作成者 |
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
巻 |
|
号 |
|
開始ページ |
|
終了ページ |
|
出版タイプ |
|
アクセス権 |
|
権利関係 |
|
関連DOI |
|
関連DOI |
|
関連DOI |
|
|
関連URI |
|
|
関連URI |
|
関連HDL |
|
関連情報 |
|
|
|
概要 |
The resolvent problem of the linearized compressible Navier-Stokes equation around a given constant state is considered in an infinite layer $ R^{n−1} \times (0, a) $, $ n geq 2 $, under the no slip b...oundary condition for the momentum. It is proved that the linearized operator is sectorial in $ W^{1,p} \times L^p $ for $ 1 < p < infty $. The $ L^p $ estimates for the resolvent are established for all $ 1 leq p leq infty $. The estimates for the high frequency part of the resolvent are also derived, which lead to the exponential decay of the corresponding part of the semigroup.続きを見る
|