<プレプリント>
The Littlewood-Paley-Stein inequality for diffusion processes on general metric spaces
| 作成者 | |
|---|---|
| 本文言語 | |
| 出版者 | |
| 発行日 | |
| 収録物名 | |
| 巻 | |
| 出版タイプ | |
| アクセス権 | |
| 関連DOI | |
| 関連URI | |
| 関連情報 | |
| 概要 | In this paper, we establish the Littlewood-Paley-Stein inequality on general metric spaces. We show this inequality under a weaker condition than the lower boundedness of Bakry-Emery’s $ Gamma_2 $. We... also discuss Riesz transforms. As examples, we deal with diffusion processes on a path space associated with stochastic partial differential equations (SPDEs in short) and a class of superprocesses with immigration.続きを見る |
詳細
| レコードID | |
|---|---|
| 査読有無 | |
| 主題 | |
| 注記 | |
| タイプ | |
| 登録日 | 2009.04.22 |
| 更新日 | 2018.02.23 |
Mendeley出力