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1 Framework and Results

In this paper, we discuss the Littlewood-Paley-Stein inequality. After the Meyer’s cele-
brated work [16], many authors studied this inequality by a probabilistic approach. Espe-
cially, Shigekawa-Yoshida [20] studied to symmetric diffusion processes on a general state
space. In [20], they assumed that Bakry-Emery’s Γ2 is bounded from below. To define
Γ2, they also assumed the existence of a suitable core A which is not only a ring but also
stable under the operation of the semigroup and the infinitesimal generator. However,
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in general, it is very difficult to check the existence of A having good properties de-
noted above. Hence their assumption is serious when we face several infinite dimensional
diffusion processes.

In this paper, we show that the Littlewood-Paley-Stein inequality also holds on gen-
eral metric spaces under the gradient estimate condition (G) even if we do not assume
the existence such a core A. Our condition seems somewhat weaker than the lower
boundedness of Γ2. We mention that Coulhon-Duong [5] and Li [14] also discussed the
Littlewood-Paley-Stein inequality under similar conditions on finite dimensional Rieman-
nian manifolds. Contrary to these papers, we work on a more general framework to handle
certain infinite dimensional diffusion processes in Section 4.

We introduce the framework that we work in this paper. Let X be a complete sep-
arable metric space. Suppose we are given a Borel probability measure µ on X and a
local µ-symmetric quasi-regular Dirichlet form E in L2(µ) with the domain D(E). See
Ma-Röckner [15] for the terminologies of quasi-regular Dirichlet forms. Then by Theorem
1.1 of Chapter V in [15], there exists a µ-symmetric diffusion process M := (Xt, {Px}x∈X)
associated with (E ,D(E)). We denote the infinitesimal generator and the transition semi-
group by L and {Pt}t≥0, respectively. Since {Pt}t≥0 is µ-symmetric, it can be extended
to the semigroup on Lp(µ), p ≥ 1. We denote it by {Pt}t≥0 again. We also denote its
generator in Lp(µ) by Lp and the domain by Dom(Lp), respectively if we have to specify
the acting space. We assume that 1 ∈ Dom(Lp) and Lp1 = 0 for all p ≥ 1, where 1
denotes the function that is identically equal to 1. In particular, the diffusion process M
is conservative.

Throughout this paper, we impose the following condition:

(A): There exists a subspace A of Dom(L2) consisting of bounded continuous function
which is dense in D(E) and f 2 ∈ Dom(L1) holds for any f ∈ A.

Under this condition, the form E admits a carré du champ, namely, there exists a unique
positive symmetric and continuous bilinear form Γ from D(E)×D(E) into L1(µ) such that

E(fh, g) + E(gh, f)− E(h, fg) = 2

∫

X

hΓ(f, g) dµ

holds for any f, g, h ∈ D(E) ∩ L∞(µ). In particular, for f, g ∈ Dom(L2), fg ∈ Dom(L1)
and

Γ(f, g) =
1

2

{
L1(fg)− (L2f)g − f(L2g)

}

hold. For further information, see Theorem 4.2.2 of Chapter I in Bouleau-Hirsch [4]. In
the sequel, we also use the notation Γ(f) := Γ(f, f) for the simplicity.

The following gradient estimate condition is crucial in this paper.

(G): There exist constants K > 0 and R ∈ R such that the following inequality holds for
any f ∈ A and t ≥ 0:

Γ(Ptf) ≤ Ke2RtPt

{
Γ(f)

}
. (1.1)
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Remark 1.1 If we can see A is stable under the operations of {Pt} and L,

Γ2(f) ≥ −RΓ(f), f ∈ A (1.2)

implies (1.1) with K = 1, where Γ2(f) := 1
2

(
L1Γ(f) − 2Γ(L2f, f)

)
. Especially, (1.2)

means that the Ricci curvature is bounded by −R from below in the case where X is a
finite dimensional complete Riemannian manifold. See Proposition 2.3 in Bakry [2] for
details. Hence our condition (G) is weaker than (1.2).

Let us introduce the Littlewood-Paley G-functions. To do this, we recall the sub-
ordination of a semigroup. For t ≥ 0, we define a probability measure λt on [0, +∞)
by

λt(ds) :=
t

2
√

π
e−t2/4ss−3/2ds.

In terms of the Laplace transform, this measure is characterized as
∫ ∞

0

e−γsλt(ds) = e−
√

γt, γ > 0.

For α ≥ 0, we define the subordination {Q(α)
t }t≥0 of {Pt}t≥0 by

Q
(α)
t f :=

∫ ∞

0

e−αsPsf λt(ds), f ∈ Lp(µ).

Then we can easily see that

‖Q(α)
t f‖Lp(µ) ≤

∫ ∞

0

e−αs‖Psf‖Lp(µ)λt(ds)

≤
( ∫ ∞

0

e−αsλt(ds)
)
‖f‖Lp(µ) = e−

√
αt‖f‖Lp(µ), (1.3)

and hence {Q(α)
t }t≥0 is a strongly continuous contraction semigroup on Lp(µ). The in-

finitesimal generator of {Q(α)
t }t≥0 in L2(µ) is −√α− L. In the case of Lp(µ), this operator

will be clearly denoted by −√
α− Lp when the dependence of p is significant.

For f ∈ L2 ∩ Lp(µ) and α > 0, we define Littlewood-Paley’s G-functions by

g→f (x, t) :=

∣∣∣∣
∂

∂t
(Q

(α)
t f)(x)

∣∣∣∣ , G→
f (x) :=

(∫ ∞

0

tg→f (x, t)2 dt

)1/2

,

g↑f (x, t) :=
(
Γ(Q

(α)
t f)

)1/2
(x), G↑

f (x) :=

(∫ ∞

0

tg↑f (x, t)2 dt

)1/2

,

gf (x, t) :=
√

(g→f (x, t))2 + (g↑f (x, t))2, Gf (x) :=

(∫ ∞

0

tgf (x, t)2 dt

)1/2

.

Now we present the Littlewood-Paley-Stein inequality. In what follows, the notation
‖u‖Lp(µ) . ‖v‖Lp(µ) stands for ‖u‖Lp(µ) ≤ C‖v‖Lp(µ), where C is a positive constant
depending only on K and p.
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Theorem 1.2 For any 1 < p < ∞ and α > R ∨ 0, the following inequalities hold for
f ∈ L2 ∩ Lp(µ):

‖Gf‖Lp(µ) . ‖f‖Lp(µ), (1.4)

‖f‖Lp(µ) . ‖G→
f ‖Lp(µ). (1.5)

Before closing this section, we give an application of Theorem 1.2. It plays an impor-
tant role in the regularity theory of parabolic PDEs on general metric spaces.

Theorem 1.3 Let 1 < p < ∞, q ≥ 1 and α > R ∨ 0. We define

R(q)
α (L)f := Γ

(
(
√

α− Lp)
−qf

)1/2
, f ∈ Lp(µ).

Then we have the following statements:
(1) For any p ≥ 2 and q > 1, R

(q)
α (L) is bounded on Lp(µ). Moreover there exists a

positive constant ‖R(q)
α (L)‖p,p depending only on K, p, q and αR := (α−R) ∧ α such that

∥∥R(q)
α (L)f

∥∥
Lp(µ)

≤ ‖R(q)
α (L)‖p,p‖f‖Lp(µ), f ∈ Lp(µ). (1.6)

This implies the inclusion

Dom
(
(
√

1− Lp)
q
) ⊂ W 1,p(µ) :=

{
f ∈ Lp(µ) ∩ D(E) | Γ(f)1/2 ∈ Lp(µ)

}
.

(2) For any p ≥ 2 and 1 < q < 2, there exists a positive constant Cp,q such that

∥∥Γ(Ptf)1/2
∥∥

Lp(µ)
≤ Cp,q‖R(q)

α ‖p,p

(
αq/2 + t−q/2

)‖f‖Lp(µ), t > 0, f ∈ Lp(µ). (1.7)

Remark 1.4 We do not know whether our gradient estimate condition (G) is sufficient
or not to establish (1.6) for q = 1, i.e., so-called the boundedness of the Riesz trans-

form Rα(L) := R
(1)
α (L) on Lp(µ), Recently, Shigekawa [18] discussed the boundedness of

Rα(L) under the intertwining condition for the diffusion semigroup in a general frame-
work. We remark that the intertwining condition implies (G). Hence one way to establish
the boundedness of Rα(L) is to show the intertwining condition for each concrete problem.

2 Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by a probabilistic method. The original idea is due
to Meyer [16]. The reader is referred to see also Bakry [1], Shigekawa-Yoshida [20] and

Yoshida [24]. In these papers, they expanded L(Q
(α)
t f)p, f ∈ A, by employing the usual

functional analytic approach for the proof of the Littlewood-Paley-Stein inequality. Note
that this approach is valid because they imposed the existence of a good core A described
in Section 1. On the other hand, in this paper, A in condition (A) does not have such
good properties. So we cannot draw their proof directly. To overcome this difficulty,
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we need more delicate probabilistic arguments based on Itô’s formula. We give details
and prove Theorem 1.2 for 1 < p < 2 in the second subsection. In the third subsection,
we introduce the notion of H-functions to prove Theorem 1.2 for p > 2. Our gradient
estimate condition (G) plays a crucial role when we compare between G-functions and
H-functions. For the case p = 2, (1.4) is proved as equality by using spectral resolution
of L. See Proposition 3.1 in [20] for the proof. We note that (1.5) is derived from (1.4)
by using the standard duality argument. See Theorem 4.4 in [20] for the detail.

2.1 Preparations

In this subsection, we make some preparations. We recall the diffusion process M =
(Xt, {Px}x∈X) associated with the Dirichlet form (E ,D(E)). From now on, we write P ↑

x

in place of Px. Let (Bt, P
→
a ) be one-dimensional Brownian motion starting at a ∈ R with

the generator ∂2

∂a2 . We set Yt := (Xt, Bt), t ≥ 0, and P(x,a) := P ↑
x ⊗ P→

a . Then M̃ :=
(Yt, {P(x,a)}) is a µ⊗m-symmetric diffusion process on X×R with the (formal) generator

L + ∂2

∂a2 , where m is one-dimensional Lebesgue measure. We put P ↑
µ :=

∫
X

P ↑
xµ(dx),

Pµ⊗δa :=
∫

X
P(x,a)µ(dx) and denote the integration with respect to P ↑

x , P→
a ,P(x,a) and

Pµ⊗δa by E↑x,E→a ,E(x,a) and Eµ⊗δa , respectively.
We denote the semigroup on Lp(X × R; µ⊗m) associated with the diffusion process

{Yt}t≥0 by {P̂t}t≥0 and its generator by L̂p. We also denote the Dirichlet form on L2(X×
R; µ⊗m) associated with L̂2 by (Ê ,D(Ê)). That is,

D(Ê) =
{
u ∈ L2(X × R; µ⊗m)

∣∣ lim
t↘0

1

t

(
u− P̂tu, u

)
L2(X×R;µ⊗m)

< +∞}
,

Ê(u, v) = lim
t↘0

1

t

(
u− P̂tu, v

)
L2(X×R;µ⊗m)

for u, v ∈ D(Ê).

We denote by Ĉ := A⊗C∞
0 (R) the totality of all linear combinations of f ⊗ϕ, f ∈ A, ϕ ∈

C∞
0 (R), where (f ⊗ ϕ)(x, a) := f(x)ϕ(a). Meanwhile, the spaces L2(µ) ⊗ L2(m) and
D(E)⊗H1,2(R) are usual tensor products of Hilbert spaces. Then we have

Lemma 2.1 Ĉ is dense in D(Ê). Moreover for u, v ∈ D(E)⊗H1,2(R), we have

Ê(u, v) =

∫

R
E(

u(·, a), v(·, a)
)
m(da) +

∫

X

µ(dx)

∫

R

∂u

∂a
(x, a)

∂v

∂a
(x, a)m(da). (2.1)

Proof. We denote by {Tt}t≥0 the transition semigroup associated with (Bt, {P→
a }a∈R).

We regard that it acts on L2(m). First, we note that the following identity holds:

P̂t(f ⊗ ϕ) = (Ptf)⊗ (Ttϕ), f ∈ L2(µ), ϕ ∈ L2(m). (2.2)

By (2.2), we can see Ĉ ⊂ D(E)⊗H1,2(R) ⊂ D(Ê) and the identity (2.1). We also have

Ê1(f ⊗ ϕ, f ⊗ ϕ) ≤ E1(f, f)‖ϕ‖2
L2(m) + ‖f‖2

L2(µ)

(‖ϕ′‖2
L2(m) + ‖ϕ‖2

L2(m)

)
(2.3)
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holds for f ∈ D(E), ϕ ∈ H1,2(R). By (2.3), we see that Ĉ is dense in D(E)⊗H1,2(R) with
respect to Ê1-topology, because A and C∞

0 (R) are dense in D(E) and H1,2(R), respectively.
Hence it is sufficient to show D(E)⊗H1,2(R) is dense in D(Ê). Since L2(µ) ⊗ L2(m)

is dense in L2(X × R; µ ⊗m),
⋃

t>0 P̂t

(
L2(µ) ⊗ L2(m)

)
is dense in D(Ê). On the other

hand, (2.2) also leads us to
⋃
t>0

P̂t

(
L2(µ)⊗ L2(m)

)
=

⋃
t>0

(
Pt(L

2(µ))
)⊗ (

Pt(L
2(m))

) ⊂ D(E)⊗H1,2(R) ⊂ D(Ê).

Therefore the proof is complete.

Here we note that, due to Fitzsimmons [6], the Dirichlet form (Ê ,D(Ê)) is quasi-
regular. Thus we can apply the general theory of quasi-regular Dirichlet forms in [15].

Now we fix a function f ∈ A. We set u(x, a) := Q
(α)
a f(x), a ≥ 0. Then it holds that

(
∂2

∂a2
+ L− α

)
u(·, a) = 0 in L2(µ).

Furthermore for a ∈ R, we consider v(x, a) := u(x, |a|) = Q
(α)
|a| f(x). Then by (1.3), we

have

‖v‖L2(X×R;µ⊗m) ≤
( ∫

R
e−2

√
α|a|‖f‖2

L2(µ)da
)1/2

= α−1/4‖f‖L2(µ). (2.4)

The main purpose of this subsection is to discuss the semi-martingale decomposition
of v(Xt∧τ , Bt∧τ ), t ≥ 0, where τ := inf{t > 0 | Bt = 0}. As the first step, we give the
following fundamental lemma:

Lemma 2.2 v ∈ D(Ê) holds.

Proof. At the beginning, we note L2(X × R; µ ⊗m) ∼= L2(R, L2(X; µ); m). According
to Fubini’s theorem, we have

P̂tv(x, a) = E(x,a)

[
u(Xt, |Bt|)

]
= E↑x

[
E→a

[
u(·, |Bt|)

]
(Xt)

]
. (2.5)

We recall Tanaka’s formula

|Bt| = |B0|+
∫ t

0

sgn(Bs)dBs + Lt(0), t ≥ 0, P→a -a.s.,

where {Lt(0)}t≥0 is the local time of one-dimensional Brownian motion {Bt}t≥0 at the
origin. Then by using Itô’s formula, we have

u(·, |Bt|) = u(·, |B0|) +

∫ t

0

∂u

∂a
(·, |Bs|)sgn(Bs)dBs

　 +

∫ t

0

∂u

∂a
(·, |Bs|)dLs(0) +

∫ t

0

∂2u

∂a2
(·, |Bs|)ds

= u(·, |B0|)−
∫ t

0

√
α− Lu(·, |Bs|)sgn(Bs)dBs

　 −
∫ t

0

√
α− Lu(·, |Bs|)dLs(0) +

∫ t

0

(α− L)u(·, |Bs|)ds. (2.6)
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Hence (2.6) leads us that

E→a [u(·, |Bt|)] = u(·, |a|)− E→a
[ ∫ t

0

√
α− Lu(·, |Bs|)dLs(0)

]

+E→a
[ ∫ t

0

(α− L)u(·, |Bs|)ds
]
. (2.7)

On the other hand, since f ∈ A, it holds u(·, |a|) = Q
(α)
|a| f(·) ∈ Dom(L2). Hence

M
[u(·,|a|)]
t := (Q

(α)
|a| f)(Xt)− (Q

(α)
|a| f)(X0)−

∫ t

0

L(Q
(α)
|a| f)(Xs)ds, t ≥ 0,

is an L2(P ↑
µ)-martingale. Then we have

E↑x
[
u(Xt, |a|)

]
= (Q

(α)
|a| f)(x) +

∫ t

0

Ps(LQ
(α)
|a| f)(x)ds, µ-a.e. x ∈ X. (2.8)

By summarizing (2.5), (2.7) and (2.8), we can proceed as

1

t

(
v − P̂tv, v

)
L2(X×R;µ⊗m)

= −1

t

∫

R
da

∫

X

{ ∫ t

0

Ps(LQ
(α)
|a| f)(x)ds

}
·Q(α)

|a| f(x)µ(dx)

+
1

t

∫

R
da

∫

X

E↑x
[
E→a

[ ∫ t

0

√
α− Lu(·, |Bs|)dLs(0)

]
(Xt)

]
·Q(α)

|a| f(x)µ(dx)

−1

t

∫

R
da

∫

X

E↑x
[
E→a

[ ∫ t

0

(α− L)u(·, |Bs|)ds
]
(Xt)

]
·Q(α)

|a| f(x)µ(dx)

= −1

t

∫

R
da

∫ t

0

(
PsLQ

(α)
|a| f,Q

(α)
|a| f

)
L2(µ)

ds

+
1

t

∫

R
da

∫

X

E→a
[ ∫ t

0

√
α− Lu(x, |Bs|)dLs(0)

] · Pt(Q
(α)
|a| f)(x)µ(dx)

−1

t

∫

R
da

∫

X

E→a
[ ∫ t

0

(α− L)u(x, |Bs|)ds
] · Pt(Q

(α)
|a| f)(x)µ(dx)

=: −I1(t) + I2(t)− I3(t), (2.9)

where we used symmetry of {Pt}t≥0 on L2(µ).
For the term I1(t), we see the following estimate by using contractivity of {Pt}t≥0 on

L2(µ) and (1.3).

|I1(t)| ≤ 1

t

∫

R
da

∫ t

0

‖LQ
(α)
|a| f‖L2(µ) · ‖Q(α)

|a| f‖L2(µ)ds

≤
∫

R
e−2

√
α|a|‖Lf‖L2(µ) · ‖f‖L2(µ)da =

1√
α
‖Lf‖L2(µ) · ‖f‖L2(µ). (2.10)
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For the term I2(t), by using same arguments as above, we have

|I2(t)| =
∣∣∣1
t

∫

R
da

∫

X

(√
α− Lu(x, 0)E→a

[
Lt(0)

])
Pt(Q

(α)
|a| f)(x)µ(dx)

∣∣∣

=
1

t

∣∣∣
∫

R

(√
α− Lf, PtQ

(α)
|a| f

)
L2(µ)

E→a
[
Lt(0)

]
da

∣∣∣

≤ 2

t
‖
√

α− Lf‖L2(µ) · ‖f‖L2(µ)

∫ ∞

0

e−
√

αaE→a
[
Lt(0)

]
da.

Here we recall

P→
a (L(t, r) ∈ dy) =

1√
πt

exp
{
− (y + |r − a|)2

4t

}
dy, y > 0.

See page 155 of Borodin-Salminen [3]. Then we can continue as

|I2(t)| ≤ 2

t
‖
√

α− Lf‖L2(µ) · ‖f‖L2(µ)

×
∫ ∞

0

e−
√

αa
{ ∫ ∞

0

y
1√
πt

exp
(
− (a + y)2

4t

)
dy

}
da

≤ 8‖
√

α− Lf‖L2(µ) · ‖f‖L2(µ)

×
∫ ∞

0

1√
2π

e−
a2

2 da

∫ ∞

0

ye−
y2

2 dy = 4‖
√

α− Lf‖L2(µ) · ‖f‖L2(µ). (2.11)

For the term I3(t), we also have

|I3(t)| ≤ 1

t

∫

R

∥∥∥E→a
[ ∫ t

0

(α− L)u(·, |Bs|)ds
]∥∥∥

L2(µ)
· ‖Q(α)

|a| f‖L2(µ)da

≤ 1

t

∫

R
E→a

[ ∫ t

0

‖(α− L)Q
(α)
|Bs|f(·)‖L2(µ)ds

]
·
(
e−

√
α|a|‖f‖L2(µ)

)
da

≤ 1

t

∫

R
E→a

[ ∫ t

0

(α‖f‖L2(µ) + ‖Lf‖L2(µ))ds
]
·
(
e−

√
α|a|‖f‖L2(µ)

)
da

= 2
√

α‖f‖2
L2(µ) +

2√
α
‖Lf‖L2(µ) · ‖f‖L2(µ). (2.12)

Finally, we insert estimates (2.10), (2.11) and (2.12) into (2.9). Then we can easily
see

lim
t↘0

1

t

(
v − P̂tv, v

)
L2(X×R;µ⊗m)

= sup
t>0

1

t

(
v − P̂tv, v

)
L2(X×R;µ⊗m)

< +∞.

This and (2.4) complete the proof.

By Lemma 2.2, we can apply Fukushima’s decomposition theorem. That is, there exist
a martingale additive functional of finite energy M [v] and a continuous additive functional
of zero energy N [v] such that

ṽ(Xt, Bt)− ṽ(X0, B0) = M
[v]
t + N

[v]
t , t ≥ 0, P(x,a)-a.s. for q.e.-(x, a), (2.13)
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where ṽ is an Ê-quasi-continuous modification of v ∈ D(Ê). See Theorem 5.2.2 of
Fukushima-Oshima-Takeda [7]. We note that, since Ê has strong local property, M [v]

is continuous. Due to Theorem 5.2.3 of [7], we know that

〈M [v]〉t =

∫ t

0

{
Γ(v, v)(Xs, Bs) +

(∂v

∂a
(Xs, Bs)

)2}
ds. (2.14)

See also Theorem 5.1.3 and Example 5.1.1 of [7] for details.
From now, we discuss the explicit expression of N [v]. Let us define a signed measure

ν on X × R by
ν(dxda) := 2

√
α− Lv(x, a)µ(dx)δ0(da),

where δ0 is Dirac measure on R with mass at the origin. The total variation of ν is given
by

|ν|(dxda) := 2
∣∣√α− Lv(x, a)

∣∣µ(dx)δ0(da).

Then we have

Lemma 2.3 There exists a constant C > 0 such that∫∫

X×R

∣∣(g ⊗ ϕ)(x, a)
∣∣ · |ν|(dxda) ≤ C

√
Ê1(g ⊗ ϕ, g ⊗ ϕ), g ∈ A, ϕ ∈ C∞

0 (R).

That is, ν is of finite 1-order energy integral. (For the definition of measures of finite
1-order energy integral, see Sections 2.2 and 5.4 of [7].)

Proof. At the beginning, we take a positive constant a0 such that supp(ϕ) ⊂ [−a0, a0].
We first consider in the case of ϕ(0) ≤ 0. Let ε > 0. Then for µ-a.e. x ∈ X, we have
∫

R
|ϕ(a)|

√(√
α− Lv(x, a)

)2
+ ε δ0(da)

= −ϕ(0)

√(√
α− Lv(x, 0)

)2
+ ε

= ϕ(a0)

√(√
α− Lv(x, a0)

)2
+ ε− ϕ(0)

√(√
α− Lv(x, 0)

)2
+ ε

=

∫ a0

0

∂

∂a

{
ϕ(a)

√(√
α− Lv(x, a)

)2
+ ε

}
da

=

∫ a0

0

ϕ′(a)

√(√
α− Lv(x, a)

)2
+ εda−

∫ a0

0

ϕ(a)

√
α− Lv(x, a) · (α− L)v(x, a)√(√

α− Lv(x, a)
)2

+ ε
da

≤
∫

R
|ϕ′(a)|

√(√
α− Lv(x, a)

)2
+ εda +

∫

R
|ϕ(a)| · |(α− L)v(x, a)|da.

By letting ε ↘ 0 on both sides, we have
∫

R
|ϕ(a)| · |

√
α− Lv(x, a)|δ0(da)

≤
∫

R
|ϕ′(a)| ·

∣∣√α− Lv(x, a)
∣∣da +

∫

R
|ϕ(a)| · |(α− L)v(x, a)|da, µ-a.e. x ∈ X.
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Therefore we can proceed as∫∫

X×R

∣∣(g ⊗ ϕ)(x, a)
∣∣ · |ν|(dxda)

≤ 2

∫

X

|g(x)|
( ∫

R
|ϕ′(a)| ·

∣∣√α− Lv(x, a)
∣∣da

)
µ(dx)

+2

∫

X

|g(x)|
( ∫

R
|ϕ(a)| · |(α− L)v(x, a)|da

)
µ(dx)

≤ 2
∥∥√α− Lv

∥∥
L2(X×R;µ⊗m)

‖ϕ′‖L2(m)‖g‖L2(µ)

+2
∥∥(α− L)v

∥∥
L2(X×R;µ⊗m)

‖ϕ‖L2(m)‖g‖L2(µ)

≤ 2
√

2α−1/4
(∥∥√α− Lf

∥∥
L2(µ)

+ ‖(α− L)f‖L2(µ)

)√Ê1(g ⊗ ϕ, g ⊗ ϕ)

=: C

√
Ê1(g ⊗ ϕ, g ⊗ ϕ),

where we used (2.4) and

Ê(g ⊗ ϕ, g ⊗ ϕ) = E(g, g)‖ϕ‖2
L2(m) + ‖g‖2

L2(µ)‖ϕ′‖2
L2(m)

for the last line. This is the desired result.
In the case of ϕ(0) ≥ 0, we easily see

∫

R
|ϕ(a)|

√(√
α− Lv(x, a)

)2
+ ε δ0(da) =

∫ 0

−a0

∂

∂a

{
ϕ(a)

√(√
α− Lv(x, a)

)2
+ ε

}
da.

(2.15)
By using (2.15), we can draw the same argument in the case of ϕ(0) ≤ 0. Therefore the
proof is complete.

Due to Lemma 2.3, ν is of finite 1-order energy integral. Then for each β > 0, there
exists a unique Uβν ∈ D(Ê) such that the following relation holds:

Êβ(Uβν, g ⊗ ϕ) =

∫∫

X×R
(g ⊗ ϕ)(x, a)ν(dxda), g ∈ A, ϕ ∈ C∞

0 (R). (2.16)

Lemma 2.4 (1) Uαν = v.
(2) Uβν = v − (β − α)R̂βv holds, where {R̂β}β>0 is the resolvent of {P̂t}t≥0.

Proof. (1) We need to show (2.16). By using the integration by parts formula, for µ-a.e.
x ∈ X, we have∫

R

∂v

∂a
(x, a)ϕ′(a)da

= −
∫ ∞

0

√
α− Lu(x, a)ϕ′(a)da +

∫ ∞

0

√
α− Lu(x, a)ϕ′(−a) da

= −
∫ ∞

0

√
α− Lu(x, a)

d

da

(
ϕ(a) + ϕ(−a)

)
da

= 2
√

α− Lu(x, 0)ϕ(0) +

∫ ∞

0

∂

∂a

√
α− Lu(x, a)

(
ϕ(a) + ϕ(−a)

)
da
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= 2
√

α− Lu(x, 0)ϕ(0)−
∫ ∞

0

(α− L)u(x, a)
(
ϕ(a) + ϕ(−a)

)
da

= 2
√

α− Lv(x, 0)ϕ(0)−
∫

R
(α− L)v(x, a)ϕ(a)da. (2.17)

Then (2.17) leads us to our desired equality as follows:

Êα(v, g ⊗ ϕ) =

∫

R
daϕ(a)

∫

X

√
α− Lv(x, a)

√
α− Lg(x)µ(dx)

+

∫

X

µ(dx)g(x)
(
2
√

α− Lv(x, 0)ϕ(0)−
∫

R
(α− L)v(x, a)ϕ(a)da

)

= 2

∫

X

√
α− Lv(x, 0)g(x)ϕ(0)µ(dx)

=

∫∫

X×R
(g ⊗ ϕ)(x, a)ν(dxda).

(2) We recall Êβ(R̂βv, g ⊗ ϕ) =
(
v, g ⊗ ϕ)L2(X×R;µ⊗m). Then we have

Êβ

(
v − (β − α)R̂βv, g ⊗ ϕ

)
= Êβ(v, g ⊗ ϕ)− (β − α) · (v, g ⊗ ϕ)L2(X×R;µ⊗m)

= Êα(v, g ⊗ ϕ)

=

∫∫

X×R
(g ⊗ ϕ)(x, a)ν(dxda),

where we used (1) for the last line. Hence the proof of (2) is also complete.

Due to Lemma 5.4.1 of [7] and the lemma above, we have

N
[v]
t = α

∫ t

0

ṽ(Xs, Bs) ds− At, t ≥ 0,

where ṽ is an Ê-quasi-continuous modification of v and A is the continuous additive func-
tional corresponding to ν. Since ν does not charge out of X ×{0}, due to Theorem 5.1.5
of [7], At∧τ = 0 holds. Thus we get

N
[v]
t∧τ = α

∫ t∧τ

0

ṽ(Xs, Bs) ds. (2.18)

By summarizing (2.13), (2.14), and (2.18), we have the following proposition which
plays a crucial role later.

Proposition 2.5 We have the semi-martingale decomposition

ṽ(Xt∧τ , Bt∧τ )− ṽ(X0, B0) = M
[v]
t∧τ + α

∫ t∧τ

0

ṽ(Xs, Bs) ds, t ≥ 0, (2.19)

under P(x,a) for q.e.-(x, a). Moreover it holds

〈M [v]〉t∧τ =

∫ t∧τ

0

{
Γ(v, v)(Xs, Bs) +

(∂v

∂a
(Xs, Bs)

)2}
ds. (2.20)
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Since v(x, a) = u(x, a) holds for a ≥ 0, we can regard that this proposition also gives the
semi-martingale decomposition of u(Xt∧τ , Bt∧τ ).

Before closing this subsection, we need the following lemma because we will deal with
the measure µ⊗ δa as an initial distribution.

Lemma 2.6 µ⊗ δa does not charge any set of zero capacity for m-almost all a ∈ R.

Proof. Let N ⊂ X × R be a set of zero capacity with respect to Ê1. Then by the item
(4) in Theorem 4.1 of Okura [17], Na is a set of zero capacity with respect to E1 for m-a.e.
a ∈ R, where the set Na ⊂ X is defined by Na := {x ∈ X|(x, a) ∈ N}, a ∈ R. Thus we
have

(µ⊗ δa)(N) = µ(Na) ≤ CapE1(Na) = 0.

This completes the proof.

2.2 Proof of Theorem 1.2 (1 < p < 2)

In this subsection, we return to the proof of Theorem 1.2 in the case of 1 < p < 2. Here
we recall the following identities for our later use. See [16] for the proof.

Lemma 2.7 Let η : X × [0, +∞) → [0, +∞) be a measurable function. Then

Eµ⊗δa

[ ∫ τ

0

η(Xt, Bt)dt
]

=

∫

X

µ(dx)

∫ ∞

0

(a ∧ t)η(x, t) dt (2.21)

and

Eµ⊗δa

[ ∫ τ

0

η(Xt, Bt)dt
∣∣∣Xτ = x

]
=

∫ ∞

0

(a ∧ t)Q
(0)
t η(·, t)(x) dt. (2.22)

Since {Xt}t≥0 and {Bt}t≥0 are mutually independent under Pµ⊗δa and µ is the invariant
measure of {Xt}t≥0, we can see the following identity holds for any bounded Borel function
h on X:

Eµ⊗δa

[
h(Xτ )

]
=

∫

X

h(x)µ(dx). (2.23)

Hereafter, we abbreviate M
[v]
t∧τ as Mt for simplicity. By Proposition 2.5 and Lemma

2.6, there exists a non-negative sequence {an}n∈N such that limn→∞ an = ∞, (2.19) and
(2.20) hold under Pµ⊗δan

for any n ∈ N.
We set Vt := ṽ(Xt∧τ , Bt∧τ ). We apply Itô’s formula to V 2

t . Proposition 2.5 implies

d(V 2
t ) = 2VtdMt + 2αV 2

t dt + d〈M〉t
= 2VtdMt + 2

(
gf (Xt, Bt)

2 + αV 2
t

)
dt. (2.24)

Let ε > 0. By applying Itô’s formula to (V 2
t + ε)p/2 again, we also have

d
(
V 2

t + ε
)p/2

= p
(
V 2

t + ε
)p/2−1

VtdMt + p
(
V 2

t + ε
)p/2−1(

gf (Xt, Bt)
2 + αV 2

t

)
dt

+
p(p− 2)

2

(
V 2

t + ε
)p/2−2

V 2
t d〈M〉t

≥ p
(
V 2

t + ε
)p/2−1

VtdMt + p(p− 1)
(
V 2

t + ε
)p/2−1

gf (Xt, Bt)
2dt,
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where we used p < 2 for the last line.
Hence by taking the expectation of the inequality above and using u(x, a) = v(x, a)

for a ≥ 0, we have

Eµ⊗δan

[
p(p− 1)

∫ τ

0

(
V 2

t + ε
)p/2−1

gf (Xt, Bt)
2 dt

]

≤ Eµ⊗δan

[
(V 2

τ + ε)p/2 − (V 2
0 + ε)p/2

]

≤ Eµ⊗δan

[(
V 2

τ + ε
)p/2

]

= Eµ⊗δan

[(
u(Xτ , Bτ )

2 + ε
)p/2

]

= Eµ⊗δan

[(
f(Xτ )

2 + ε
)p/2

]
=

∫

X

(|f(x)|2 + ε)p/2 µ(dx), (2.25)

where we used (2.23) for the last line. Here, by recalling (2.21), the left hand side of
(2.25) is equal to

p(p− 1)

∫

X

µ(dx)

∫ ∞

0

(t ∧ an)(u(x, t)2 + ε)p/2−1gf (x, t)2 dt.

Therefore, by letting ε → 0 and n →∞, we have

p(p− 1)

∫

X

µ(dx)

∫ ∞

0

t|u(x, t)|p−2gf (x, t)2 dt ≤
∫

X

|f(x)|p µ(dx). (2.26)

Now we recall the maximal ergodic inequality
∥∥∥ sup

t≥0
|Ptf |

∥∥∥
Lp(µ)

≤ p

p− 1
‖f‖Lp(µ), p > 1.

See Theorem 3.3 in Shigekawa [19] for details. It leads us that

∥∥Gf

∥∥p

Lp(µ)
=

∫

X

µ(dx)

{∫ ∞

0

t|u(x, t)|2−p|u(x, t)|p−2gf (x, t)2 dt

}p/2

≤
∫

X

µ(dx)

{∫ ∞

0

t
(
sup
t≥0

|Ptf(x)|)2−p|u(x, t)|p−2gf (x, t)2 dt

}p/2

≤
{∫

X

(
sup
t≥0

|Ptf(x)|)p
µ(dx)

} 2−p
2

×
{∫

X

∫ ∞

0

t|u(x, t)|p−2gf (x, t)2 dt µ(dx)

}p/2

.
{∫

X

|f(x)|p µ(dx)

} 2−p
2

{∫

X

|f(x)|p µ(dx)

}p/2

=
∥∥f

∥∥p

Lp(µ)
,

where we used (2.26) for the last line. This completes the proof.
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2.3 Proof of Theorem 1.2 (p > 2)

In the case of p > 2, we need additional functions, namely H-functions defined by

H→
f (x) :=

{∫ ∞

0

tQ
(0)
t (g→f (·, t)2)(x) dt

}1/2

,

H↑
f (x) :=

{∫ ∞

0

tQ
(0)
t (g↑f (·, t)2)(x) dt

}1/2

,

Hf (x) :=

{∫ ∞

0

tQ
(0)
t (gf (·, t)2)(x) dt

}1/2

.

We begin by the following proposition:

Proposition 2.8 For p > 2, the following inequality holds for any f ∈ A:

‖Hf‖Lp(µ) . ‖f‖Lp(µ).

Proof. By a slight modification, we can prove in the same way as the proof of Proposition
4.2 in Shigekawa-Yoshida [20]. However we give the proof for the reader’s convenience.

Let us recall that, due to (2.24), we have

V 2
t∧τ − V 2

0 = 2

∫ t∧τ

0

Vs dMs + 2

∫ t∧τ

0

(
αV 2

s + gf (Xs, Bs)
2
)
ds. (2.27)

Since At := 2
∫ t∧τ

0

(
αV 2

s +gf (Xs, Bs)
2
)
ds, t ≥ 0, is a continuous increasing process, (2.27)

implies that Zt := V 2
t∧τ − V 2

0 , t ≥ 0 is a submartingale.
Now we need an inequality for submartingales. Let {Zt}t≥0 be a continuous submartin-

gale with the Doob-Meyer decomposition Zt = Mt + At, where {Mt}t≥0 is a continuous
martingale and {At}t≥0 is a continuous increasing process with A0 = 0. Due to Lenglart-
Lépingle-Pratelli [13], it holds that

E[Ap
∞] ≤ (2p)pE

[
sup
t≥0

|Zt|p
]
, p > 1. (2.28)

Then by using (2.28) and Doob’s inequality, we have

Eµ⊗δan

[{
2

∫ τ

0

(
αV 2

s + gf (Xs, Bs)
2
)
ds

}p/2
]

. Eµ⊗δan

[
sup
t≥0

|V 2
t∧τ − V 2

0 |p/2
]

. Eµ⊗δan

[
|V 2

τ − V 2
0 |p/2

]

= Eµ⊗δan

[
|u(Xτ , Bτ )

2 − u(X0, B0)
2|p/2

]

= Eµ⊗δan

[
|(Q(α)

0 f(Xτ ))
2 − (Q(α)

an
f(X0))

2|p/2
]

. Eµ⊗δan

[
|(Q(α)

0 f(Xτ )|p
]

+ Eµ⊗δan

[
|Q(α)

an
f(X0)|p

]

= ‖f‖p
Lp(µ) + ‖Q(α)

an
f‖p

Lp(µ) . ‖f‖p
Lp(µ). (2.29)
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On the other hand, by using (2.22), (2.29) and Jensen’s inequality, we have

‖Hf‖p
Lp(µ) =

∥∥∥
{ ∫ ∞

0

tQ
(0)
t

(
gf (·, t)2

)
dt

}p/2∥∥∥
L1(µ)

= lim
n→∞

∥∥∥
{ ∫ ∞

0

(an ∧ t)Q
(0)
t

(
gf (·, t)2

)
dt

}p/2∥∥∥
L1(µ)

= lim
n→∞

Eµ⊗δan

[{ ∫ ∞

0

(an ∧ t)Q
(0)
t

(
gf (·, t)2

)
(Xτ )dt

}p/2]

= lim
n→∞

Eµ⊗δan

[
Eµ⊗δan

[ ∫ τ

0

gf (Xs, Bs)
2ds

∣∣Xτ

]p/2]

≤ lim inf
n→∞

Eµ⊗δan

[
Eµ⊗δan

[( ∫ τ

0

gf (Xs, Bs)
2ds

)p/2∣∣Xτ

]]

= lim inf
n→∞

Eµ⊗δan

[( ∫ τ

0

gf (Xs, Bs)
2ds

)p/2
]

≤ lim inf
n→∞

Eµ⊗δan

[{ ∫ τ

0

(
αV 2

s + gf (Xs, Bs)
2
)
ds

}p/2
]

. ‖f‖p
Lp(µ).

This completes the proof.

Next we study the relationship between G-functions and H-functions. In the proof of
this proposition, condition (G) plays a key role.

Proposition 2.9 (1) For any f ∈ A and α > R ∨ 0, the following inequality holds:

G↑
f ≤ 2

√
KH↑

f .

(2) For any f ∈ A, the following inequality holds:

G→
f ≤ 2H→

f .

Proof. We only give a proof of the item (1). The item (2) can be proved in the same
way. By condition (G) and Schwarz’s inequality, we have the following estimate for any
α > R ∨ 0 and f ∈ A:

Γ(Q
(α)
t f) ≤

( ∫ ∞

0

e−αsΓ(Psf)1/2 λt(ds)
)2

≤
( ∫ ∞

0

e−(α−R)sλt(ds)
)
·
( ∫ ∞

0

e−(α+R)sΓ
(
Psf

)
λt(ds)

)

≤ Ke−
√

α−Rt
( ∫ ∞

0

e−(α−R)sPs

(
Γ(f)

)
λt(ds)

)

≤ KQ
(α−R)
t

(
Γ(f)

)
. (2.30)

Then (2.30) yields

g↑f (x, 2t)2 = Γ(Q
(α)
2t f)(x)

= Γ
(
Q

(α)
t (Q

(α)
t f)

)
(x)

≤ KQ
(α−R)
t

(
Γ(Q

(α)
t f)

)
(x) ≤ KQ

(0)
t

(
g↑f (·, t)2

)
(x), (2.31)
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Therefore we have

(G↑
f (x))2 = 4

∫ ∞

0

tg↑f (x, 2t)2 dt

≤ 4K

∫ ∞

0

tQ
(0)
t

(
g↑f (·, t)2

)
(x) dt = 4K(H↑

f (x))2,

where we changed the variable t to 2t in the first line and used (2.31) for the second line.
This completes the proof.

It is clear that Propositions 2.8 and 2.9 conclude the desired inequality (1.4). Therefore
the proof of Theorem 1.2 is completed.

3 Proof of Theorem 1.3

Before giving the proof of Theorem 1.3, we make a preparation parallel to Yoshida [24].
Let ν be a finite signed measure on [0,∞). We denote by ν̂ and ‖ν‖ :=

∫∞
0
|ν|(ds) the

Laplace transform and the total variation of ν, respectively. For α > 0, we define a
bounded operator ν̂(α− L) on Lp(µ), 1 ≤ p < ∞, by

ν̂(α− L)f :=

∫

[0,∞)

e−αsPsf ν(ds).

Thus we easily have

‖ν̂(α− L)f‖Lp(µ) ≤ ‖ν‖ · ‖f‖Lp(µ), f ∈ Lp(µ). (3.1)

Here we give a remark in the case of p = 2. In this case, this operator is represented by

ν̂(α− L) :=

∫

[0,∞)

ν̂(α + λ)dEλ,

where {Eλ}λ≥0 is the spectral decomposition of −L in L2(µ).
By Lemma 2.3 in [1], there exist finite signed measures ν1 and ν2 such that the Laplace

transform are given by ν̂1(λ) =
√

1+λ

1+
√

λ
and ν̂2(λ) = 1+

√
λ√

1+λ
, respectively. For ε > 0, we denote

by ν
(ε)
i , i = 1, 2, the image measure of νi under the mapping λ 7→ λ/ε. Then we have

ν̂
(ε)
1 (λ) =

√
ε + λ√

ε +
√

λ
, ‖ν(ε)

1 ‖ ≤ ‖ν1‖, (3.2)

ν̂
(ε)
2 (λ) =

√
ε +

√
λ√

ε + λ
, ‖ν(ε)

2 ‖ ≤ ‖ν2‖. (3.3)

(3.1), (3.2) and (3.3) imply the resulting operators

√
ε+(α−L)√
ε+
√

α−L
and

√
ε+
√

α−L√
ε+(α−L)

on Lp(µ) have

the operator norms not more than ‖ν1‖ and ‖ν2‖, respectively. We also have

(√
ε + (α− L)√
ε +

√
α− L

)(√ε +
√

α− L√
ε + (α− L)

)
=

(√ε +
√

α− L√
ε + (α− L)

)(√
ε + (α− L)√
ε +

√
α− L

)
= I.
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Then we obtain the following relation for q > 1:

(√
ε + (α− L)

)−q
= (

√
ε +

√
α− L)−q

(√
ε + (α− L)√
ε +

√
α− L

)−q

= (
√

ε +
√

α− L)−q
(√ε +

√
α− L√

ε + (α− L)

)q

. (3.4)

Now we are in a position to give the proof of Theorem 1.3.

Proof of Theorem 1.3. First, we set β ∈ R and ε > 0 such that α = β + ε and β > R.
Note 0 < ε < αR. Let f ∈ L2 ∩ Lp(µ) and we consider

g :=
(√ε +

√
β − L√

ε + (β − L)

)q

f.

By (3.4), we have

Γ
(
(
√

α− L)−qf
)

= Γ
(
(
√

ε +
√

β − L)−qg
)

≤
(

1

Γ(q)

∫ ∞

0

tq−1e−
√

εtΓ(Q
(β)
t g)1/2 dt

)2

.

Here we use Theorem 1.2. By recalling q > 1, we have the following estimate:

∥∥Γ
(
(
√

α− L)−qf
)1/2∥∥

Lp(µ)
≤ 1

Γ(q)

∥∥∥
∫ ∞

0

tq−1e−
√

εtΓ(Q
(β)
t g)1/2dt

∥∥∥
Lp(µ)

≤ 1

Γ(q)

∥∥∥
( ∫ ∞

0

t2q−3e−2
√

εtdt
)1/2

( ∫ ∞

0

tΓ(Q
(β)
t g)dt

)1/2∥∥∥
Lp(µ)

=
1

Γ(q)
·
(Γ(2q − 2)

(4ε)q−1

)1/2

‖G↑
g‖Lp(µ)

. (4ε)−(q−1)/2 Γ(2q − 2)1/2

Γ(q)
· ‖g‖Lp(µ). (3.5)

However the left hand side of (3.5) does not depend on ε. Hence we can let ε ↗ αR on
the right hand side, and it leads us to

∥∥Γ
(
(
√

α− L)−qf
)1/2∥∥

Lp(µ)
≤ CK,p,q α

−(q−1)/2
R · ‖g‖Lp(µ). (3.6)

On the other hand, we have

‖g‖Lp(µ) ≤ ‖ν1‖q · ‖f‖Lp(µ). (3.7)

Then by combining (3.6) with (3.7), we complete the proof of the item (1).

For the proof of the item (2), we use the same argument as used in Kawabi [11]. Since
{Pt}t≥0 is an analytic semigroup on Lp(µ) (see Chapter III of Stein [23] for details), there
exists a positive constant Cp such that

∥∥LPtf
∥∥

Lp(µ)
≤ Cpt

−1
∥∥f

∥∥
Lp(µ)

, f ∈ Lp(µ), (3.8)
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and hence P
(α)
t := e−αtPt also satisfies
∥∥(α− L)P

(α)
t f

∥∥
Lp(µ)

≤ e−αt
(
Cpt

−1 + α)
∥∥f

∥∥
Lp(µ)

, f ∈ Lp(µ). (3.9)

Then by noting 1 < q < 2 and (3.9), the left hand side of (1.7) is dominated as
∥∥Γ(Ptf)1/2

∥∥
Lp(µ)

= eαt
∥∥Γ

(
P

(α)
t f

)1/2∥∥
Lp(µ)

≤ eαt‖R(q)
α (L)‖p,p

∥∥(
√

α− L)qP
(α)
t f

∥∥
Lp(µ)

= eαt‖R(q)
α (L)‖p,p

∥∥(
√

α− L)q−2(α− L)P
(α)
t f

∥∥
Lp(µ)

≤ eαt‖R(q)
α (L)‖p,p

Γ(1− q/2)

∫ ∞

0

s−q/2
∥∥(α− L)P

(α)
s+tf

∥∥
Lp(µ)

ds

≤ eαt‖R(q)
α (L)‖p,p

Γ(1− q/2)

∫ ∞

0

s−q/2
{

e−α(s+t)
( Cp

s + t
+ α

)∥∥f
∥∥

Lp(µ)

}
ds, (3.10)

where we used (1.6) for the second line.
Moreover, we have

eαt

Γ(1− q/2)

∫ ∞

0

s−q/2e−α(s+t)
( Cp

s + t
+ α

)
ds

≤ Cp

Γ(1− q/2)

∫ ∞

0

s−q/2(s + t)−1ds +
α

Γ(1− q/2)

∫ ∞

0

s−q/2e−αsds

=
Cp

Γ(1− q/2)
t−q/2

( ∫ ∞

0

τ−q/2(1 + τ)−1dτ
)

+ αq/2

≤ Cp,q

(
t−q/2 + αq/2

)
, (3.11)

where we changed the variable s to tτ in the third line.
Hence by combining (3.10) with (3.11), we obtain our desired estimate (1.7). This

completes the proof.

4 Examples

4.1 Diffusion processes on a path space with Gibbs measures

In this subsection, we present an example on an infinite dimensional setting. This is
studied in Kawabi [10], [12]. We consider diffusion processes on an infinite volume path
space C(R,Rd) with Gibbs measures associated with the (formal) Hamiltonian

H(w) :=
1

2

∫

R
|w′(x)|2Rddx +

∫

R
U(w(x))dx,

where U : Rd → R is an interaction potential. Our diffusion processes are defined through
the time dependent Ginzburg-Landau type SPDE

dXt(x) =
{
∆xXt(x)−∇U(Xt(x))

}
dt +

√
2dWt(x), x ∈ R, t > 0, (4.1)
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where ∆x = d2/dx2, ∇ = (∂/∂zi)
d
i=1 and (Wt)t≥0 is a white noise process. This dynamics

is called the P (φ)1-time evolution which has its origin in Parisi and Wu’s stochastic
quantization model.

In what follows we describe the framework. We introduce some spaces of functions to
control the growth of Xt(x) as |x| → ∞. For fixed λ > 0, we consider a Hilbert spaces
E := L2(R,Rd; e−2λχ(x)dx), λ > 0 where χ ∈ C∞(R,R) is a positive symmetric convex
function satisfying χ(x) = |x| for |x| ≥ 1. We also consider

C :=
{

X(·) ∈ C(R,Rd)
∣∣ sup

x∈R
|X(x)|Rde−λχ(x) < ∞ for every λ > 0

}
.

We regard these spaces as state spaces of our dynamics.
Let µ be a (U -)Gibbs measure. This means that the regular conditional probability

satisfies the following DLR-equation for every r ∈ N and µ-a.e. ξ ∈ C:

µ(dw|B∗r)(ξ) = Z−1
r,ξ exp

(−
∫ r

−r

U(w(x))dx
)Wr,ξ(dw),

where B∗r is the σ-field generated by C|[−r,r]c , Wr,ξ is the path measure of the Brownian
bridge on [−r, r] with a boundary condition Wr,ξ

(
w(r) = ξ(r), w(−r) = ξ(−r)

)
= 1 and

Zr,ξ is the normalization constant.
We impose the following conditions for the potential function U .

(U1) U ∈ C1(Rd,R) and there exists a constant K1 ∈ R such that
(∇U(z1)−∇U(z2), z1 − z2

)
Rd ≥ −K1|z1 − z2|2Rd , z1, z2 ∈ Rd.

(U2) There exist K2 > 0 and p > 0 such that

|∇U(z)|Rd ≤ K2(1 + |z|pRd), z ∈ Rd.

(U3) lim|z|Rd→∞ U(z) = ∞.

As examples of U satisfying above conditions, we are interested in a square potential and
a double-well potential. Those are, U(z) = a|z|2Rd and U(z) = a(|z|4Rd − |z|2Rd), a > 0,
respectively. We remark that conditions (U1) and (U2) imply that SPDE (4.1) has a
unique (mild) solution living in C([0,∞), C) for initial datum w ∈ C. See Theorems 5.1
and 5.2 in Iwata [9] for the proof. We also note that condition (U3) is sufficient for the
existence of a Gibbs measure. Moreover it is known that Gibbs measures are reversible
under the solution X := {Xt(x)}t≥0 of SPDE (4.1). See Proposition 2.7 and Lemma 2.9
in Iwata [8] for details. We denote by {Pt}t≥0 the transition semigroup related to the
diffusion process X.

Now we introduce the relationship between our dynamics and a certain Dirichlet form.
We define H := L2(R,Rd; dx) and

FC∞b :=
{

f(w) = f̃(〈w, φ1〉, · · · , 〈w, φn〉)
∣∣∣ n ∈ N, {φk}n

k=1 ⊂ C∞
0 (R,Rd),

f̃ = f̃(α1, · · · , αn) ∈ C∞
b (Rn), 〈w, φk〉 :=

∫

R
(w(x), φk(x))Rddx

}
.
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For f ∈ FC∞b , we define the Fréchet derivative Df : E −→ H by

Df(w) :=
n∑

k=1

∂f̃

∂αk

(〈w, φ1〉, · · · , 〈w, φn〉)φk. (4.2)

We consider a symmetric bilinear form E which is given by

E(f) =

∫

E

|Df(w)|2Hµ(dw), f ∈ FC∞b .

We set E1(f) := E(f)+ ‖f‖2
L2(µ) and denote by D(E) the completion of FC∞b with respect

to E1/2
1 -norm. For f ∈ D(E), we also denote by Df the closed extension of (4.2).
By virtue of the C∞

0 (R,Rd)-quasi-invariance and the strictly positive property of the
Gibbs measure µ, (E ,D(E)) is a Dirichlet form on L2(µ), i.e., (E ,D(E)) is a closed Marko-
vian symmetric bilinear form. Hence condition (A) holds by putting A = FC∞b . Moreover
our diffusion process X is associated with the Dirichlet form (E ,D(E)). See Proposition
2.3 in [10] for the detail. We note that Γ(f) = |Df |2H in this case.

Then the following gradient estimate of the transition semigroup {Pt}t≥0 holds for any
f ∈ D(E):

|D(Ptf)(w)|H ≤ eK1tPt

(|Df |H
)
(w) for µ-a.e. w ∈ E.

See Proposition 2.4 in [10] and Proposition 2.1 in [12] for details. Therefore Theorems 1.2
and 1.3 hold for α > K1 ∨ 0. These results play important roles when we study analytic
properties for SPDEs containing rotation. See Theorem 4.4 in Kawabi [11] for details.

4.2 Superprocesses with immigration

In this subsection, we give a simple example which comes from superprocesses (or Dawson-
Watanabe processes) with immigration. Recently, Stannat [21], [22] studied these measure-
valued processes from analytic view points. Following [21] and [22], we consider the one
of the most elementary superprocesses. In what follows, we introduce the framework
precisely. We assume that the type space S is a finite set {1, · · · , d} and the mutation
A = 0. Let E := M+(S) be the set of finite positive Borel measures on S. Note that we
can identify E ∼= Rd

+ := {x ∈ Rd : xi ≥ 0, 1 ≤ i ≤ d} with the usual topology. For immi-
gration ν ∈ E, we use the notation νi := ν({i}), 1 ≤ i ≤ d. The branching mechanism is
given by

Ψ(i, λ) := −aiλ
2 − biλ, λ ≥ 0,

where ai, bi > 0 for every i ∈ S.
We consider a (0, Ψ)-superprocess M on S with immigration ν ∈ E. It is a diffusion

process on E whose generator is given by

Lf(x) =
d∑

i=1

aixi
∂2f

∂x2
i

(x) +
d∑

i=1

(νi − bixi)
∂f

∂xi

(x), f ∈ C2
0(E), x = (xi)

d
i=1 ∈ E.
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We may think of the diffusion process M as a continuous time limit of rescaled Galton-
Watson processes modelling the random evolution of a given population where each in-
dividual i ∈ S, independently of the others, produces a random number of children
distributed according to a given offspring distribution and an additional immigration rate
ν. The immigration ν induces an additional state-independent drift.

We define a Gamma measure mΨ
ν on E by

mΨ
ν (dx) :=

d∏
i=1

( bi

ai

)νi/ai

Γ(νi/ai)
−1x

νi/ai−1
i e−bixi/aidxi,

and consider a symmetric bilinear form

EΨ
ν (f) =

∫

E

d∑
i=1

aixi

( ∂f

∂xi

(x)
)2

mΨ
ν (dx), f ∈ C2

0(E).

Then by Theorem 3.1 in [22], the closure of (EΨ
ν , C2

0(E)) in L2(mΨ
ν ) is a Dirichlet form

and it corresponds to the mΨ
ν -symmetric diffusion process M. We denote by (P ν,Ψ

t )t≥0 its
transition semigroup. We note that condition (A) holds by putting A = C2

0(E) and

Γ(f)(x) =
d∑

i=1

aixi

( ∂f

∂xi

(x)
)2

, x = (xi)
d
i=1 ∈ E.

Here we assume

min
1≤i≤d

νi

ai

≥ 1

2
, (4.3)

and set a0 := min1≤i≤d ai, ad+1 := max1≤i≤d ai and b0 := min1≤i≤d bi. Then by Theorem
2.9 in [21], we can see condition (G)

Γ(P ν,Ψ
t f) ≤ (ad+1

a0

) · e−b0tP ν,Ψ
t

{
Γ(f)

}
, f ∈ C1

b (E),

holds under the condition (4.3). Therefore Theorems 1.2 and 1.3 hold for all α > 0.
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