The Littlewood－Paley－Stein inequality for diffusion processes on general metric spaces
Kawabi，Hiroshi
Faculty of Mathematics，Kyushu University
Miyokawa，Tomohiro
Department of Mathematics，Graduate School of Science

https：／／hdl．handle．net／2324／3394

出版情報：MHF Preprint Series．2006－27，2006－09－11．九州大学大学院数理学研究院 バージョン：
権利関係：

MHF Preprint Series

Kyushu University
21st Century COE Program
Development of Dynamic Mathematics with High Functionality

The Littlewood-Paley-Stein inequality for diffusion processes on general metric spaces

H. Kawabi \& T. Miyokawa

MHF 2006-27
(Received September 11, 2006)

Faculty of Mathematics
Kyushu University
Fukuoka, JAPAN

The Littlewood-Paley-Stein inequality for diffusion processes on general metric spaces

Hiroshi KAWABI
Faculty of Mathematics
Kyushu University
6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, JAPAN
e-mail: kawabi@math.kyushu-u.ac.jp
and
Tomohiro MIYOKAWA
Department of Mathematics, Graduate School of Science
Kyoto University
Sakyo-ku, Kyoto 606-8502, JAPAN
e-mail: miyokawa@math.kyoto-u.ac.jp

Abstract

In this paper, we establish the Littlewood-Paley-Stein inequality on general metric spaces. We show this inequality under a weaker condition than the lower boundedness of Bakry-Emery's Γ_{2}. We also discuss Riesz transforms. As examples, we deal with diffusion processes on a path space associated with stochastic partial differential equations (SPDEs in short) and a class of superprocesses with immigration.

Mathematics Subject Classifications (2000): 42B25, 60J60, 60H15.
Keywords: Littlewood-Paley-Stein inequality, gradient estimate condition, Riesz transforms, SPDEs, superprocesses.

1 Framework and Results

In this paper, we discuss the Littlewood-Paley-Stein inequality. After the Meyer's celebrated work [16], many authors studied this inequality by a probabilistic approach. Especially, Shigekawa-Yoshida [20] studied to symmetric diffusion processes on a general state space. In [20], they assumed that Bakry-Emery's Γ_{2} is bounded from below. To define Γ_{2}, they also assumed the existence of a suitable core \mathcal{A} which is not only a ring but also stable under the operation of the semigroup and the infinitesimal generator. However,
in general, it is very difficult to check the existence of \mathcal{A} having good properties denoted above. Hence their assumption is serious when we face several infinite dimensional diffusion processes.

In this paper, we show that the Littlewood-Paley-Stein inequality also holds on general metric spaces under the gradient estimate condition (G) even if we do not assume the existence such a core \mathcal{A}. Our condition seems somewhat weaker than the lower boundedness of Γ_{2}. We mention that Coulhon-Duong [5] and Li [14] also discussed the Littlewood-Paley-Stein inequality under similar conditions on finite dimensional Riemannian manifolds. Contrary to these papers, we work on a more general framework to handle certain infinite dimensional diffusion processes in Section 4.

We introduce the framework that we work in this paper. Let X be a complete separable metric space. Suppose we are given a Borel probability measure μ on X and a local μ-symmetric quasi-regular Dirichlet form \mathcal{E} in $L^{2}(\mu)$ with the domain $\mathcal{D}(\mathcal{E})$. See Ma-Röckner [15] for the terminologies of quasi-regular Dirichlet forms. Then by Theorem 1.1 of Chapter V in [15], there exists a μ-symmetric diffusion process $\mathbb{M}:=\left(X_{t},\left\{P_{x}\right\}_{x \in X}\right)$ associated with $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$. We denote the infinitesimal generator and the transition semigroup by L and $\left\{P_{t}\right\}_{t \geq 0}$, respectively. Since $\left\{P_{t}\right\}_{t \geq 0}$ is μ-symmetric, it can be extended to the semigroup on $L^{p}(\mu), p \geq 1$. We denote it by $\left\{P_{t}\right\}_{t \geq 0}$ again. We also denote its generator in $L^{p}(\mu)$ by L_{p} and the domain by $\operatorname{Dom}\left(L_{p}\right)$, respectively if we have to specify the acting space. We assume that $\mathbf{1} \in \operatorname{Dom}\left(L_{p}\right)$ and $L_{p} \mathbf{1}=0$ for all $p \geq 1$, where $\mathbf{1}$ denotes the function that is identically equal to 1 . In particular, the diffusion process \mathbb{M} is conservative.

Throughout this paper, we impose the following condition:
(A): There exists a subspace \mathcal{A} of $\operatorname{Dom}\left(L_{2}\right)$ consisting of bounded continuous function which is dense in $\mathcal{D}(\mathcal{E})$ and $f^{2} \in \operatorname{Dom}\left(L_{1}\right)$ holds for any $f \in \mathcal{A}$.
Under this condition, the form \mathcal{E} admits a carré du champ, namely, there exists a unique positive symmetric and continuous bilinear form Γ from $\mathcal{D}(\mathcal{E}) \times \mathcal{D}(\mathcal{E})$ into $L^{1}(\mu)$ such that

$$
\mathcal{E}(f h, g)+\mathcal{E}(g h, f)-\mathcal{E}(h, f g)=2 \int_{X} h \Gamma(f, g) d \mu
$$

holds for any $f, g, h \in \mathcal{D}(\mathcal{E}) \cap L^{\infty}(\mu)$. In particular, for $f, g \in \operatorname{Dom}\left(L_{2}\right), f g \in \operatorname{Dom}\left(L_{1}\right)$ and

$$
\Gamma(f, g)=\frac{1}{2}\left\{L_{1}(f g)-\left(L_{2} f\right) g-f\left(L_{2} g\right)\right\}
$$

hold. For further information, see Theorem 4.2.2 of Chapter I in Bouleau-Hirsch [4]. In the sequel, we also use the notation $\Gamma(f):=\Gamma(f, f)$ for the simplicity.

The following gradient estimate condition is crucial in this paper.
(G): There exist constants $K>0$ and $R \in \mathbb{R}$ such that the following inequality holds for any $f \in \mathcal{A}$ and $t \geq 0$:

$$
\begin{equation*}
\Gamma\left(P_{t} f\right) \leq K e^{2 R t} P_{t}\{\Gamma(f)\} . \tag{1.1}
\end{equation*}
$$

Remark 1.1 If we can see \mathcal{A} is stable under the operations of $\left\{P_{t}\right\}$ and L,

$$
\begin{equation*}
\Gamma_{2}(f) \geq-R \Gamma(f), \quad f \in \mathcal{A} \tag{1.2}
\end{equation*}
$$

implies (1.1) with $K=1$, where $\Gamma_{2}(f):=\frac{1}{2}\left(L_{1} \Gamma(f)-2 \Gamma\left(L_{2} f, f\right)\right)$. Especially, (1.2) means that the Ricci curvature is bounded by $-R$ from below in the case where X is a finite dimensional complete Riemannian manifold. See Proposition 2.3 in Bakry [2] for details. Hence our condition (G) is weaker than (1.2).

Let us introduce the Littlewood-Paley G-functions. To do this, we recall the subordination of a semigroup. For $t \geq 0$, we define a probability measure λ_{t} on $[0,+\infty)$ by

$$
\lambda_{t}(d s):=\frac{t}{2 \sqrt{\pi}} e^{-t^{2} / 4 s} s^{-3 / 2} d s
$$

In terms of the Laplace transform, this measure is characterized as

$$
\int_{0}^{\infty} e^{-\gamma s} \lambda_{t}(d s)=e^{-\sqrt{\gamma} t}, \quad \gamma>0
$$

For $\alpha \geq 0$, we define the subordination $\left\{Q_{t}^{(\alpha)}\right\}_{t \geq 0}$ of $\left\{P_{t}\right\}_{t \geq 0}$ by

$$
Q_{t}^{(\alpha)} f:=\int_{0}^{\infty} e^{-\alpha s} P_{s} f \lambda_{t}(d s), \quad f \in L^{p}(\mu)
$$

Then we can easily see that

$$
\begin{align*}
\left\|Q_{t}^{(\alpha)} f\right\|_{L^{p}(\mu)} & \leq \int_{0}^{\infty} e^{-\alpha s}\left\|P_{s} f\right\|_{L^{p}(\mu)} \lambda_{t}(d s) \\
& \leq\left(\int_{0}^{\infty} e^{-\alpha s} \lambda_{t}(d s)\right)\|f\|_{L^{p}(\mu)}=e^{-\sqrt{\alpha} t}\|f\|_{L^{p}(\mu)} \tag{1.3}
\end{align*}
$$

and hence $\left\{Q_{t}^{(\alpha)}\right\}_{t \geq 0}$ is a strongly continuous contraction semigroup on $L^{p}(\mu)$. The infinitesimal generator of $\left\{Q_{t}^{(\alpha)}\right\}_{t \geq 0}$ in $L^{2}(\mu)$ is $-\sqrt{\alpha-L}$. In the case of $L^{p}(\mu)$, this operator will be clearly denoted by $-\sqrt{\alpha-L_{p}}$ when the dependence of p is significant.

For $f \in L^{2} \cap L^{p}(\mu)$ and $\alpha>0$, we define Littlewood-Paley's G-functions by

$$
\begin{aligned}
\vec{f}(x, t) & :=\left|\frac{\partial}{\partial t}\left(Q_{t}^{(\alpha)} f\right)(x)\right|, & G_{f}^{\rightarrow}(x) & :=\left(\int_{0}^{\infty} t g_{f}(x, t)^{2} d t\right)^{1 / 2}, \\
g_{f}^{\dagger}(x, t) & :=\left(\Gamma\left(Q_{t}^{(\alpha)} f\right)\right)^{1 / 2}(x), & G_{f}^{\uparrow}(x) & :=\left(\int_{0}^{\infty} t g_{f}^{\uparrow}(x, t)^{2} d t\right)^{1 / 2} \\
g_{f}(x, t) & :=\sqrt{\left(g_{f}(x, t)\right)^{2}+\left(g_{f}^{\uparrow}(x, t)\right)^{2}}, & G_{f}(x) & :=\left(\int_{0}^{\infty} t g_{f}(x, t)^{2} d t\right)^{1 / 2}
\end{aligned}
$$

Now we present the Littlewood-Paley-Stein inequality. In what follows, the notation $\|u\|_{L^{p}(\mu)} \lesssim\|v\|_{L^{p}(\mu)}$ stands for $\|u\|_{L^{p}(\mu)} \leq C\|v\|_{L^{p}(\mu)}$, where C is a positive constant depending only on K and p.

Theorem 1.2 For any $1<p<\infty$ and $\alpha>R \vee 0$, the following inequalities hold for $f \in L^{2} \cap L^{p}(\mu)$:

$$
\begin{align*}
\left\|G_{f}\right\|_{L^{p}(\mu)} & \lesssim\|f\|_{L^{p}(\mu)} \tag{1.4}\\
\|f\|_{L^{p}(\mu)} & \lesssim \| G_{f}^{\rightarrow \|_{L^{p}(\mu)}} \tag{1.5}
\end{align*}
$$

Before closing this section, we give an application of Theorem 1.2. It plays an important role in the regularity theory of parabolic PDEs on general metric spaces.

Theorem 1.3 Let $1<p<\infty, q \geq 1$ and $\alpha>R \vee 0$. We define

$$
R_{\alpha}^{(q)}(L) f:=\Gamma\left(\left(\sqrt{\alpha-L_{p}}\right)^{-q} f\right)^{1 / 2}, \quad f \in L^{p}(\mu)
$$

Then we have the following statements:
(1) For any $p \geq 2$ and $q>1, R_{\alpha}^{(q)}(L)$ is bounded on $L^{p}(\mu)$. Moreover there exists a positive constant $\left\|R_{\alpha}^{(q)}(L)\right\|_{p, p}$ depending only on K, p, q and $\alpha_{R}:=(\alpha-R) \wedge \alpha$ such that

$$
\begin{equation*}
\left\|R_{\alpha}^{(q)}(L) f\right\|_{L^{p}(\mu)} \leq\left\|R_{\alpha}^{(q)}(L)\right\|_{p, p}\|f\|_{L^{p}(\mu)}, \quad f \in L^{p}(\mu) \tag{1.6}
\end{equation*}
$$

This implies the inclusion

$$
\operatorname{Dom}\left(\left(\sqrt{1-L_{p}}\right)^{q}\right) \subset W^{1, p}(\mu):=\left\{f \in L^{p}(\mu) \cap \mathcal{D}(\mathcal{E}) \mid \Gamma(f)^{1 / 2} \in L^{p}(\mu)\right\}
$$

(2) For any $p \geq 2$ and $1<q<2$, there exists a positive constant $C_{p, q}$ such that

$$
\begin{equation*}
\left\|\Gamma\left(P_{t} f\right)^{1 / 2}\right\|_{L^{p}(\mu)} \leq C_{p, q}\left\|R_{\alpha}^{(q)}\right\|_{p, p}\left(\alpha^{q / 2}+t^{-q / 2}\right)\|f\|_{L^{p}(\mu)}, \quad t>0, f \in L^{p}(\mu) \tag{1.7}
\end{equation*}
$$

Remark 1.4 We do not know whether our gradient estimate condition (G) is sufficient or not to establish (1.6) for $q=1$, i.e., so-called the boundedness of the Riesz transform $R_{\alpha}(L):=R_{\alpha}^{(1)}(L)$ on $L^{p}(\mu)$, Recently, Shigekawa [18] discussed the boundedness of $R_{\alpha}(L)$ under the intertwining condition for the diffusion semigroup in a general framework. We remark that the intertwining condition implies (G). Hence one way to establish the boundedness of $R_{\alpha}(L)$ is to show the intertwining condition for each concrete problem.

2 Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by a probabilistic method. The original idea is due to Meyer [16]. The reader is referred to see also Bakry [1], Shigekawa-Yoshida [20] and Yoshida [24]. In these papers, they expanded $L\left(Q_{t}^{(\alpha)} f\right)^{p}, f \in \mathcal{A}$, by employing the usual functional analytic approach for the proof of the Littlewood-Paley-Stein inequality. Note that this approach is valid because they imposed the existence of a good core \mathcal{A} described in Section 1. On the other hand, in this paper, \mathcal{A} in condition (A) does not have such good properties. So we cannot draw their proof directly. To overcome this difficulty,
we need more delicate probabilistic arguments based on Itô's formula. We give details and prove Theorem 1.2 for $1<p<2$ in the second subsection. In the third subsection, we introduce the notion of H-functions to prove Theorem 1.2 for $p>2$. Our gradient estimate condition (G) plays a crucial role when we compare between G-functions and H-functions. For the case $p=2,(1.4)$ is proved as equality by using spectral resolution of L. See Proposition 3.1 in [20] for the proof. We note that (1.5) is derived from (1.4) by using the standard duality argument. See Theorem 4.4 in [20] for the detail.

2.1 Preparations

In this subsection, we make some preparations. We recall the diffusion process $\mathbb{M}=$ $\left(X_{t},\left\{P_{x}\right\}_{x \in X}\right)$ associated with the Dirichlet form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$. From now on, we write P_{x}^{\uparrow} in place of P_{x}. Let $\left(B_{t}, P_{a}\right)$ be one-dimensional Brownian motion starting at $a \in \mathbb{R}$ with the generator $\frac{\partial^{2}}{\partial a^{2}}$. We set $Y_{t}:=\left(X_{t}, B_{t}\right), t \geq 0$, and $\mathbb{P}_{(x, a)}:=P_{x}^{\uparrow} \otimes P_{a}^{\rightarrow}$. Then $\tilde{\mathbb{M}}:=$ $\left(Y_{t},\left\{\mathbb{P}_{(x, a)}\right\}\right)$ is a $\mu \otimes m$-symmetric diffusion process on $X \times \mathbb{R}$ with the (formal) generator $L+\frac{\partial^{2}}{\partial a^{2}}$, where m is one-dimensional Lebesgue measure. We put $P_{\mu}^{\uparrow}:=\int_{X} P_{x}^{\dagger} \mu(d x)$, $\mathbb{P}_{\mu \otimes \delta_{a}}:=\int_{X} \mathbb{P}_{(x, a)} \mu(d x)$ and denote the integration with respect to $P_{x}^{\uparrow}, P_{a}^{\rightarrow}, \mathbb{P}_{(x, a)}$ and $\mathbb{P}_{\mu \otimes \delta_{a}}$ by $\mathbb{E}_{x}^{\uparrow}, \mathbb{E}_{a}^{\vec{a}}, \mathbb{E}_{(x, a)}$ and $\mathbb{E}_{\mu \otimes \delta_{a}}$, respectively.

We denote the semigroup on $L^{p}(X \times \mathbb{R} ; \mu \otimes m)$ associated with the diffusion process $\left\{Y_{t}\right\}_{t \geq 0}$ by $\left\{\hat{P}_{t}\right\}_{t \geq 0}$ and its generator by \hat{L}_{p}. We also denote the Dirichlet form on $L^{2}(X \times$ $\mathbb{R} ; \mu \otimes m)$ associated with \hat{L}_{2} by $(\hat{\mathcal{E}}, \mathcal{D}(\hat{\mathcal{E}}))$. That is,

$$
\begin{aligned}
\mathcal{D}(\hat{\mathcal{E}}) & =\left\{u \in L^{2}(X \times \mathbb{R} ; \mu \otimes m) \left\lvert\, \lim _{t \searrow 0} \frac{1}{t}\left(u-\hat{P}_{t} u, u\right)_{L^{2}(X \times \mathbb{R} ; \mu \otimes m)}<+\infty\right.\right\} \\
\hat{\mathcal{E}}(u, v) & =\lim _{t \searrow 0} \frac{1}{t}\left(u-\hat{P}_{t} u, v\right)_{L^{2}(X \times \mathbb{R} ; \mu \otimes m)} \text { for } u, v \in \mathcal{D}(\hat{\mathcal{E}})
\end{aligned}
$$

We denote by $\hat{\mathcal{C}}:=\mathcal{A} \otimes C_{0}^{\infty}(\mathbb{R})$ the totality of all linear combinations of $f \otimes \varphi, f \in \mathcal{A}, \varphi \in$ $C_{0}^{\infty}(\mathbb{R})$, where $(f \otimes \varphi)(x, a):=f(x) \varphi(a)$. Meanwhile, the spaces $L^{2}(\mu) \otimes L^{2}(m)$ and $\mathcal{D}(\mathcal{E}) \otimes H^{1,2}(\mathbb{R})$ are usual tensor products of Hilbert spaces. Then we have

Lemma $2.1 \hat{\mathcal{C}}$ is dense in $\mathcal{D}(\hat{\mathcal{E}})$. Moreover for $u, v \in \mathcal{D}(\mathcal{E}) \otimes H^{1,2}(\mathbb{R})$, we have

$$
\begin{equation*}
\hat{\mathcal{E}}(u, v)=\int_{\mathbb{R}} \mathcal{E}(u(\cdot, a), v(\cdot, a)) m(d a)+\int_{X} \mu(d x) \int_{\mathbb{R}} \frac{\partial u}{\partial a}(x, a) \frac{\partial v}{\partial a}(x, a) m(d a) . \tag{2.1}
\end{equation*}
$$

Proof. We denote by $\left\{T_{t}\right\}_{t \geq 0}$ the transition semigroup associated with ($B_{t},\left\{P_{a}^{\rightarrow}\right\}_{a \in \mathbb{R}}$). We regard that it acts on $L^{2}(m)$. First, we note that the following identity holds:

$$
\begin{equation*}
\hat{P}_{t}(f \otimes \varphi)=\left(P_{t} f\right) \otimes\left(T_{t} \varphi\right), \quad f \in L^{2}(\mu), \varphi \in L^{2}(m) \tag{2.2}
\end{equation*}
$$

By (2.2), we can see $\hat{\mathcal{C}} \subset \mathcal{D}(\mathcal{E}) \otimes H^{1,2}(\mathbb{R}) \subset \mathcal{D}(\hat{\mathcal{E}})$ and the identity (2.1). We also have

$$
\begin{equation*}
\hat{\mathcal{E}}_{1}(f \otimes \varphi, f \otimes \varphi) \leq \mathcal{E}_{1}(f, f)\|\varphi\|_{L^{2}(m)}^{2}+\|f\|_{L^{2}(\mu)}^{2}\left(\left\|\varphi^{\prime}\right\|_{L^{2}(m)}^{2}+\|\varphi\|_{L^{2}(m)}^{2}\right) \tag{2.3}
\end{equation*}
$$

holds for $f \in \mathcal{D}(\mathcal{E}), \varphi \in H^{1,2}(\mathbb{R})$. By (2.3), we see that $\hat{\mathcal{C}}$ is dense in $\mathcal{D}(\mathcal{E}) \otimes H^{1,2}(\mathbb{R})$ with respect to $\hat{\mathcal{E}}_{1}$-topology, because \mathcal{A} and $C_{0}^{\infty}(\mathbb{R})$ are dense in $\mathcal{D}(\mathcal{E})$ and $H^{1,2}(\mathbb{R})$, respectively.

Hence it is sufficient to show $\mathcal{D}(\mathcal{E}) \otimes H^{1,2}(\mathbb{R})$ is dense in $\mathcal{D}(\hat{\mathcal{E}})$. Since $L^{2}(\mu) \otimes L^{2}(m)$ is dense in $L^{2}(X \times \mathbb{R} ; \mu \otimes m), \bigcup_{t>0} \hat{P}_{t}\left(L^{2}(\mu) \otimes L^{2}(m)\right)$ is dense in $\mathcal{D}(\hat{\mathcal{E}})$. On the other hand, (2.2) also leads us to

$$
\bigcup_{t>0} \hat{P}_{t}\left(L^{2}(\mu) \otimes L^{2}(m)\right)=\bigcup_{t>0}\left(P_{t}\left(L^{2}(\mu)\right)\right) \otimes\left(P_{t}\left(L^{2}(m)\right)\right) \subset \mathcal{D}(\mathcal{E}) \otimes H^{1,2}(\mathbb{R}) \subset \mathcal{D}(\hat{\mathcal{E}})
$$

Therefore the proof is complete.
Here we note that, due to Fitzsimmons [6], the Dirichlet form $(\hat{\mathcal{E}}, \mathcal{D}(\hat{\mathcal{E}}))$ is quasiregular. Thus we can apply the general theory of quasi-regular Dirichlet forms in [15].

Now we fix a function $f \in \mathcal{A}$. We set $u(x, a):=Q_{a}^{(\alpha)} f(x), a \geq 0$. Then it holds that

$$
\left(\frac{\partial^{2}}{\partial a^{2}}+L-\alpha\right) u(\cdot, a)=0 \quad \text { in } L^{2}(\mu)
$$

Furthermore for $a \in \mathbb{R}$, we consider $v(x, a):=u(x,|a|)=Q_{|a|}^{(\alpha)} f(x)$. Then by (1.3), we have

$$
\begin{equation*}
\|v\|_{L^{2}(X \times \mathbb{R} ; \mu \otimes m)} \leq\left(\int_{\mathbb{R}} e^{-2 \sqrt{\alpha}|a|}\|f\|_{L^{2}(\mu)}^{2} d a\right)^{1 / 2}=\alpha^{-1 / 4}\|f\|_{L^{2}(\mu)} \tag{2.4}
\end{equation*}
$$

The main purpose of this subsection is to discuss the semi-martingale decomposition of $v\left(X_{t \wedge \tau}, B_{t \wedge \tau}\right), t \geq 0$, where $\tau:=\inf \left\{t>0 \mid B_{t}=0\right\}$. As the first step, we give the following fundamental lemma:
Lemma $2.2 v \in \mathcal{D}(\hat{\mathcal{E}})$ holds.
Proof. At the beginning, we note $L^{2}(X \times \mathbb{R} ; \mu \otimes m) \cong L^{2}\left(\mathbb{R}, L^{2}(X ; \mu) ; m\right)$. According to Fubini's theorem, we have

$$
\begin{equation*}
\hat{P}_{t} v(x, a)=\mathbb{E}_{(x, a)}\left[u\left(X_{t},\left|B_{t}\right|\right)\right]=\mathbb{E}_{x}^{\dagger}\left[\mathbb{E}_{a}^{\rightarrow}\left[u\left(\cdot,\left|B_{t}\right|\right)\right]\left(X_{t}\right)\right] . \tag{2.5}
\end{equation*}
$$

We recall Tanaka's formula

$$
\left|B_{t}\right|=\left|B_{0}\right|+\int_{0}^{t} \operatorname{sgn}\left(B_{s}\right) d B_{s}+L_{t}(0), \quad t \geq 0, \quad \mathbb{P}_{a}^{\rightarrow} \text {-a.s. }
$$

where $\left\{L_{t}(0)\right\}_{t \geq 0}$ is the local time of one-dimensional Brownian motion $\left\{B_{t}\right\}_{t \geq 0}$ at the origin. Then by using Itô's formula, we have

$$
\begin{align*}
u\left(\cdot,\left|B_{t}\right|\right)= & u\left(\cdot,\left|B_{0}\right|\right)+\int_{0}^{t} \frac{\partial u}{\partial a}\left(\cdot,\left|B_{s}\right|\right) \operatorname{sgn}\left(B_{s}\right) d B_{s} \\
& +\int_{0}^{t} \frac{\partial u}{\partial a}\left(\cdot,\left|B_{s}\right|\right) d L_{s}(0)+\int_{0}^{t} \frac{\partial^{2} u}{\partial a^{2}}\left(\cdot,\left|B_{s}\right|\right) d s \\
= & u\left(\cdot,\left|B_{0}\right|\right)-\int_{0}^{t} \sqrt{\alpha-L} u\left(\cdot,\left|B_{s}\right|\right) \operatorname{sgn}\left(B_{s}\right) d B_{s} \\
& -\int_{0}^{t} \sqrt{\alpha-L} u\left(\cdot,\left|B_{s}\right|\right) d L_{s}(0)+\int_{0}^{t}(\alpha-L) u\left(\cdot,\left|B_{s}\right|\right) d s \tag{2.6}
\end{align*}
$$

Hence (2.6) leads us that

$$
\begin{align*}
\mathbb{E}_{a}^{\vec{a}}\left[u\left(\cdot,\left|B_{t}\right|\right)\right]= & u(\cdot,|a|)-\mathbb{E}_{a}^{\rightarrow}\left[\int_{0}^{t} \sqrt{\alpha-L} u\left(\cdot,\left|B_{s}\right|\right) d L_{s}(0)\right] \\
& +\mathbb{E}_{a}^{\rightarrow}\left[\int_{0}^{t}(\alpha-L) u\left(\cdot,\left|B_{s}\right|\right) d s\right] \tag{2.7}
\end{align*}
$$

On the other hand, since $f \in \mathcal{A}$, it holds $u(\cdot,|a|)=Q_{|a|}^{(\alpha)} f(\cdot) \in \operatorname{Dom}\left(L_{2}\right)$. Hence

$$
M_{t}^{[u(\cdot|a|)]}:=\left(Q_{|a|}^{(\alpha)} f\right)\left(X_{t}\right)-\left(Q_{|a|}^{(\alpha)} f\right)\left(X_{0}\right)-\int_{0}^{t} L\left(Q_{|a|}^{(\alpha)} f\right)\left(X_{s}\right) d s, \quad t \geq 0,
$$

is an $L^{2}\left(P_{\mu}^{\uparrow}\right)$-martingale. Then we have

$$
\begin{equation*}
\mathbb{E}_{x}^{\uparrow}\left[u\left(X_{t},|a|\right)\right]=\left(Q_{|a|}^{(\alpha)} f\right)(x)+\int_{0}^{t} P_{s}\left(L Q_{|a|}^{(\alpha)} f\right)(x) d s, \quad \mu \text {-a.e. } x \in X \tag{2.8}
\end{equation*}
$$

By summarizing (2.5), (2.7) and (2.8), we can proceed as

$$
\begin{align*}
\frac{1}{t}(v- & \left.\hat{P}_{t} v, v\right)_{L^{2}(X \times \mathbb{R} ; \mu \otimes m)} \\
= & -\frac{1}{t} \int_{\mathbb{R}} d a \int_{X}\left\{\int_{0}^{t} P_{s}\left(L Q_{|a|}^{(\alpha)} f\right)(x) d s\right\} \cdot Q_{|a|}^{(\alpha)} f(x) \mu(d x) \\
& +\frac{1}{t} \int_{\mathbb{R}} d a \int_{X} \mathbb{E}_{x}^{\dagger}\left[\mathbb{E}_{a}^{\rightarrow}\left[\int_{0}^{t} \sqrt{\alpha-L} u\left(\cdot,\left|B_{s}\right|\right) d L_{s}(0)\right]\left(X_{t}\right)\right] \cdot Q_{|a|}^{(\alpha)} f(x) \mu(d x) \\
& -\frac{1}{t} \int_{\mathbb{R}} d a \int_{X} \mathbb{E}_{x}^{\uparrow}\left[\mathbb{E}_{a}^{\rightarrow}\left[\int_{0}^{t}(\alpha-L) u\left(\cdot,\left|B_{s}\right|\right) d s\right]\left(X_{t}\right)\right] \cdot Q_{|a|}^{(\alpha)} f(x) \mu(d x) \\
= & -\frac{1}{t} \int_{\mathbb{R}} d a \int_{0}^{t}\left(P_{s} L Q_{|a|}^{(\alpha)} f, Q_{|a|}^{(\alpha)} f\right)_{L^{2}(\mu)} d s \\
& +\frac{1}{t} \int_{\mathbb{R}} d a \int_{X} \mathbb{E}_{a}\left[\int_{0}^{t} \sqrt{\alpha-L} u\left(x,\left|B_{s}\right|\right) d L_{s}(0)\right] \cdot P_{t}\left(Q_{|a|}^{(\alpha)} f\right)(x) \mu(d x) \\
& -\frac{1}{t} \int_{\mathbb{R}} d a \int_{X} \mathbb{E}_{a}\left[\int_{0}^{t}(\alpha-L) u\left(x,\left|B_{s}\right|\right) d s\right] \cdot P_{t}\left(Q_{|a|}^{(\alpha)} f\right)(x) \mu(d x) \\
=: & -I_{1}(t)+I_{2}(t)-I_{3}(t), \tag{2.9}
\end{align*}
$$

where we used symmetry of $\left\{P_{t}\right\}_{t \geq 0}$ on $L^{2}(\mu)$.
For the term $I_{1}(t)$, we see the following estimate by using contractivity of $\left\{P_{t}\right\}_{t \geq 0}$ on $L^{2}(\mu)$ and (1.3).

$$
\begin{align*}
\left|I_{1}(t)\right| & \leq \frac{1}{t} \int_{\mathbb{R}} d a \int_{0}^{t}\left\|L Q_{|a|}^{(\alpha)} f\right\|_{L^{2}(\mu)} \cdot\left\|Q_{|a|}^{(\alpha)} f\right\|_{L^{2}(\mu)} d s \\
& \leq \int_{\mathbb{R}} e^{-2 \sqrt{\alpha}|a|}\|L f\|_{L^{2}(\mu)} \cdot\|f\|_{L^{2}(\mu)} d a=\frac{1}{\sqrt{\alpha}}\|L f\|_{L^{2}(\mu)} \cdot\|f\|_{L^{2}(\mu)} \tag{2.10}
\end{align*}
$$

For the term $I_{2}(t)$, by using same arguments as above, we have

$$
\begin{aligned}
\left|I_{2}(t)\right| & =\left|\frac{1}{t} \int_{\mathbb{R}} d a \int_{X}\left(\sqrt{\alpha-L} u(x, 0) \mathbb{E}_{a}^{\overrightarrow{2}}\left[L_{t}(0)\right]\right) P_{t}\left(Q_{|a|}^{(\alpha)} f\right)(x) \mu(d x)\right| \\
& =\frac{1}{t}\left|\int_{\mathbb{R}}\left(\sqrt{\alpha-L} f, P_{t} Q_{|a|}^{(\alpha)} f\right)_{L^{2}(\mu)} \mathbb{E}_{a}^{\vec{a}}\left[L_{t}(0)\right] d a\right| \\
& \leq \frac{2}{t}\|\sqrt{\alpha-L} f\|_{L^{2}(\mu)} \cdot\|f\|_{L^{2}(\mu)} \int_{0}^{\infty} e^{-\sqrt{\alpha} a} \mathbb{E}_{a}\left[L_{t}(0)\right] d a .
\end{aligned}
$$

Here we recall

$$
P_{a}^{\rightarrow}(L(t, r) \in d y)=\frac{1}{\sqrt{\pi t}} \exp \left\{-\frac{(y+|r-a|)^{2}}{4 t}\right\} d y, \quad y>0 .
$$

See page 155 of Borodin-Salminen [3]. Then we can continue as

$$
\begin{align*}
\left|I_{2}(t)\right| \leq & \frac{2}{t}\|\sqrt{\alpha-L} f\|_{L^{2}(\mu)} \cdot\|f\|_{L^{2}(\mu)} \\
& \times \int_{0}^{\infty} e^{-\sqrt{\alpha} a}\left\{\int_{0}^{\infty} y \frac{1}{\sqrt{\pi t}} \exp \left(-\frac{(a+y)^{2}}{4 t}\right) d y\right\} d a \\
\leq & 8\|\sqrt{\alpha-L} f\|_{L^{2}(\mu)} \cdot\|f\|_{L^{2}(\mu)} \\
& \times \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{a^{2}}{2}} d a \int_{0}^{\infty} y e^{-\frac{y^{2}}{2}} d y=4\|\sqrt{\alpha-L} f\|_{L^{2}(\mu)} \cdot\|f\|_{L^{2}(\mu)} . \tag{2.11}
\end{align*}
$$

For the term $I_{3}(t)$, we also have

$$
\begin{align*}
\left|I_{3}(t)\right| & \leq \frac{1}{t} \int_{\mathbb{R}}\left\|\mathbb{E}_{a}^{\rightarrow}\left[\int_{0}^{t}(\alpha-L) u\left(\cdot,\left|B_{s}\right|\right) d s\right]\right\|_{L^{2}(\mu)} \cdot\left\|Q_{|a|}^{(\alpha)} f\right\|_{L^{2}(\mu)} d a \\
& \leq \frac{1}{t} \int_{\mathbb{R}} \mathbb{E}_{a}\left[\int_{0}^{t}\left\|(\alpha-L) Q_{\left|B_{s}\right|}^{(\alpha)} \mid f(\cdot)\right\|_{L^{2}(\mu)} d s\right] \cdot\left(e^{-\sqrt{\alpha}|a|}\|f\|_{L^{2}(\mu)}\right) d a \\
& \leq \frac{1}{t} \int_{\mathbb{R}} \mathbb{E}_{a}\left[\int_{0}^{t}\left(\alpha\|f\|_{L^{2}(\mu)}+\|L f\|_{L^{2}(\mu)}\right) d s\right] \cdot\left(e^{-\sqrt{\alpha}|a|}\|f\|_{L^{2}(\mu)}\right) d a \\
& =2 \sqrt{\alpha}\|f\|_{L^{2}(\mu)}^{2}+\frac{2}{\sqrt{\alpha}}\|L f\|_{L^{2}(\mu)} \cdot\|f\|_{L^{2}(\mu)} . \tag{2.12}
\end{align*}
$$

Finally, we insert estimates (2.10), (2.11) and (2.12) into (2.9). Then we can easily see

$$
\lim _{t \searrow 0} \frac{1}{t}\left(v-\hat{P}_{t} v, v\right)_{L^{2}(X \times \mathbb{R} ; \mu \otimes m)}=\sup _{t>0} \frac{1}{t}\left(v-\hat{P}_{t} v, v\right)_{L^{2}(X \times \mathbb{R} ; \mu \otimes m)}<+\infty .
$$

This and (2.4) complete the proof.
By Lemma 2.2, we can apply Fukushima's decomposition theorem. That is, there exist a martingale additive functional of finite energy $M^{[v]}$ and a continuous additive functional of zero energy $N^{[v]}$ such that

$$
\begin{equation*}
\tilde{v}\left(X_{t}, B_{t}\right)-\tilde{v}\left(X_{0}, B_{0}\right)=M_{t}^{[v]}+N_{t}^{[v]}, \quad t \geq 0, \quad \mathbb{P}_{(x, a)} \text {-a.s. for q.e.- }(x, a), \tag{2.13}
\end{equation*}
$$

where \tilde{v} is an $\hat{\mathcal{E}}$-quasi-continuous modification of $v \in \mathcal{D}(\hat{\mathcal{E}})$. See Theorem 5.2.2 of Fukushima-Oshima-Takeda [7]. We note that, since $\hat{\mathcal{E}}$ has strong local property, $M^{[v]}$ is continuous. Due to Theorem 5.2.3 of [7], we know that

$$
\begin{equation*}
\left\langle M^{[v]}\right\rangle_{t}=\int_{0}^{t}\left\{\Gamma(v, v)\left(X_{s}, B_{s}\right)+\left(\frac{\partial v}{\partial a}\left(X_{s}, B_{s}\right)\right)^{2}\right\} d s \tag{2.14}
\end{equation*}
$$

See also Theorem 5.1.3 and Example 5.1.1 of [7] for details.
From now, we discuss the explicit expression of $N^{[v]}$. Let us define a signed measure ν on $X \times \mathbb{R}$ by

$$
\nu(d x d a):=2 \sqrt{\alpha-L} v(x, a) \mu(d x) \delta_{0}(d a)
$$

where δ_{0} is Dirac measure on \mathbb{R} with mass at the origin. The total variation of ν is given by

$$
|\nu|(d x d a):=2|\sqrt{\alpha-L} v(x, a)| \mu(d x) \delta_{0}(d a) .
$$

Then we have
Lemma 2.3 There exists a constant $C>0$ such that

$$
\iint_{X \times \mathbb{R}}|(g \otimes \varphi)(x, a)| \cdot|\nu|(d x d a) \leq C \sqrt{\hat{\mathcal{E}}_{1}(g \otimes \varphi, g \otimes \varphi)}, \quad g \in \mathcal{A}, \varphi \in C_{0}^{\infty}(\mathbb{R}) .
$$

That is, ν is of finite 1-order energy integral. (For the definition of measures of finite 1 -order energy integral, see Sections 2.2 and 5.4 of [7].)

Proof. At the beginning, we take a positive constant a_{0} such that $\operatorname{supp}(\varphi) \subset\left[-a_{0}, a_{0}\right]$. We first consider in the case of $\varphi(0) \leq 0$. Let $\varepsilon>0$. Then for μ-a.e. $x \in X$, we have

$$
\begin{aligned}
& \int_{\mathbb{R}}|\varphi(a)| \sqrt{(\sqrt{\alpha-L} v(x, a))^{2}+\varepsilon} \delta_{0}(d a) \\
& \quad=-\varphi(0) \sqrt{(\sqrt{\alpha-L} v(x, 0))^{2}+\varepsilon} \\
& \quad=\varphi\left(a_{0}\right) \sqrt{\left(\sqrt{\alpha-L} v\left(x, a_{0}\right)\right)^{2}+\varepsilon}-\varphi(0) \sqrt{(\sqrt{\alpha-L} v(x, 0))^{2}+\varepsilon} \\
& =\int_{0}^{a_{0}} \frac{\partial}{\partial a}\left\{\varphi(a) \sqrt{(\sqrt{\alpha-L} v(x, a))^{2}+\varepsilon}\right\} d a \\
& =\int_{0}^{a_{0}} \varphi^{\prime}(a) \sqrt{(\sqrt{\alpha-L} v(x, a))^{2}+\varepsilon} d a-\int_{0}^{a_{0}} \varphi(a) \frac{\sqrt{\alpha-L} v(x, a) \cdot(\alpha-L) v(x, a)}{\sqrt{(\sqrt{\alpha-L} v(x, a))^{2}+\varepsilon}} d a \\
& \leq \int_{\mathbb{R}}\left|\varphi^{\prime}(a)\right| \sqrt{(\sqrt{\alpha-L} v(x, a))^{2}+\varepsilon} d a+\int_{\mathbb{R}}|\varphi(a)| \cdot|(\alpha-L) v(x, a)| d a .
\end{aligned}
$$

By letting $\varepsilon \searrow 0$ on both sides, we have

$$
\begin{aligned}
& \int_{\mathbb{R}}|\varphi(a)| \cdot|\sqrt{\alpha-L} v(x, a)| \delta_{0}(d a) \\
& \quad \leq \int_{\mathbb{R}}\left|\varphi^{\prime}(a)\right| \cdot|\sqrt{\alpha-L} v(x, a)| d a+\int_{\mathbb{R}}|\varphi(a)| \cdot|(\alpha-L) v(x, a)| d a, \quad \mu \text {-a.e. } x \in X .
\end{aligned}
$$

Therefore we can proceed as

$$
\begin{aligned}
& \iint_{X \times \mathbb{R}}|(g \otimes \varphi)(x, a)| \cdot|\nu|(d x d a) \\
& \quad \leq \quad 2 \int_{X}|g(x)|\left(\int_{\mathbb{R}}\left|\varphi^{\prime}(a)\right| \cdot|\sqrt{\alpha-L} v(x, a)| d a\right) \mu(d x) \\
& \quad \quad+2 \int_{X}|g(x)|\left(\int_{\mathbb{R}}|\varphi(a)| \cdot|(\alpha-L) v(x, a)| d a\right) \mu(d x) \\
& \leq \quad 2\|\sqrt{\alpha-L} v\|_{L^{2}(X \times \mathbb{R} ; \mu \otimes m)}\left\|\varphi^{\prime}\right\|_{L^{2}(m)}\|g\|_{L^{2}(\mu)} \\
& \quad+2\|(\alpha-L) v\|_{L^{2}(X \times \mathbb{R} ; \mu \otimes m)}\|\varphi\|_{L^{2}(m)}\|g\|_{L^{2}(\mu)} \\
& \leq \quad 2 \sqrt{2} \alpha^{-1 / 4}\left(\|\sqrt{\alpha-L} f\|_{L^{2}(\mu)}+\|(\alpha-L) f\|_{L^{2}(\mu)}\right) \sqrt{\hat{\mathcal{E}}_{1}(g \otimes \varphi, g \otimes \varphi)} \\
& =: \\
& \quad C \sqrt{\hat{\mathcal{E}}_{1}(g \otimes \varphi, g \otimes \varphi)},
\end{aligned}
$$

where we used (2.4) and

$$
\hat{\mathcal{E}}(g \otimes \varphi, g \otimes \varphi)=\mathcal{E}(g, g)\|\varphi\|_{L^{2}(m)}^{2}+\|g\|_{L^{2}(\mu)}^{2}\left\|\varphi^{\prime}\right\|_{L^{2}(m)}^{2}
$$

for the last line. This is the desired result.
In the case of $\varphi(0) \geq 0$, we easily see

$$
\begin{equation*}
\int_{\mathbb{R}}|\varphi(a)| \sqrt{(\sqrt{\alpha-L} v(x, a))^{2}+\varepsilon} \delta_{0}(d a)=\int_{-a_{0}}^{0} \frac{\partial}{\partial a}\left\{\varphi(a) \sqrt{(\sqrt{\alpha-L} v(x, a))^{2}+\varepsilon}\right\} d a \tag{2.15}
\end{equation*}
$$

By using (2.15), we can draw the same argument in the case of $\varphi(0) \leq 0$. Therefore the proof is complete.

Due to Lemma 2.3, ν is of finite 1-order energy integral. Then for each $\beta>0$, there exists a unique $U_{\beta} \nu \in \mathcal{D}(\hat{\mathcal{E}})$ such that the following relation holds:

$$
\begin{equation*}
\hat{\mathcal{E}}_{\beta}\left(U_{\beta} \nu, g \otimes \varphi\right)=\iint_{X \times \mathbb{R}}(g \otimes \varphi)(x, a) \nu(d x d a), \quad g \in \mathcal{A}, \varphi \in C_{0}^{\infty}(\mathbb{R}) . \tag{2.16}
\end{equation*}
$$

Lemma 2.4 (1) $U_{\alpha} \nu=v$.
(2) $U_{\beta} \nu=v-(\beta-\alpha) \hat{R}_{\beta} v$ holds, where $\left\{\hat{R}_{\beta}\right\}_{\beta>0}$ is the resolvent of $\left\{\hat{P}_{t}\right\}_{t \geq 0}$.

Proof. (1) We need to show (2.16). By using the integration by parts formula, for μ-a.e. $x \in X$, we have

$$
\begin{aligned}
& \int_{\mathbb{R}} \frac{\partial v}{\partial a}(x, a) \varphi^{\prime}(a) d a \\
&=-\int_{0}^{\infty} \sqrt{\alpha-L} u(x, a) \varphi^{\prime}(a) d a+\int_{0}^{\infty} \sqrt{\alpha-L} u(x, a) \varphi^{\prime}(-a) d a \\
&=-\int_{0}^{\infty} \sqrt{\alpha-L} u(x, a) \frac{d}{d a}(\varphi(a)+\varphi(-a)) d a \\
&=2 \sqrt{\alpha-L} u(x, 0) \varphi(0)+\int_{0}^{\infty} \frac{\partial}{\partial a} \sqrt{\alpha-L} u(x, a)(\varphi(a)+\varphi(-a)) d a
\end{aligned}
$$

$$
\begin{align*}
& =2 \sqrt{\alpha-L} u(x, 0) \varphi(0)-\int_{0}^{\infty}(\alpha-L) u(x, a)(\varphi(a)+\varphi(-a)) d a \\
& =2 \sqrt{\alpha-L} v(x, 0) \varphi(0)-\int_{\mathbb{R}}(\alpha-L) v(x, a) \varphi(a) d a \tag{2.17}
\end{align*}
$$

Then (2.17) leads us to our desired equality as follows:

$$
\begin{aligned}
\hat{\mathcal{E}}_{\alpha}(v, g \otimes \varphi)= & \int_{\mathbb{R}} d a \varphi(a) \int_{X} \sqrt{\alpha-L} v(x, a) \sqrt{\alpha-L} g(x) \mu(d x) \\
& +\int_{X} \mu(d x) g(x)\left(2 \sqrt{\alpha-L} v(x, 0) \varphi(0)-\int_{\mathbb{R}}(\alpha-L) v(x, a) \varphi(a) d a\right) \\
= & 2 \int_{X} \sqrt{\alpha-L} v(x, 0) g(x) \varphi(0) \mu(d x) \\
= & \iint_{X \times \mathbb{R}}(g \otimes \varphi)(x, a) \nu(d x d a) .
\end{aligned}
$$

(2) We recall $\hat{\mathcal{E}}_{\beta}\left(\hat{R}_{\beta} v, g \otimes \varphi\right)=(v, g \otimes \varphi)_{L^{2}(X \times \mathbb{R} ; \mu \otimes m)}$. Then we have

$$
\begin{aligned}
\hat{\mathcal{E}}_{\beta}\left(v-(\beta-\alpha) \hat{R}_{\beta} v, g \otimes \varphi\right) & =\hat{\mathcal{E}}_{\beta}(v, g \otimes \varphi)-(\beta-\alpha) \cdot(v, g \otimes \varphi)_{L^{2}(X \times \mathbb{R} ; \mu \otimes m)} \\
& =\hat{\mathcal{E}}_{\alpha}(v, g \otimes \varphi) \\
& =\iint_{X \times \mathbb{R}}(g \otimes \varphi)(x, a) \nu(d x d a),
\end{aligned}
$$

where we used (1) for the last line. Hence the proof of (2) is also complete.
Due to Lemma 5.4.1 of [7] and the lemma above, we have

$$
N_{t}^{[v]}=\alpha \int_{0}^{t} \tilde{v}\left(X_{s}, B_{s}\right) d s-A_{t}, \quad t \geq 0
$$

where \tilde{v} is an $\hat{\mathcal{E}}$-quasi-continuous modification of v and A is the continuous additive functional corresponding to ν. Since ν does not charge out of $X \times\{0\}$, due to Theorem 5.1.5 of [7], $A_{t \wedge \tau}=0$ holds. Thus we get

$$
\begin{equation*}
N_{t \wedge \tau}^{[v]}=\alpha \int_{0}^{t \wedge \tau} \tilde{v}\left(X_{s}, B_{s}\right) d s \tag{2.18}
\end{equation*}
$$

By summarizing (2.13), (2.14), and (2.18), we have the following proposition which plays a crucial role later.
Proposition 2.5 We have the semi-martingale decomposition

$$
\begin{equation*}
\tilde{v}\left(X_{t \wedge \tau}, B_{t \wedge \tau}\right)-\tilde{v}\left(X_{0}, B_{0}\right)=M_{t \wedge \tau}^{[v]}+\alpha \int_{0}^{t \wedge \tau} \tilde{v}\left(X_{s}, B_{s}\right) d s, \quad t \geq 0 \tag{2.19}
\end{equation*}
$$

under $\mathbb{P}_{(x, a)}$ for q.e.- (x, a). Moreover it holds

$$
\begin{equation*}
\left\langle M^{[v]}\right\rangle_{t \wedge \tau}=\int_{0}^{t \wedge \tau}\left\{\Gamma(v, v)\left(X_{s}, B_{s}\right)+\left(\frac{\partial v}{\partial a}\left(X_{s}, B_{s}\right)\right)^{2}\right\} d s \tag{2.20}
\end{equation*}
$$

Since $v(x, a)=u(x, a)$ holds for $a \geq 0$, we can regard that this proposition also gives the semi-martingale decomposition of $u\left(X_{t \wedge \tau}, B_{t \wedge \tau}\right)$.

Before closing this subsection, we need the following lemma because we will deal with the measure $\mu \otimes \delta_{a}$ as an initial distribution.
Lemma $2.6 \mu \otimes \delta_{a}$ does not charge any set of zero capacity for m-almost all $a \in \mathbb{R}$.
Proof. Let $N \subset X \times \mathbb{R}$ be a set of zero capacity with respect to $\hat{\mathcal{E}}_{1}$. Then by the item (4) in Theorem 4.1 of Okura [17], N_{a} is a set of zero capacity with respect to \mathcal{E}_{1} for m-a.e. $a \in \mathbb{R}$, where the set $N_{a} \subset X$ is defined by $N_{a}:=\{x \in X \mid(x, a) \in N\}, a \in \mathbb{R}$. Thus we have

$$
\left(\mu \otimes \delta_{a}\right)(N)=\mu\left(N_{a}\right) \leq \operatorname{Cap}_{\mathcal{E}_{1}}\left(N_{a}\right)=0 .
$$

This completes the proof.

2.2 Proof of Theorem $1.2(1<p<2)$

In this subsection, we return to the proof of Theorem 1.2 in the case of $1<p<2$. Here we recall the following identities for our later use. See [16] for the proof.
Lemma 2.7 Let $\eta: X \times[0,+\infty) \rightarrow[0,+\infty)$ be a measurable function. Then

$$
\begin{equation*}
\mathbb{E}_{\mu \otimes \delta_{a}}\left[\int_{0}^{\tau} \eta\left(X_{t}, B_{t}\right) d t\right]=\int_{X} \mu(d x) \int_{0}^{\infty}(a \wedge t) \eta(x, t) d t \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}_{\mu \otimes \delta_{a}}\left[\int_{0}^{\tau} \eta\left(X_{t}, B_{t}\right) d t \mid X_{\tau}=x\right]=\int_{0}^{\infty}(a \wedge t) Q_{t}^{(0)} \eta(\cdot, t)(x) d t . \tag{2.22}
\end{equation*}
$$

Since $\left\{X_{t}\right\}_{t \geq 0}$ and $\left\{B_{t}\right\}_{t \geq 0}$ are mutually independent under $\mathbb{P}_{\mu \otimes \delta_{a}}$ and μ is the invariant measure of $\left\{X_{t}\right\}_{t \geq 0}$, we can see the following identity holds for any bounded Borel function h on X :

$$
\begin{equation*}
\mathbb{E}_{\mu \otimes \delta_{a}}\left[h\left(X_{\tau}\right)\right]=\int_{X} h(x) \mu(d x) . \tag{2.23}
\end{equation*}
$$

Hereafter, we abbreviate $M_{t \wedge \tau}^{[v]}$ as M_{t} for simplicity. By Proposition 2.5 and Lemma 2.6, there exists a non-negative sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ such that $\lim _{n \rightarrow \infty} a_{n}=\infty,(2.19)$ and (2.20) hold under $\mathbb{P}_{\mu \otimes \delta_{a_{n}}}$ for any $n \in \mathbb{N}$.

We set $V_{t}:=\tilde{v}\left(X_{t \wedge \tau}, B_{t \wedge \tau}\right)$. We apply Itô's formula to V_{t}^{2}. Proposition 2.5 implies

$$
\begin{align*}
d\left(V_{t}^{2}\right) & =2 V_{t} d M_{t}+2 \alpha V_{t}^{2} d t+d\langle M\rangle_{t} \\
& =2 V_{t} d M_{t}+2\left(g_{f}\left(X_{t}, B_{t}\right)^{2}+\alpha V_{t}^{2}\right) d t \tag{2.24}
\end{align*}
$$

Let $\varepsilon>0$. By applying Itô's formula to $\left(V_{t}^{2}+\varepsilon\right)^{p / 2}$ again, we also have

$$
\begin{aligned}
d\left(V_{t}^{2}+\varepsilon\right)^{p / 2}= & p\left(V_{t}^{2}+\varepsilon\right)^{p / 2-1} V_{t} d M_{t}+p\left(V_{t}^{2}+\varepsilon\right)^{p / 2-1}\left(g_{f}\left(X_{t}, B_{t}\right)^{2}+\alpha V_{t}^{2}\right) d t \\
& +\frac{p(p-2)}{2}\left(V_{t}^{2}+\varepsilon\right)^{p / 2-2} V_{t}^{2} d\langle M\rangle_{t} \\
\geq & p\left(V_{t}^{2}+\varepsilon\right)^{p / 2-1} V_{t} d M_{t}+p(p-1)\left(V_{t}^{2}+\varepsilon\right)^{p / 2-1} g_{f}\left(X_{t}, B_{t}\right)^{2} d t,
\end{aligned}
$$

where we used $p<2$ for the last line.
Hence by taking the expectation of the inequality above and using $u(x, a)=v(x, a)$ for $a \geq 0$, we have

$$
\begin{align*}
\mathbb{E}_{\mu \otimes \delta_{a_{n}}}[p(p-1) & \left.\int_{0}^{\tau}\left(V_{t}^{2}+\varepsilon\right)^{p / 2-1} g_{f}\left(X_{t}, B_{t}\right)^{2} d t\right] \\
& \leq \mathbb{E}_{\mu \otimes \delta_{a_{n}}}\left[\left(V_{\tau}^{2}+\varepsilon\right)^{p / 2}-\left(V_{0}^{2}+\varepsilon\right)^{p / 2}\right] \\
& \leq \mathbb{E}_{\mu \otimes \delta_{a_{n}}}\left[\left(V_{\tau}^{2}+\varepsilon\right)^{p / 2}\right] \\
& =\mathbb{E}_{\mu \otimes \delta \delta_{a_{n}}}\left[\left(u\left(X_{\tau}, B_{\tau}\right)^{2}+\varepsilon\right)^{p / 2}\right] \\
& =\mathbb{E}_{\mu \otimes \delta_{a_{n}}}\left[\left(f\left(X_{\tau}\right)^{2}+\varepsilon\right)^{p / 2}\right]=\int_{X}\left(|f(x)|^{2}+\varepsilon\right)^{p / 2} \mu(d x) \tag{2.25}
\end{align*}
$$

where we used (2.23) for the last line. Here, by recalling (2.21), the left hand side of (2.25) is equal to

$$
p(p-1) \int_{X} \mu(d x) \int_{0}^{\infty}\left(t \wedge a_{n}\right)\left(u(x, t)^{2}+\varepsilon\right)^{p / 2-1} g_{f}(x, t)^{2} d t .
$$

Therefore, by letting $\varepsilon \rightarrow 0$ and $n \rightarrow \infty$, we have

$$
\begin{equation*}
p(p-1) \int_{X} \mu(d x) \int_{0}^{\infty} t|u(x, t)|^{p-2} g_{f}(x, t)^{2} d t \leq \int_{X}|f(x)|^{p} \mu(d x) . \tag{2.26}
\end{equation*}
$$

Now we recall the maximal ergodic inequality

$$
\left\|\sup _{t \geq 0}\left|P_{t} f\right|\right\|_{L^{p}(\mu)} \leq \frac{p}{p-1}\|f\|_{L^{p}(\mu)}, \quad p>1 .
$$

See Theorem 3.3 in Shigekawa [19] for details. It leads us that

$$
\begin{aligned}
\left\|G_{f}\right\|_{L^{p}(\mu)}^{p}= & \int_{X} \mu(d x)\left\{\int_{0}^{\infty} t|u(x, t)|^{2-p}|u(x, t)|^{p-2} g_{f}(x, t)^{2} d t\right\}^{p / 2} \\
\leq & \int_{X} \mu(d x)\left\{\int_{0}^{\infty} t\left(\sup _{t \geq 0}\left|P_{t} f(x)\right|\right)^{2-p}|u(x, t)|^{p-2} g_{f}(x, t)^{2} d t\right\}^{p / 2} \\
\leq & \left\{\int_{X}\left(\sup _{t \geq 0}\left|P_{t} f(x)\right|\right)^{p} \mu(d x)\right\}^{\frac{2-p}{2}} \\
& \times\left\{\int_{X} \int_{0}^{\infty} t|u(x, t)|^{p-2} g_{f}(x, t)^{2} d t \mu(d x)\right\}^{p / 2} \\
\lesssim & \left\{\int_{X}|f(x)|^{p} \mu(d x)\right\}^{\frac{2-p}{2}}\left\{\int_{X}|f(x)|^{p} \mu(d x)\right\}^{p / 2}=\|f\|_{L^{p}(\mu)}^{p}
\end{aligned}
$$

where we used (2.26) for the last line. This completes the proof.

2.3 Proof of Theorem $1.2(p>2)$

In the case of $p>2$, we need additional functions, namely H-functions defined by

$$
\begin{aligned}
H_{f}^{\overrightarrow{ }}(x) & :=\left\{\int_{0}^{\infty} t Q_{t}^{(0)}\left(g_{f}(\cdot, t)^{2}\right)(x) d t\right\}^{1 / 2}, \\
H_{f}^{\uparrow}(x) & :=\left\{\int_{0}^{\infty} t Q_{t}^{(0)}\left(g_{f}^{\dagger}(\cdot, t)^{2}\right)(x) d t\right\}^{1 / 2} \\
H_{f}(x) & :=\left\{\int_{0}^{\infty} t Q_{t}^{(0)}\left(g_{f}(\cdot, t)^{2}\right)(x) d t\right\}^{1 / 2}
\end{aligned}
$$

We begin by the following proposition:
Proposition 2.8 For $p>2$, the following inequality holds for any $f \in \mathcal{A}$:

$$
\left\|H_{f}\right\|_{L^{p}(\mu)} \lesssim\|f\|_{L^{p}(\mu)}
$$

Proof. By a slight modification, we can prove in the same way as the proof of Proposition 4.2 in Shigekawa-Yoshida [20]. However we give the proof for the reader's convenience.

Let us recall that, due to (2.24), we have

$$
\begin{equation*}
V_{t \wedge \tau}^{2}-V_{0}^{2}=2 \int_{0}^{t \wedge \tau} V_{s} d M_{s}+2 \int_{0}^{t \wedge \tau}\left(\alpha V_{s}^{2}+g_{f}\left(X_{s}, B_{s}\right)^{2}\right) d s \tag{2.27}
\end{equation*}
$$

Since $A_{t}:=2 \int_{0}^{t \wedge \tau}\left(\alpha V_{s}^{2}+g_{f}\left(X_{s}, B_{s}\right)^{2}\right) d s, t \geq 0$, is a continuous increasing process, (2.27) implies that $Z_{t}:=V_{t \wedge \tau}^{2}-V_{0}^{2}, t \geq 0$ is a submartingale.

Now we need an inequality for submartingales. Let $\left\{Z_{t}\right\}_{t \geq 0}$ be a continuous submartingale with the Doob-Meyer decomposition $Z_{t}=M_{t}+A_{t}$, where $\left\{M_{t}\right\}_{t \geq 0}$ is a continuous martingale and $\left\{A_{t}\right\}_{t \geq 0}$ is a continuous increasing process with $A_{0}=0$. Due to Lenglart-Lépingle-Pratelli [13], it holds that

$$
\begin{equation*}
\mathbb{E}\left[A_{\infty}^{p}\right] \leq(2 p)^{p} \mathbb{E}\left[\sup _{t \geq 0}\left|Z_{t}\right|^{p}\right], \quad p>1 \tag{2.28}
\end{equation*}
$$

Then by using (2.28) and Doob's inequality, we have

$$
\begin{align*}
\mathbb{E}_{\mu \otimes \delta_{a_{n}}}\left[\left\{2 \int_{0}^{\tau}\right.\right. & \left.\left.\left(\alpha V_{s}^{2}+g_{f}\left(X_{s}, B_{s}\right)^{2}\right) d s\right\}^{p / 2}\right] \\
& \lesssim \mathbb{E}_{\mu \otimes \delta_{a_{n}}}\left[\sup _{t \geq 0}\left|V_{t \wedge \tau}^{2}-V_{0}^{2}\right|^{p / 2}\right] \\
& \lesssim \mathbb{E}_{\mu \otimes \delta_{a_{n}}}\left[\left|V_{\tau}^{2}-V_{0}^{2}\right|^{p / 2}\right] \\
& =\mathbb{E}_{\mu \otimes \delta_{a_{n}}}\left[\left|u\left(X_{\tau}, B_{\tau}\right)^{2}-u\left(X_{0}, B_{0}\right)^{2}\right|^{p / 2}\right] \\
& =\mathbb{E}_{\mu \otimes \delta_{a_{n}}}\left[\left|\left(Q_{0}^{(\alpha)} f\left(X_{\tau}\right)\right)^{2}-\left(Q_{a_{n}}^{(\alpha)} f\left(X_{0}\right)\right)^{2}\right|^{p / 2}\right] \\
& \lesssim \mathbb{E}_{\mu \otimes \delta_{a_{n}}}\left[\mid\left(\left.Q_{0}^{(\alpha)} f\left(X_{\tau}\right)\right|^{p}\right]+\mathbb{E}_{\mu \otimes \delta_{a_{n}}}\left[\left|Q_{a_{n}}^{(\alpha)} f\left(X_{0}\right)\right|^{p}\right]\right. \\
& =\|f\|_{L^{p}(\mu)}^{p}+\left\|Q_{a_{n}}^{(\alpha)} f\right\|_{L^{p}(\mu)}^{p} \lesssim\|f\|_{L^{p}(\mu) .}^{p} . \tag{2.29}
\end{align*}
$$

On the other hand, by using (2.22), (2.29) and Jensen's inequality, we have

$$
\begin{aligned}
\left\|H_{f}\right\|_{L^{p}(\mu)}^{p} & =\left\|\left\{\int_{0}^{\infty} t Q_{t}^{(0)}\left(g_{f}(\cdot, t)^{2}\right) d t\right\}^{p / 2}\right\|_{L^{1}(\mu)} \\
& =\lim _{n \rightarrow \infty}\left\|\left\{\int_{0}^{\infty}\left(a_{n} \wedge t\right) Q_{t}^{(0)}\left(g_{f}(\cdot, t)^{2}\right) d t\right\}^{p / 2}\right\|_{L^{1}(\mu)} \\
& =\lim _{n \rightarrow \infty} \mathbb{E}_{\mu \otimes \delta_{a_{n}}}\left[\left\{\int_{0}^{\infty}\left(a_{n} \wedge t\right) Q_{t}^{(0)}\left(g_{f}(\cdot, t)^{2}\right)\left(X_{\tau}\right) d t\right\}^{p / 2}\right] \\
& =\lim _{n \rightarrow \infty} \mathbb{E}_{\mu \otimes \delta_{a_{n}}}\left[\mathbb{E}_{\mu \otimes \delta_{a_{n}}}\left[\int_{0}^{\tau} g_{f}\left(X_{s}, B_{s}\right)^{2} d s \mid X_{\tau}\right]^{p / 2}\right] \\
& \leq \liminf _{n \rightarrow \infty} \mathbb{E}_{\mu \otimes \delta_{a_{n}}}\left[\mathbb{E}_{\mu \otimes \delta_{a_{n}}}\left[\left(\int_{0}^{\tau} g_{f}\left(X_{s}, B_{s}\right)^{2} d s\right)^{p / 2} \mid X_{\tau}\right]\right] \\
& =\liminf _{n \rightarrow \infty} \mathbb{E}_{\mu \otimes \delta_{a_{n}}}\left[\left(\int_{0}^{\tau} g_{f}\left(X_{s}, B_{s}\right)^{2} d s\right)^{p / 2}\right] \\
& \leq \liminf _{n \rightarrow \infty} \mathbb{E}_{\mu \otimes \delta_{a_{n}}}\left[\left\{\int_{0}^{\tau}\left(\alpha V_{s}^{2}+g_{f}\left(X_{s}, B_{s}\right)^{2}\right) d s\right\}^{p / 2}\right] \lesssim\|f\|_{L^{p}(\mu)}^{p}
\end{aligned}
$$

This completes the proof.
Next we study the relationship between G-functions and H-functions. In the proof of this proposition, condition (\mathbf{G}) plays a key role.
Proposition 2.9 (1) For any $f \in \mathcal{A}$ and $\alpha>R \vee 0$, the following inequality holds:

$$
G_{f}^{\uparrow} \leq 2 \sqrt{K} H_{f}^{\uparrow}
$$

(2) For any $f \in \mathcal{A}$, the following inequality holds:

$$
G_{f}^{\vec{~}} \leq 2 H_{f}^{\vec{~}}
$$

Proof. We only give a proof of the item (1). The item (2) can be proved in the same way. By condition (G) and Schwarz's inequality, we have the following estimate for any $\alpha>R \vee 0$ and $f \in \mathcal{A}$:

$$
\begin{align*}
\Gamma\left(Q_{t}^{(\alpha)} f\right) & \leq\left(\int_{0}^{\infty} e^{-\alpha s} \Gamma\left(P_{s} f\right)^{1 / 2} \lambda_{t}(d s)\right)^{2} \\
& \leq\left(\int_{0}^{\infty} e^{-(\alpha-R) s} \lambda_{t}(d s)\right) \cdot\left(\int_{0}^{\infty} e^{-(\alpha+R) s} \Gamma\left(P_{s} f\right) \lambda_{t}(d s)\right) \\
& \leq K e^{-\sqrt{\alpha-R} t}\left(\int_{0}^{\infty} e^{-(\alpha-R) s} P_{s}(\Gamma(f)) \lambda_{t}(d s)\right) \\
& \leq K Q_{t}^{(\alpha-R)}(\Gamma(f)) \tag{2.30}
\end{align*}
$$

Then (2.30) yields

$$
\begin{align*}
g_{f}^{\uparrow}(x, 2 t)^{2} & =\Gamma\left(Q_{2 t}^{(\alpha)} f\right)(x) \\
& =\Gamma\left(Q_{t}^{(\alpha)}\left(Q_{t}^{(\alpha)} f\right)\right)(x) \\
& \leq K Q_{t}^{(\alpha-R)}\left(\Gamma\left(Q_{t}^{(\alpha)} f\right)\right)(x) \leq K Q_{t}^{(0)}\left(g_{f}^{\uparrow}(\cdot, t)^{2}\right)(x), \tag{2.31}
\end{align*}
$$

Therefore we have

$$
\begin{aligned}
\left(G_{f}^{\uparrow}(x)\right)^{2} & =4 \int_{0}^{\infty} t g_{f}^{\uparrow}(x, 2 t)^{2} d t \\
& \leq 4 K \int_{0}^{\infty} t Q_{t}^{(0)}\left(g_{f}^{\uparrow}(\cdot, t)^{2}\right)(x) d t=4 K\left(H_{f}^{\uparrow}(x)\right)^{2}
\end{aligned}
$$

where we changed the variable t to $2 t$ in the first line and used (2.31) for the second line. This completes the proof.

It is clear that Propositions 2.8 and 2.9 conclude the desired inequality (1.4). Therefore the proof of Theorem 1.2 is completed.

3 Proof of Theorem 1.3

Before giving the proof of Theorem 1.3, we make a preparation parallel to Yoshida [24]. Let ν be a finite signed measure on $[0, \infty)$. We denote by $\hat{\nu}$ and $\|\nu\|:=\int_{0}^{\infty}|\nu|(d s)$ the Laplace transform and the total variation of ν, respectively. For $\alpha>0$, we define a bounded operator $\hat{\nu}(\alpha-L)$ on $L^{p}(\mu), 1 \leq p<\infty$, by

$$
\hat{\nu}(\alpha-L) f:=\int_{[0, \infty)} e^{-\alpha s} P_{s} f \nu(d s) .
$$

Thus we easily have

$$
\begin{equation*}
\|\hat{\nu}(\alpha-L) f\|_{L^{p}(\mu)} \leq\|\nu\| \cdot\|f\|_{L^{p}(\mu)}, f \in L^{p}(\mu) \tag{3.1}
\end{equation*}
$$

Here we give a remark in the case of $p=2$. In this case, this operator is represented by

$$
\hat{\nu}(\alpha-L):=\int_{[0, \infty)} \hat{\nu}(\alpha+\lambda) d E_{\lambda},
$$

where $\left\{E_{\lambda}\right\}_{\lambda \geq 0}$ is the spectral decomposition of $-L$ in $L^{2}(\mu)$.
By Lemma 2.3 in [1], there exist finite signed measures ν_{1} and ν_{2} such that the Laplace transform are given by $\hat{\nu}_{1}(\lambda)=\frac{\sqrt{1+\lambda}}{1+\sqrt{\lambda}}$ and $\hat{\nu}_{2}(\lambda)=\frac{1+\sqrt{\lambda}}{\sqrt{1+\lambda}}$, respectively. For $\varepsilon>0$, we denote by $\nu_{i}^{(\varepsilon)}, i=1,2$, the image measure of ν_{i} under the mapping $\lambda \mapsto \lambda / \varepsilon$. Then we have

$$
\begin{align*}
\hat{\nu}_{1}^{(\varepsilon)}(\lambda)=\frac{\sqrt{\varepsilon+\lambda}}{\sqrt{\varepsilon}+\sqrt{\lambda}}, \quad\left\|\nu_{1}^{(\varepsilon)}\right\| \leq\left\|\nu_{1}\right\|, \tag{3.2}\\
\hat{\nu}_{2}^{(\varepsilon)}(\lambda)=\frac{\sqrt{\varepsilon}+\sqrt{\lambda}}{\sqrt{\varepsilon+\lambda}}, \quad\left\|\nu_{2}^{(\varepsilon)}\right\| \leq\left\|\nu_{2}\right\| . \tag{3.3}
\end{align*}
$$

(3.1), (3.2) and (3.3) imply the resulting operators $\frac{\sqrt{\varepsilon+(\alpha-L)}}{\sqrt{\varepsilon}+\sqrt{\alpha-L}}$ and $\frac{\sqrt{\varepsilon}+\sqrt{\alpha-L}}{\sqrt{\varepsilon+(\alpha-L)}}$ on $L^{p}(\mu)$ have the operator norms not more than $\left\|\nu_{1}\right\|$ and $\left\|\nu_{2}\right\|$, respectively. We also have

$$
\left(\frac{\sqrt{\varepsilon+(\alpha-L)}}{\sqrt{\varepsilon}+\sqrt{\alpha-L}}\right)\left(\frac{\sqrt{\varepsilon}+\sqrt{\alpha-L}}{\sqrt{\varepsilon+(\alpha-L)}}\right)=\left(\frac{\sqrt{\varepsilon}+\sqrt{\alpha-L}}{\sqrt{\varepsilon+(\alpha-L)}}\right)\left(\frac{\sqrt{\varepsilon+(\alpha-L)}}{\sqrt{\varepsilon}+\sqrt{\alpha-L}}\right)=I .
$$

Then we obtain the following relation for $q>1$:

$$
\begin{align*}
(\sqrt{\varepsilon+(\alpha-L)})^{-q} & =(\sqrt{\varepsilon}+\sqrt{\alpha-L})^{-q}\left(\frac{\sqrt{\varepsilon+(\alpha-L)}}{\sqrt{\varepsilon}+\sqrt{\alpha-L}}\right)^{-q} \\
& =(\sqrt{\varepsilon}+\sqrt{\alpha-L})^{-q}\left(\frac{\sqrt{\varepsilon}+\sqrt{\alpha-L}}{\sqrt{\varepsilon+(\alpha-L)}}\right)^{q} \tag{3.4}
\end{align*}
$$

Now we are in a position to give the proof of Theorem 1.3.
Proof of Theorem 1.3. First, we set $\beta \in \mathbb{R}$ and $\varepsilon>0$ such that $\alpha=\beta+\varepsilon$ and $\beta>R$. Note $0<\varepsilon<\alpha_{R}$. Let $f \in L^{2} \cap L^{p}(\mu)$ and we consider

$$
g:=\left(\frac{\sqrt{\varepsilon}+\sqrt{\beta-L}}{\sqrt{\varepsilon+(\beta-L)}}\right)^{q} f .
$$

By (3.4), we have

$$
\begin{aligned}
\Gamma\left((\sqrt{\alpha-L})^{-q} f\right) & =\Gamma\left((\sqrt{\varepsilon}+\sqrt{\beta-L})^{-q} g\right) \\
& \leq\left(\frac{1}{\Gamma(q)} \int_{0}^{\infty} t^{q-1} e^{-\sqrt{\varepsilon} t} \Gamma\left(Q_{t}^{(\beta)} g\right)^{1 / 2} d t\right)^{2}
\end{aligned}
$$

Here we use Theorem 1.2. By recalling $q>1$, we have the following estimate:

$$
\begin{align*}
\left\|\Gamma\left((\sqrt{\alpha-L})^{-q} f\right)^{1 / 2}\right\|_{L^{p}(\mu)} & \leq \frac{1}{\Gamma(q)}\left\|\int_{0}^{\infty} t^{q-1} e^{-\sqrt{\varepsilon} t} \Gamma\left(Q_{t}^{(\beta)} g\right)^{1 / 2} d t\right\|_{L^{p}(\mu)} \\
& \leq \frac{1}{\Gamma(q)}\left\|\left(\int_{0}^{\infty} t^{2 q-3} e^{-2 \sqrt{\varepsilon} t} d t\right)^{1 / 2}\left(\int_{0}^{\infty} t \Gamma\left(Q_{t}^{(\beta)} g\right) d t\right)^{1 / 2}\right\|_{L^{p}(\mu)} \\
& =\frac{1}{\Gamma(q)} \cdot\left(\frac{\Gamma(2 q-2)}{(4 \varepsilon)^{q-1}}\right)^{1 / 2}\left\|G_{g}^{\uparrow}\right\|_{L^{p}(\mu)} \\
& \lesssim(4 \varepsilon)^{-(q-1) / 2} \frac{\Gamma(2 q-2)^{1 / 2}}{\Gamma(q)} \cdot\|g\|_{L^{p}(\mu)} \tag{3.5}
\end{align*}
$$

However the left hand side of (3.5) does not depend on ε. Hence we can let $\varepsilon \nearrow \alpha_{R}$ on the right hand side, and it leads us to

$$
\begin{equation*}
\left\|\Gamma\left((\sqrt{\alpha-L})^{-q} f\right)^{1 / 2}\right\|_{L^{p}(\mu)} \leq C_{K, p, q} \alpha_{R}^{-(q-1) / 2} \cdot\|g\|_{L^{p}(\mu)} . \tag{3.6}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\|g\|_{L^{p}(\mu)} \leq\left\|\nu_{1}\right\|^{q} \cdot\|f\|_{L^{p}(\mu)} . \tag{3.7}
\end{equation*}
$$

Then by combining (3.6) with (3.7), we complete the proof of the item (1).
For the proof of the item (2), we use the same argument as used in Kawabi [11]. Since $\left\{P_{t}\right\}_{t \geq 0}$ is an analytic semigroup on $L^{p}(\mu)$ (see Chapter III of Stein [23] for details), there exists a positive constant C_{p} such that

$$
\begin{equation*}
\left\|L P_{t} f\right\|_{L^{p}(\mu)} \leq C_{p} t^{-1}\|f\|_{L^{p}(\mu)}, \quad f \in L^{p}(\mu), \tag{3.8}
\end{equation*}
$$

and hence $P_{t}^{(\alpha)}:=e^{-\alpha t} P_{t}$ also satisfies

$$
\begin{equation*}
\left\|(\alpha-L) P_{t}^{(\alpha)} f\right\|_{L^{p}(\mu)} \leq e^{-\alpha t}\left(C_{p} t^{-1}+\alpha\right)\|f\|_{L^{p}(\mu)}, \quad f \in L^{p}(\mu) \tag{3.9}
\end{equation*}
$$

Then by noting $1<q<2$ and (3.9), the left hand side of (1.7) is dominated as

$$
\begin{align*}
\left\|\Gamma\left(P_{t} f\right)^{1 / 2}\right\|_{L^{p}(\mu)} & =e^{\alpha t}\left\|\Gamma\left(P_{t}^{(\alpha)} f\right)^{1 / 2}\right\|_{L^{p}(\mu)} \\
& \leq e^{\alpha t}\left\|R_{\alpha}^{(q)}(L)\right\|_{p, p}\left\|(\sqrt{\alpha-L})^{q} P_{t}^{(\alpha)} f\right\|_{L^{p}(\mu)} \\
& =e^{\alpha t}\left\|R_{\alpha}^{(q)}(L)\right\|_{p, p}\left\|(\sqrt{\alpha-L})^{q-2}(\alpha-L) P_{t}^{(\alpha)} f\right\|_{L^{p}(\mu)} \\
& \leq \frac{e^{\alpha t}\left\|R_{\alpha}^{(q)}(L)\right\|_{p, p}}{\Gamma(1-q / 2)} \int_{0}^{\infty} s^{-q / 2}\left\|(\alpha-L) P_{s+t}^{(\alpha)} f\right\|_{L^{p}(\mu)} d s \\
& \leq \frac{e^{\alpha t}\left\|R_{\alpha}^{(q)}(L)\right\|_{p, p}}{\Gamma(1-q / 2)} \int_{0}^{\infty} s^{-q / 2}\left\{e^{-\alpha(s+t)}\left(\frac{C_{p}}{s+t}+\alpha\right)\|f\|_{L^{p}(\mu)}\right\} d s \tag{3.10}
\end{align*}
$$

where we used (1.6) for the second line.
Moreover, we have

$$
\begin{align*}
& \frac{e^{\alpha t}}{\Gamma(1-q / 2)} \int_{0}^{\infty} s^{-q / 2} e^{-\alpha(s+t)}\left(\frac{C_{p}}{s+t}+\alpha\right) d s \\
& \leq \frac{C_{p}}{\Gamma(1-q / 2)} \int_{0}^{\infty} s^{-q / 2}(s+t)^{-1} d s+\frac{\alpha}{\Gamma(1-q / 2)} \int_{0}^{\infty} s^{-q / 2} e^{-\alpha s} d s \\
& =\frac{C_{p}}{\Gamma(1-q / 2)} t^{-q / 2}\left(\int_{0}^{\infty} \tau^{-q / 2}(1+\tau)^{-1} d \tau\right)+\alpha^{q / 2} \\
& \leq C_{p, q}\left(t^{-q / 2}+\alpha^{q / 2}\right), \tag{3.11}
\end{align*}
$$

where we changed the variable s to $t \tau$ in the third line.
Hence by combining (3.10) with (3.11), we obtain our desired estimate (1.7). This completes the proof.

4 Examples

4.1 Diffusion processes on a path space with Gibbs measures

In this subsection, we present an example on an infinite dimensional setting. This is studied in Kawabi [10], [12]. We consider diffusion processes on an infinite volume path space $C\left(\mathbb{R}, \mathbb{R}^{d}\right)$ with Gibbs measures associated with the (formal) Hamiltonian

$$
\mathcal{H}(w):=\frac{1}{2} \int_{\mathbb{R}^{2}}\left|w^{\prime}(x)\right|_{\mathbb{R}^{d}}^{2} d x+\int_{\mathbb{R}} U(w(x)) d x
$$

where $U: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is an interaction potential. Our diffusion processes are defined through the time dependent Ginzburg-Landau type SPDE

$$
\begin{equation*}
d X_{t}(x)=\left\{\Delta_{x} X_{t}(x)-\nabla U\left(X_{t}(x)\right)\right\} d t+\sqrt{2} d W_{t}(x), \quad x \in \mathbb{R}, t>0 \tag{4.1}
\end{equation*}
$$

where $\Delta_{x}=d^{2} / d x^{2}, \nabla=\left(\partial / \partial z_{i}\right)_{i=1}^{d}$ and $\left(W_{t}\right)_{t \geq 0}$ is a white noise process. This dynamics is called the $P(\phi)_{1}$-time evolution which has its origin in Parisi and Wu's stochastic quantization model.

In what follows we describe the framework. We introduce some spaces of functions to control the growth of $X_{t}(x)$ as $|x| \rightarrow \infty$. For fixed $\lambda>0$, we consider a Hilbert spaces $E:=L^{2}\left(\mathbb{R}, \mathbb{R}^{d} ; e^{-2 \lambda \chi(x)} d x\right), \lambda>0$ where $\chi \in C^{\infty}(\mathbb{R}, \mathbb{R})$ is a positive symmetric convex function satisfying $\chi(x)=|x|$ for $|x| \geq 1$. We also consider

$$
\mathcal{C}:=\left\{\left.X(\cdot) \in C\left(\mathbb{R}, \mathbb{R}^{d}\right)\left|\sup _{x \in \mathbb{R}}\right| X(x)\right|_{\mathbb{R}^{d}} e^{-\lambda \chi(x)}<\infty \text { for every } \lambda>0\right\} .
$$

We regard these spaces as state spaces of our dynamics.
Let μ be a $(U-)$ Gibbs measure. This means that the regular conditional probability satisfies the following DLR-equation for every $r \in \mathbb{N}$ and μ-a.e. $\xi \in \mathcal{C}$:

$$
\mu\left(d w \mid \mathcal{B}_{r}^{*}\right)(\xi)=Z_{r, \xi}^{-1} \exp \left(-\int_{-r}^{r} U(w(x)) d x\right) \mathcal{W}_{r, \xi}(d w)
$$

where \mathcal{B}_{r}^{*} is the σ-field generated by $\left.\mathcal{C}\right|_{[-r, r]^{c}}, \mathcal{W}_{r, \xi}$ is the path measure of the Brownian bridge on $[-r, r]$ with a boundary condition $\mathcal{W}_{r, \xi}(w(r)=\xi(r), w(-r)=\xi(-r))=1$ and $Z_{r, \xi}$ is the normalization constant.

We impose the following conditions for the potential function U.
(U1) $\quad U \in C^{1}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ and there exists a constant $K_{1} \in \mathbb{R}$ such that

$$
\left(\nabla U\left(z_{1}\right)-\nabla U\left(z_{2}\right), z_{1}-z_{2}\right)_{\mathbb{R}^{d}} \geq-K_{1}\left|z_{1}-z_{2}\right|_{\mathbb{R}^{d}}^{2}, \quad z_{1}, z_{2} \in \mathbb{R}^{d} .
$$

(U2) There exist $K_{2}>0$ and $p>0$ such that

$$
|\nabla U(z)|_{\mathbb{R}^{d}} \leq K_{2}\left(1+|z|_{\mathbb{R}^{d}}^{p}\right), \quad z \in \mathbb{R}^{d} .
$$

(U3) $\quad \lim _{|z|_{\mathbb{R}^{d}} \rightarrow \infty} U(z)=\infty$.
As examples of U satisfying above conditions, we are interested in a square potential and a double-well potential. Those are, $U(z)=a|z|_{\mathbb{R}^{d}}^{2}$ and $U(z)=a\left(|z|_{\mathbb{R}^{d}}^{4}-|z|_{\mathbb{R}^{d}}^{2}\right), a>0$, respectively. We remark that conditions (U1) and (U2) imply that SPDE (4.1) has a unique (mild) solution living in $C([0, \infty), \mathcal{C})$ for initial datum $w \in \mathcal{C}$. See Theorems 5.1 and 5.2 in Iwata [9] for the proof. We also note that condition (U3) is sufficient for the existence of a Gibbs measure. Moreover it is known that Gibbs measures are reversible under the solution $X:=\left\{X_{t}(x)\right\}_{t \geq 0}$ of SPDE (4.1). See Proposition 2.7 and Lemma 2.9 in Iwata [8] for details. We denote by $\left\{P_{t}\right\}_{t \geq 0}$ the transition semigroup related to the diffusion process X.

Now we introduce the relationship between our dynamics and a certain Dirichlet form. We define $H:=L^{2}\left(\mathbb{R}, \mathbb{R}^{d} ; d x\right)$ and

$$
\begin{aligned}
\mathcal{F} \mathcal{C}_{b}^{\infty}:=\{f(w) & =\tilde{f}\left(\left\langle w, \phi_{1}\right\rangle, \cdots,\left\langle w, \phi_{n}\right\rangle\right) \mid n \in \mathbb{N},\left\{\phi_{k}\right\}_{k=1}^{n} \subset C_{0}^{\infty}\left(\mathbb{R}, \mathbb{R}^{d}\right) \\
\tilde{f} & \left.=\tilde{f}\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in C_{b}^{\infty}\left(\mathbb{R}^{n}\right),\left\langle w, \phi_{k}\right\rangle:=\int_{\mathbb{R}}\left(w(x), \phi_{k}(x)\right)_{\mathbb{R}^{d}} d x\right\} .
\end{aligned}
$$

For $f \in \mathcal{F C}_{b}^{\infty}$, we define the Fréchet derivative $D f: E \longrightarrow H$ by

$$
\begin{equation*}
D f(w):=\sum_{k=1}^{n} \frac{\partial \tilde{f}}{\partial \alpha_{k}}\left(\left\langle w, \phi_{1}\right\rangle, \cdots,\left\langle w, \phi_{n}\right\rangle\right) \phi_{k} . \tag{4.2}
\end{equation*}
$$

We consider a symmetric bilinear form \mathcal{E} which is given by

$$
\mathcal{E}(f)=\int_{E}|D f(w)|_{H}^{2} \mu(d w), \quad f \in \mathcal{F}_{b}^{\infty} .
$$

We set $\mathcal{E}_{1}(f):=\mathcal{E}(f)+\|f\|_{L^{2}(\mu)}^{2}$ and denote by $\mathcal{D}(\mathcal{E})$ the completion of $\mathcal{F} \mathcal{C}_{b}^{\infty}$ with respect to $\mathcal{E}_{1}^{1 / 2}$-norm. For $f \in \mathcal{D}(\mathcal{E})$, we also denote by $D f$ the closed extension of (4.2).

By virtue of the $C_{0}^{\infty}\left(\mathbb{R}, \mathbb{R}^{d}\right)$-quasi-invariance and the strictly positive property of the Gibbs measure $\mu,(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ is a Dirichlet form on $L^{2}(\mu)$, i.e., $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ is a closed Markovian symmetric bilinear form. Hence condition (A) holds by putting $\mathcal{A}=\mathcal{F C}_{b}^{\infty}$. Moreover our diffusion process X is associated with the Dirichlet form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$. See Proposition 2.3 in [10] for the detail. We note that $\Gamma(f)=|D f|_{H}^{2}$ in this case.

Then the following gradient estimate of the transition semigroup $\left\{P_{t}\right\}_{t \geq 0}$ holds for any $f \in \mathcal{D}(\mathcal{E})$:

$$
\left|D\left(P_{t} f\right)(w)\right|_{H} \leq e^{K_{1} t} P_{t}\left(|D f|_{H}\right)(w) \quad \text { for } \mu \text {-a.e. } w \in E \text {. }
$$

See Proposition 2.4 in [10] and Proposition 2.1 in [12] for details. Therefore Theorems 1.2 and 1.3 hold for $\alpha>K_{1} \vee 0$. These results play important roles when we study analytic properties for SPDEs containing rotation. See Theorem 4.4 in Kawabi [11] for details.

4.2 Superprocesses with immigration

In this subsection, we give a simple example which comes from superprocesses (or DawsonWatanabe processes) with immigration. Recently, Stannat [21], [22] studied these measurevalued processes from analytic view points. Following [21] and [22], we consider the one of the most elementary superprocesses. In what follows, we introduce the framework precisely. We assume that the type space S is a finite set $\{1, \cdots, d\}$ and the mutation $A=0$. Let $E:=\mathcal{M}_{+}(S)$ be the set of finite positive Borel measures on S. Note that we can identify $E \cong \mathbb{R}_{+}^{d}:=\left\{x \in \mathbb{R}^{d}: x_{i} \geq 0,1 \leq i \leq d\right\}$ with the usual topology. For immigration $\nu \in E$, we use the notation $\nu_{i}:=\nu(\{i\}), 1 \leq i \leq d$. The branching mechanism is given by

$$
\Psi(i, \lambda):=-a_{i} \lambda^{2}-b_{i} \lambda, \quad \lambda \geq 0,
$$

where $a_{i}, b_{i}>0$ for every $i \in S$.
We consider a $(0, \Psi)$-superprocess \mathbb{M} on S with immigration $\nu \in E$. It is a diffusion process on E whose generator is given by

$$
L f(x)=\sum_{i=1}^{d} a_{i} x_{i} \frac{\partial^{2} f}{\partial x_{i}^{2}}(x)+\sum_{i=1}^{d}\left(\nu_{i}-b_{i} x_{i}\right) \frac{\partial f}{\partial x_{i}}(x), \quad f \in C_{0}^{2}(E), x=\left(x_{i}\right)_{i=1}^{d} \in E .
$$

We may think of the diffusion process \mathbb{M} as a continuous time limit of rescaled GaltonWatson processes modelling the random evolution of a given population where each individual $i \in S$, independently of the others, produces a random number of children distributed according to a given offspring distribution and an additional immigration rate ν. The immigration ν induces an additional state-independent drift.

We define a Gamma measure m_{ν}^{Ψ} on E by

$$
m_{\nu}^{\Psi}(d x):=\prod_{i=1}^{d}\left(\frac{b_{i}}{a_{i}}\right)^{\nu_{i} / a_{i}} \Gamma\left(\nu_{i} / a_{i}\right)^{-1} x_{i}^{\nu_{i} / a_{i}-1} e^{-b_{i} x_{i} / a_{i}} d x_{i},
$$

and consider a symmetric bilinear form

$$
\mathcal{E}_{\nu}^{\Psi}(f)=\int_{E} \sum_{i=1}^{d} a_{i} x_{i}\left(\frac{\partial f}{\partial x_{i}}(x)\right)^{2} m_{\nu}^{\Psi}(d x), \quad f \in C_{0}^{2}(E) .
$$

Then by Theorem 3.1 in [22], the closure of $\left(\mathcal{E}_{\nu}^{\Psi}, C_{0}^{2}(E)\right)$ in $L^{2}\left(m_{\nu}^{\Psi}\right)$ is a Dirichlet form and it corresponds to the m_{ν}^{Ψ}-symmetric diffusion process \mathbb{M}. We denote by $\left(P_{t}^{\nu, \Psi}\right)_{t \geq 0}$ its transition semigroup. We note that condition (A) holds by putting $\mathcal{A}=C_{0}^{2}(E)$ and

$$
\Gamma(f)(x)=\sum_{i=1}^{d} a_{i} x_{i}\left(\frac{\partial f}{\partial x_{i}}(x)\right)^{2}, \quad x=\left(x_{i}\right)_{i=1}^{d} \in E .
$$

Here we assume

$$
\begin{equation*}
\min _{1 \leq i \leq d} \frac{\nu_{i}}{a_{i}} \geq \frac{1}{2} \tag{4.3}
\end{equation*}
$$

and set $a_{0}:=\min _{1 \leq i \leq d} a_{i}, a_{d+1}:=\max _{1 \leq i \leq d} a_{i}$ and $b_{0}:=\min _{1 \leq i \leq d} b_{i}$. Then by Theorem 2.9 in [21], we can see condition (G)

$$
\Gamma\left(P_{t}^{\nu, \Psi} f\right) \leq\left(\frac{a_{d+1}}{a_{0}}\right) \cdot e^{-b_{0} t} P_{t}^{\nu, \Psi}\{\Gamma(f)\}, \quad f \in C_{b}^{1}(E)
$$

holds under the condition (4.3). Therefore Theorems 1.2 and 1.3 hold for all $\alpha>0$.
Acknowledgment. We would like to express our sincere gratitude to Professor Shigeo Kusuoka and the anonymous referee for their valuable suggestions and pointing out some errors during the preparation of this paper. We also thank Professors Thierry Coulhon, Beniamin Goldys, Kazuhiro Kuwae and Wilhelm Stannat for useful comments. The first author was supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists and is supported by 21st century COE program "Development of Dynamic Mathematics with High Functionality" at Faculty of Mathematics, Kyushu University.

References

[1] D. Bakry: Etude des transformations de Riesz dans les variétés riemaniennes á courbure de Ricci minorée, Séminaire de Prob. XXI, Lecture Notes in Math., 1247, Springer-Velrag, Berlin-Heidelberg-New York, (1987), pp. 137-172.
[2] D. Bakry: On Sobolev and logarithmic Sobolev inequalities for Markov semigroups, in "New Trends in Stochastic Analysis" (K. D. Elworthy, S. Kusuoka and I. Shigekawa eds.), World Sci. Publishing, River Edge, NJ (1997), pp. 43-75.
[3] A.N. Borodin and P. Salminen: Handbook of Brownian Motion-Facts and Formulae, Second edition. Probability and its Applications. Birkhäuser Verlag, Basel, 2002.
[4] N. Bouleau and F. Hirsch: Dirichlet Forms and Analysis on Wiener space, Walter de Gruyter, 1991.
[5] T. Coulhon and X.T. Duong: Riesz transform and related inequalities on noncompact Riemannian manifolds, Comm. Pure Appl. Math. 56, (2003), pp. 1728-1751.
[6] P. J. Fitzsimmons: On the quasi-regularity of semi-Dirichlet forms, Potential Analysis 15, (2001), pp. 151-185.
[7] M. Fukushima, Y. Oshima and M. Takeda: Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, 1994.
[8] K. Iwata: Reversible measures of a $P(\phi)_{1}$-time evolution, in Prob. Meth. in Math. Phys. : Proceedings of Taniguchi symposium, eds. K. Itô and N. Ikeda (Kinokuniya, 1985), pp. 195-209.
[9] K. Iwata: An infinite dimensional stochastic differential equation with state space $C(\mathbb{R})$, Probab. Theory Relat. Fields 74 (1987), pp. 141-159.
[10] H. Kawabi: The parabolic Harnack inequality for the time dependent GinzburgLandau type SPDE and its application, Potential Analysis 22 (2005), pp. 61-84.
[11] H. Kawabi: Functional inequalities and an application for parabolic stochastic partial differential equations containing rotation, Bull. Sci. Math. 128 (2004), pp. 687-725.
[12] H. Kawabi: A Simple proof of log-Sobolev inequalities on a path space with Gibbs measures, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9 (2006), no. 2, pp. 321-329.
[13] E. Lenglart, D. Lépingle and M. Pratelli: Présentation unifiée de certaines inégalités de théorie des martingales, Séminaire de Prob. XIV, Lecture Notes in Math., 784, Springer-Verlag, Berlin-Heidelberg-New York, (1980), pp. 26-48.
[14] X.-D. Li: Riesz transforms for symmetric diffusion operators on complete Riemannian manifolds, To appear in Rev. Mat. Iberoamericana, (2005).
[15] Z.-M. Ma and M. Röckner: Introduction to the Theory of (Non-Symmetric) Dirichlet Forms, Springer-Verlag, Berlin-Heidelberg-New York, 1992.
[16] P.A. Meyer: Démonstration probabiliste de certaines inégalités de Littlewood-Paley, Séminaire de Prob. X, Lecture Notes in Math., 511, Springer-Velrag, Berlin-Heidelberg-New York, (1976), pp. 125-183.
[17] H. Okura: A new approach to the skew product of symmetric Markov processes, Mem. Fac. Eng. and Design Kyoto Inst. Tech., 46 (1998), pp. 1-12.
[18] I. Shigekawa: Littlewood-Paley inequality for a diffusion satisfying the logarithmic Sobolev inequality and for the Brownian motion on a Riemannian manifold with boundary, Osaka J. Math. 39 (2002), pp. 897-930.
[19] I. Shigekawa: Stochastic Analysis, Translations of Mathematical Monographs, 224. Iwanami Series in Modern Mathematics. American Mathematical Society, Providence, RI, 2004.
[20] I. Shigekawa and N. Yoshida: Littlewood-Paley-Stein inequality for a symmetric diffusion, J. Math. Soc. Japan 44 (1992), pp. 251-280.
[21] W. Stannat: On transition semigroups of (A, Ψ)-superprocesses with immigration, Ann. Probab. 31 (2003), pp. 1377-1412.
[22] W. Stannat: Spectral properties for a class of continuous state branching processes with immigration, J. Funct. Anal. 201 (2003), pp. 185-227.
[23] E.M. Stein: Topics in Harmonic Analysis Related to Littlewood-Paley Theory, Annals of Math. Studies, 63, Princeton Univ. Press, 1970.
[24] N. Yoshida: Sobolev spaces on a Riemannian manifold and their equivalence, J. Math. Kyoto Univ. 32 (1992), pp. 621-654.

List of MHF Preprint Series, Kyushu University
 21st Century COE Program
 Development of Dynamic Mathematics with High Functionality

MHF2005-1 Hideki KOSAKI
Matrix trace inequalities related to uncertainty principle
MHF2005-2 Masahisa TABATA
Discrepancy between theory and real computation on the stability of some finite element schemes

MHF2005-3 Yuko ARAKI \& Sadanori KONISHI
Functional regression modeling via regularized basis expansions and model selection

MHF2005-4 Yuko ARAKI \& Sadanori KONISHI
Functional discriminant analysis via regularized basis expansions
MHF2005-5 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Point configurations, Cremona transformations and the elliptic difference Painlevé equations

MHF2005-6 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Construction of hypergeometric solutions to the q - Painlevé equations
MHF2005-7 Hiroki MASUDA
Simple estimators for non-linear Markovian trend from sampled data:
I. ergodic cases

MHF2005-8 Hiroki MASUDA \& Nakahiro YOSHIDA
Edgeworth expansion for a class of Ornstein-Uhlenbeck-based models
MHF2005-9 Masayuki UCHIDA
Approximate martingale estimating functions under small perturbations of dynamical systems

MHF2005-10 Ryo MATSUZAKI \& Masayuki UCHIDA
One-step estimators for diffusion processes with small dispersion parameters from discrete observations

MHF2005-11 Junichi MATSUKUBO, Ryo MATSUZAKI \& Masayuki UCHIDA Estimation for a discretely observed small diffusion process with a linear drift

MHF2005-12 Masayuki UCHIDA \& Nakahiro YOSHIDA
AIC for ergodic diffusion processes from discrete observations

MHF2005-13 Hiromichi GOTO \& Kenji KAJIWARA
Generating function related to the Okamoto polynomials for the Painlevé IV equation

MHF2005-14 Masato KIMURA \& Shin-ichi NAGATA
Precise asymptotic behaviour of the first eigenvalue of Sturm-Liouville problems with large drift

MHF2005-15 Daisuke TAGAMI \& Masahisa TABATA
Numerical computations of a melting glass convection in the furnace
MHF2005-16 Raimundas VIDŪNAS
Normalized Leonard pairs and Askey-Wilson relations
MHF2005-17 Raimundas VIDŪNAS
Askey-Wilson relations and Leonard pairs
MHF2005-18 Kenji KAJIWARA \& Atsushi MUKAIHIRA
Soliton solutions for the non-autonomous discrete-time Toda lattice equation
MHF2005-19 Yuu HARIYA
Construction of Gibbs measures for 1-dimensional continuum fields
MHF2005-20 Yuu HARIYA
Integration by parts formulae for the Wiener measure restricted to subsets in \mathbb{R}^{d}

MHF2005-21 Yuu HARIYA
A time-change approach to Kotani's extension of Yor's formula
MHF2005-22 Tadahisa FUNAKI, Yuu HARIYA \& Mark YOR
Wiener integrals for centered powers of Bessel processes, I
MHF2005-23 Masahisa TABATA \& Satoshi KAIZU
Finite element schemes for two-fluids flow problems
MHF2005-24 Ken-ichi MARUNO \& Yasuhiro OHTA
Determinant form of dark soliton solutions of the discrete nonlinear Schrödinger equation

MHF2005-25 Alexander V. KITAEV \& Raimundas VIDŪNAS
Quadratic transformations of the sixth Painlevé equation
MHF2005-26 Toru FUJII \& Sadanori KONISHI
Nonlinear regression modeling via regularized wavelets and smoothing parameter selection

MHF2005-27 Shuichi INOKUCHI, Kazumasa HONDA, Hyen Yeal LEE, Tatsuro SATO, Yoshihiro MIZOGUCHI \& Yasuo KAWAHARA
On reversible cellular automata with finite cell array

Cyclic cubic field with explicit Artin symbols
MHF2005-29 Mitsuhiro T. NAKAO, Kouji HASHIMOTO \& Kaori NAGATOU
A computational approach to constructive a priori and a posteriori error estimates for finite element approximations of bi-harmonic problems

MHF2005-30 Kaori NAGATOU, Kouji HASHIMOTO \& Mitsuhiro T. NAKAO
Numerical verification of stationary solutions for Navier-Stokes problems
MHF2005-31 Hidefumi KAWASAKI
A duality theorem for a three-phase partition problem
MHF2005-32 Hidefumi KAWASAKI
A duality theorem based on triangles separating three convex sets
MHF2005-33 Takeaki FUCHIKAMI \& Hidefumi KAWASAKI
An explicit formula of the Shapley value for a cooperative game induced from the conjugate point

MHF2005-34 Hideki MURAKAWA
A regularization of a reaction-diffusion system approximation to the two-phase Stefan problem

MHF2006-1 Masahisa TABATA
Numerical simulation of Rayleigh-Taylor problems by an energy-stable finite element scheme

MHF2006-2 Ken-ichi MARUNO \& G R W QUISPEL
Construction of integrals of higher-order mappings
MHF2006-3 Setsuo TANIGUCHI
On the Jacobi field approach to stochastic oscillatory integrals with quadratic phase function

MHF2006-4 Kouji HASHIMOTO, Kaori NAGATOU \& Mitsuhiro T. NAKAO
A computational approach to constructive a priori error estimate for finite element approximations of bi-harmonic problems in nonconvex polygonal domains

MHF2006-5 Hidefumi KAWASAKI
A duality theory based on triangular cylinders separating three convex sets in R^{n}

MHF2006-6 Raimundas VIDŪNAS
Uniform convergence of hypergeometric series
MHF2006-7 Yuji KODAMA \& Ken-ichi MARUNO
N-Soliton solutions to the DKP equation and Weyl group actions

MHF2006-8 Toru KOMATSU

Potentially generic polynomial

MHF2006-9 Toru KOMATSU

Generic sextic polynomial related to the subfield problem of a cubic polynomial
MHF2006-10 Shu TEZUKA \& Anargyros PAPAGEORGIOU
Exact cubature for a class of functions of maximum effective dimension
MHF2006-11 Shu TEZUKA
On high-discrepancy sequences
MHF2006-12 Raimundas VIDŪNAS
Detecting persistent regimes in the North Atlantic Oscillation time series
MHF2006-13 Toru KOMATSU
Tamely Eisenstein field with prime power discriminant
MHF2006-14 Nalini JOSHI, Kenji KAJIWARA \& Marta MAZZOCCO
Generating function associated with the Hankel determinant formula for the solutions of the Painlevé IV equation

MHF2006-15 Raimundas VIDŪNAS
Darboux evaluations of algebraic Gauss hypergeometric functions
MHF2006-16 Masato KIMURA \& Isao WAKANO
New mathematical approach to the energy release rate in crack extension
MHF2006-17 Toru KOMATSU
Arithmetic of the splitting field of Alexander polynomial
MHF2006-18 Hiroki MASUDA
Likelihood estimation of stable Lévy processes from discrete data
MHF2006-19 Hiroshi KAWABI \& Michael RÖCKNER
Essential self-adjointness of Dirichlet operators on a path space with Gibbs measures via an SPDE approach

MHF2006-20 Masahisa TABATA
Energy stable finite element schemes and their applications to two-fluid flow problems

MHF2006-21 Yuzuru INAHAMA \& Hiroshi KAWABI
Asymptotic expansions for the Laplace approximations for Itô functionals of Brownian rough paths

MHF2006-22 Yoshiyuki KAGEI
Resolvent estimates for the linearized compressible Navier-Stokes equation in an infinite layer

MHF2006-23 Yoshiyuki KAGEI
Asymptotic behavior of the semigroup associated with the linearized compressible Navier-Stokes equation in an infinite layer

MHF2006-24 Akihiro MIKODA, Shuichi INOKUCHI, Yoshihiro MIZOGUCHI \& Mitsuhiko FUJIO
The number of orbits of box-ball systems
MHF2006-25 Toru FUJII \& Sadanori KONISHI
Multi-class Logistic Discrimination via Wavelet-based Functionalization and Model Selection Criteria

MHF2006-26 Taro HAMAMOTO, Kenji KAJIWARA \& Nicholas S. WITTE Hypergeometric Solutions to the q-Painlevé Equation of Type $\left(A_{1}+A_{1}^{\prime}\right)^{(1)}$

MHF2006-27 Hiroshi KAWABI \& Tomohiro MIYOKAWA The Littlewood-Paley-Stein inequality for diffusion processes on general metric spaces

