作成者 |
|
|
|
本文言語 |
|
出版者 |
|
発行日 |
|
収録物名 |
|
巻 |
|
号 |
|
開始ページ |
|
終了ページ |
|
出版タイプ |
|
アクセス権 |
|
関連DOI |
|
関連URI |
|
概要 |
We present basic constructions and properties in arithmetic Chern-Simons theory with finite gauge group along the line of topological quantum field theory. For a finite set S of finite primes of a num...ber field k, we construct arithmetic ana- logues of the Chern-Simons 1-cocycle, the prequantization bundle for a surface and the Chern-Simons functional for a 3-manifold. We then construct arithmetic ana- logues for k and S of the quantum Hilbert space (space of conformal blocks) and the Dijkgraaf-Witten partition function in (2+1)-dimensional Chern-Simons TQFT. We show some basic and functorial properties of those arithmetic analogues. Finally we show decomposition and gluing formulas for arithmetic Chern-Simons invariants and arithmetic Dijkgraaf-Witten partition functions.続きを見る
|