using a two-scale re- 
lation of B-spline functions with odd order. These wavelets 
have linear phase characteristics since they are synlnletric 
functions. However, the use of special functions such as 
spline functions does not allow us to have freedom to gen- 
erate new wavelet bases. 

In this paper, we develop a biorthogonal wavelet theory 
without starting froill special functions such as B-spline 

functions. Our approach is rather similar to the Daubechies' 
approach. We first introduce a scaling function using a two- 
scale relation. Next, its dual scaling function is defined by 
another two-scale relation whose coefficients are given by 
a convolution of free parameters with the coefficients con- 
tained in the two-scale relation introduced first. By virtue 
of the freedom of parameters, a number of scaling functions 
can be constructed. We impose on the scaling function the 
condition that it is orthonornlal to the shifted dual scaling 
functions. This condition can be expressed by the Fourier 
transform of convoluted coefficients. This is described in 
Section 11. 

We consider two spaces consisting of shifted scaling func- 
tions, one of which includes the other space. These spaces 
are necessary to be Hilbert spaces to obtain a direct sun1 
decomposition of the finer scaling function space. In other 
papers such as [I], [2] and [3], the L2 space equiped with 
the L2 norm has been used as the whole space containing 
all the scaling function spaces. This paper introduces an in- 
ner product in the finer scaling function space using the dual 
scaling function. This inner product is introduced natularly 
in the coarser scaling function spaces. The norm is defined 
by the inner product. Thus, the finer scaling function space 
becomes a Hilbert space and it can be deconlposed into the 
coarser scaling function space and its orthogonal coniple- 
ment. This is discussed in Section 111. Since the complenlent 
space is a subspace of the finer scaling function space, an 
elenlent of the conlplenlent space can be represented by a 
linear conlbination of the basis of the finer scaling function 
space. Coefficients of the linear combination are character- 
ized by the orthogonality of the dual scaling functions with 
the wavelet function. It is shown that the wavelet function 
obtained has the property that its shifted functions form 
an orthonornlal basis in the conlplement space. This is de- 
scribed in Section IV. In Section V, we derive deconlposition 
and reconstruction fornlulas for signals using the results in 
Sections I1 and IV. Section VI is devoted to show some ex- 
amples of our wavelets. 
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Daubechies [?I has found an orthonornlality coilditioil for The Daubechies' trick yields 
the shifted functions {p(. - k), k E 2) as follows: 

1 i . 2 ~  

where u(C) is given by from which we obtain 

In this paper, we extend this result to an orthonornlality By the Fourier transform of ( I ) ,  we have 

conditioil of convolution type by introducing a functioil re- 
lated to  p ( ~ ) .  We introduce a function %,(x) in L 2 ( ~ )  by 

@(t) = u(t /2)  @(t/2). 

a two-scale relation On the other hand, the Fourier transform of (4) gives 

pp(x) = C ( p  * a ) r t , J Z  ipi)(2x - n) (4) G ( t )  = b(t/2) G ( t / 2 ) ,  
r 1, 

where 
which contains p = ( P ~ ) , ~ , = - M  ,..., M and a = ap- b(C) = - 1 C ( p  * a), e-irLC, 
peared in (1)) where the symbol * denotes the convolution 

7 ,  

Since we have b(C) = a(C)u(C) by an easy calculation, we 
(P * a ) ,  = C pr,-e ac. obtain 

In-ll<M A 

P ~ ( O  = a( t /2)  45 ' 2 )  G ( t / 2 ) ,  (9) 
1 fP0  = 1 andPrr, = ( ) f o r m  # 0, then the function ~ ~ ( 2 )  Substituting (8) and (9) into (7) yields 
coiilcides wit11 cp(x). 

- \ ,  

C a ( t l 2  + 7 4  Iu(c/2 + .&)I2 G ( t 1 2  + 74 @((I2 + r e )  
We irilpose on the scaling function p(x)  the orthonormal- 

ity condition 

Splitting the sun1 of (10) into even and odd &, and using the 
27r- periodicity of a(<)  and u(C), we obtain (6), where we 

= Sx:o (5) have put C = (12, and applied (7) again. 

for any k E Z,  where Sko denotes the Kronecker's delta Remark: In case of po = 1 and p,,, = 0 for m # 0, we 
symbol, and Z the set of integers. have a(() G 1 and (6) coincides with (2). 

For latter use, we define a([) by From this theorem, we obtain the following result. 

The following theorem holds. 

Corollary I. The equation (6) is equivalent to 

Theorem 1: The orthonormality condition (5) is equiva- 
lent to  Proof. Using the definition of a([) and u(C), the equa- 

tion (6) can be written as 

a([) lu(C) l 2  + a(C + r) I%([ + r) l 2  = 1 a.e.. (6) 

,,, z z (1 + (-1)~"+7"+J!) e-<~l,+~r~-f)C - - 2 
Proof: We define the Fourier transform of f (x) by rrr= - M 71. J! 

The convolution theorem on frequency leads to 

Since the ternls in the parenthesis remain only for m+n-& = 
2k, k E 2, we have 

which rneans (11). 



111. INNER PRODUCT AND NORM IN SCALING (iii) ( f ,  f) ,  2 0 and ( f ,  f), = 0 implies f = 0. 
FUNCTION SPACES It follows by the proof of (i) that 

Let V;1 be a space spanned by the sifted scaling functiolis 
c p ( - -  k), k E Z ,  that  is, 

( f ,  f ) e  = C ( p  * c)rcli:. 
k 

I4 ={ t : c~ : i p (* -k ) ,  C C ~  < +00). The estimation of the right hand side from below gives 
A: li: 

We consider one more space on the scaling function cp(x). 

This inequality together with (H3) proves (iii). 

It is easily shown that 11 f 111, satisfies the coliditions of 
By virtue of the two-scale relatioil ( I ) ,  the inclusion Vo C Vl 

norm (See [?I). 
holds. 

We shall introduce an inner product in the space Vl. The 
functions f and g in Vl niay be written as 

f ( 4  = C C k J Z  y(2x - k), 

Using the coefficients c ~ :  of f (x) and the parameters p = 
( p , )  introduced previously, we define a function 

If c,,, equals to a,, appeared in ( I ) ,  then f,(x) gives ip,(x) 
defined in (4). 

Let us define (f ,  g)l, by 

IV. WAVELET 

By Proposition, the space (V', 1 1  . /IF,) becon~es a Hilbert 
space. Since the inclusion I/;) c Vl holds by virtue of ( I ) ,  
Vl can be deconlposed as 

Since r/;l and Wo are subspaces of Vl, the norm 1 1  11, in Vl 
is naturally introduced both ill V;, and Wo. The space & 
is called the orthogonal conlplenlent of T/;, in Vl. We shall 
construct an orthonorrnal basis of WO in the forill {$(. - 
k), k E Z), where $(x) is called a wavelet function. The 
space Wo nlay be written as 

By T/;) i Wo, the wavelet function $(x) must satisfy 
We assunle that  the parameters p = ( p , )  satisfy three con- 

M 
ditiO1ls: (HI)  p'rr, = p-7,1,, (A2) C7n=-M p7n = (H3) ((p( . -k) ,+( . ) )p=O, IcE Z. 
Po > C,rr,,$o IP- I. 

Then we have the following result. From the definition of (., we have 

Proposition: (f ,  g)P in (13) is an inner product in Vl and 
l l f l l p  = Jm is a norm in V1. 

Proof: We check the tliree conditions of inner product. 

(i) (f 3 g)p = (9, f )p 
Substituting f,(x) and g(x) into (f,, g) and using the 

orthogonality condition (pl,(. - k), cp(.)) = 6li:o, we have 

(f ,g)p = C(p*c)li:db 
li: 

= C (P * d) , ,  c,, , 
m 

where we have used the syninietry of p7 , ,  that is, (HI). 

(ii) ( f ,  g), is bilinear. 

The proof is easy.. 

Since $ E WO c Vl, $(x) can be expanded as 

We define u(C) by 

The following theorem holds. 

Theorem 2: The condition (15) is equivalent to  

a(() u(C) u(C)+a(C+.) u(C+.) u ( C + r )  = 0 a.e.. (17) 



Proof: Since the proof is similar to that of Theorenl 1, Substituting this illto (19) gives 
we describe oidy the outline. By (15) and using the convolu- 

h 

tion theoren1 on frequency and the Daubechies' trick again, 7/1(t) = p ej i€ l2 v([) u ( t /2  + T) p( t /2) .  
we have a(r/z) 

Using the arbitrariness of v( t ) ,  we can obtain the following 
result. 

Theorem 3: We choose 

that is, 

and hence, + ?r) u( t /2  + 71.) @([/2). (23) 

g ( t  + 271.1) y (̂t + 271) = 0 a.e. (I8) Then $(x) satisfies the orthonormality condition 
e 

The Fourier transform of (16) gives 

449 = v(t/2) @(t/2)- (I91 Proof: It follows imnlediately that v ( t )  is a 271.-periodic 
function. 

Regrouping the sums of (18) for odd and even 1, and sub- By (12), we have for $(x) = En P7,& ~ ( 2 x  - n), 
stituting (9) and (19) lead to  the result (17), where we used 
the 271.-periodicity of a((), u(() and v((), and (7). i p ( x )  = C(P * @ ) r r J Z  ~ ~ ( 2 %  - n). 

7 1, 

Usiiig a(() = a((), (17) may be written as 
The Fourier transform of both side yields 

Since u(() and u(( + 71.) cannot vanish together because of Substituting (21) and (22) gives 
(6), there exists a 271.-periodic function A(() such that 

&(E) = - .'€I2 &(t/2) a ( t / 2  + 71.) u( t /2  + 71.) g ( f  12). 
a(() v(C) = A(()  u(C + 71.) a.e.7 (20) (25) 

By the definition of (., - ) p  and the convolution theorein 
and hence, on frequency, we have 

A(() + A((  + 71.) = 0. 

Consequently, A(()  is represented as 

where v( t )  is a 271.-periodic function. Substituting this into 
(20) yields 

It can be shown that a(() > 0 holds for any 5. Indeed, we 
have, by Assumptions (HI) and (H3) on p,, 

Substituting (23) and (25) into (26) leads to 

Using the Daubechies' trick and Theorenl 1, we can obtain 

(24). 
It is seen froill Theorem 3 that {$(. - k), k E 2) is an 

orthoiiornial basis in WO. 

To find the wavelet functioil $(x), it is necessary to  de- 
termine the coefficients 

Therefore, we obtain Corollary 2: The coefficient P,,, is given by 



where r ~ :  denotes integrating the resulting equation, we have 

Proof: By the definition of v(C), Pn is sought as 
+ c d: / +(x - t) - i )  dx. (30) 

1 /2T v(C) ei7',cd(. k 
P71 = - f i r  o The left hand side is equal to xk (p * a)k-2i c:: because of 

On the other hand, it follows froni (21) and (22) that vp(x) = C7t,(p * a)7,,fiPI,(2x - n)  and ( ~ p ( ,  - k ) ,  94.)) = 
6n:u. The right hand side is equal to cl by virtue of (v,(- - 

Therefore, we have 

Substituting u(C + x )  = El(-l)'ate"</fi and using the 
fact that d a ( (  + a)/a(C) is an even and 2x-periodic func- 
tion, we obtain 

The result of Corollary 2 follows by noticing the equation 
a([) = Po + 2 EL1 p,, cos mC. 

Using the results in Sections I1 and IV, we can obtain 
deconlposition and reconstruction fornlulas for signals. Let 
f (x) be a function in the space Vl. Then f (x) can be ex- 
panded using the basis of Vl as 

f (x) = c : . h  ip(2x - k). (27) 
X: 

On the other hand, the direct sun1 Vl = V;, $ Wo implies 
that f is in T/;, $ W() which yields 

From (27) and (28), we have 

The deconiposition forniulas are derived as follows: Mul- 
tiplying both side of (29) by the function yl)(x - i) and 

k), v(-))  = 6k:0 and (yp(-  - k), *(.)) = 0. Therefore, we have 

1 
C: = c ( ~  * a)k-2.i c":. (31) 

Next, n~ultiplying both side of (29) by the function 7CIl,(x - 
i )  and integrating the resulting equation give us to  

by the same reasoil as above. 
The relations (31) and (32) are called the deconiposition 

formulas. 

Conversely, we can express c: using c; and d!:. We sub- 
stitute (1) and (16) into (29) and compare the coefficients 
of both sides to get 

which is called the reconstruction formula. 

VI. SCALING FUNCTION AND WAVELET 
FUNCTION FOR M = l  

In case of M = 1, Corollary 1 means 

To seek a scaling function with the conipact support 
[- N, N], it suffices to solve 

with respect to a , , , n  = 0, rfl ,  ..., f N .  In this section, we 
determine a,,, in case of N = 2 by solving (34) under sonie 
regularity conditions on y (x). 

Since N = 2, the a ,  for n = 0, f l ,  rrt2 are unknown 
coefficients. The coefficients a,r,, niust satisfy the equation 
(34) for k = 0, r f l ,  f 2. However, the equations for k = 1,2 



coincide with those for k = -1, -2, respectively. Hence, it Table. 
suffices to consider (34) for k = -2, -1,O, that is, The filter coefficients a,, and ,Or, for various parameters 

P-1 = Pl,  Po* 

2 

2 ~ - I  (a-la-2 + ~ 1 ~ 2  + (a-1 + al) a()) + p o  C = 1, 
m= -2 

where we have used pl = P - ~ .  
(37) 

In addition to these conditions, we put 

which is derived by integrating both side of the two-scale 
relation (1). We further put 

which follows froni the condition of wavelet, j$(x)dx = 0, 
and put 

2 

which is derived from the regularity condition xip(x)dx = 
0. 

There are six equations for determining five unknown co- 
efficients. However, it is seen that (37) can be derived from 
(35), (36), (38)) and (39). The proof is as follows: By (38) 
and (39), we have 

Substituting 

a - 2  a1 + a-1 a 2  = 112 - (a-la-2 + a1a2 + all/&), 

which can be derived using (41) and (42), into (35) yields 

The equation (36) may be rewritten, using (41) and (42)) 
as 

p-112 + po (a-la1 + a o / &  - a;) = 0. (44) 

Transforming the left hand side of (37) and substituting 
(43) and (44) into the resulting expression, we finally ob- 
tain (37). Consequently, a,,, n = 0, f l ,  f 2, are sought by 
solving (40)) (41)) (42), (43) and (44), simultaneously. We use 
the Newton's method to conlpute a,,. 

In the table below, we list the conlputed values a,, and 
p,, for various ( P - ~ ,  po , pl)  satisfying (Hl),(H2) and (H3) in 
Section 111. 

Daubechies 

-0.125, 1.25 

-0.25, 1.5 

-0.375, 1.75 

P-1 = Pl,  Po 

0, 1 

When p-1 = pl = -0.5 and po = 2, the synlmetric wavelet 

n 

-2 
QI ,,, 

0.482962913145 
Prt. 

-0.12940952255 



function has been obtained. 
The scaling and wavelet functions corresponding to the 

above filter coefficients are shown in Figures 1,2,3,4 and 5. 

Fig. 1. The above shows the scaling function, and the below 
wavelet function for p-1 = pl = 0.0 and po = I. Daubechies7 
wavelet. 

Fig. 3. The above shows the scaling function, and the below 
wavelet function for p-1 = pl = -0.25 and pa = 1.5. 

Fig. 2. The above shows the scaling function, and the below Fig. 4. The above shows the scaling function, and the below 
wavelet function for p-I = pl = -0.125 and po = 1.25. wavelet function for p-1 = pl = -0.375 and po = 1.75. 



[5] M.Unser and A.Aldroubi, "Polynomial splines and 
wavelets - A signal processing perspective," in 
C.K.Chui(ed.), Wavelets - A Tutorial in Theory and 
Applications, New York: Acadeillic Press, pp.91-122, 
1992. 

Fig. 5. The above shows the scaling function, and the below 
wavelet function for p-1 = pl = -0.5 and po = 2. 

VII. CONCLUSION 
We developed a biorthogonal wavelet theory along the 

Daubechies' approach. Since our scaling and wavelet func- 
tions include free parameters, we can choose the desirable 
scaling and wavelet functions such as synlnletric ones. In 
fact, we found the synlnletric scaling and wavelet functions 
in case of M = 1 and N = 2, whicl~ have a short support 
length. The application of this wavelet to signal process- 
ing will be reported elsewhere. We also have the freedom 
of selecting the parameters N and M .  The construction of 
scaling and wavelet functions in a general case and their ap- 
plications are interesting problems remained in the future. 
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