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Abstract

The resolvent problem of the linearized compressible Navier-Stokes
equation around a given constant state is considered in an infinite
layer R x (0,a), n > 2, under the no slip boundary condition for
the momentum. It is proved that the linearized operator is sectorial
in WhP x LP for 1 < p < co. The LP estimates for the resolvent are
established for all 1 < p < oco. The estimates for the high frequency
part of the resolvent are also derived, which lead to the exponential
decay of the corresponding part of the semigroup.

1. Introduction
This paper studies the following resolvent problem
(1.1) A+ Lu=f
in an infinite layer 2 = R"™ x (0,a), n > 2, where A\ € C is a parameter,
f = f(z) is a given function with values in R"*, u = ( ) is the unknown

function with ¢ = ¢(z) € R and m = T(m!(z), - z)) € R, and L is
an operator defined by

0 ydiv
L =
vV  —vAl, — vVdiv

with positive constants v and v and a nonnegative constant v. Here x =

/
( . ) € 2 with 2’ € R"™', x,, € (0,a); the superscript 7+ stands for the

n
transposition; I, is the n x n identity matrix; and div, V and A are the



usual divergence, gradient and Laplacian with respect to x. We consider
(1.1) under the boundary condition

Problem (1.1)-(1.2) is the resolvent problem associated with the linearization
of the compressible Navier-Stokes equation around a motionless state with a
positive constant density, where ¢ and m are the Laplace transform of the
perturbation of the density and the momentum, respectively.

In this paper we establish the L? estimates for the solution of (1.1)—(1.2)
for all 1 < p < oco. The estimates show that —L generates an analytic
semigroup in WP x LP for 1 < p < oo. We also establish the estimates
for the high frequency part of the resolvent, which lead to the exponential
decay of the corresponding part of the semigroup. The low frequency part is
investigated in [5]. The precise statement of the main results of this paper
will be given in section 2.

The resolvent problem in an infinite layer was studied in [1, 2, 3] in the
case of the incompressible Stokes equation. They established the L? estimates
of the resolvent for 1 < p < oo, which yields the exponential decay of the
Stokes semigroup in LP norms. To analyze the resolvent, they considered
the Fourier transform in 2/ € R™ ! and derived solution formulae for the
resolvent problem. The LP estimates were then obtained by applying the
Fourier multiplier theorem.

In this paper we will also consider the Fourier transform ()\—i-ig/)_l of the
resolvent in 2/ € R"™!, where ¢ € R"~! denotes the phase space variable. In
section 3 we derive an integral representation of ()\—l—lig/)_l. In the derivation
we make use of the invariance of (1.1) under the orthogonal group and Green’s
formula for (1.1), which naturally leads to a decomposition of the solution
into the two parts; one is the solution under the slip boundary condition; and
the other is the term arising from the viscous friction stress due to the no
slip boundary condition (1.2). (Cf. the solution formula for the half-space
problem given in [6, 7].) In section 4 we investigate the resolvent problem
based on the integral representation. The LP estimates for 1 < p < oo
are obtained by applying the Fourier multiplier theorem as in [1, 2, 3]. We
obtain the L estimates for p = 1, oo based on the Riemann-Lebesgue lemma
as in the analysis of the Cauchy problem for (1.1) given in [8]. We also
establish the estimates for the high frequency part |{'| >> 1. In contrast to
the incompressible Stokes problem, Eg/ has different characters between the
cases [¢'| >> 1 and |¢'| << 1. The spectral analysis near the origin is given
in [5]. It is shown in [5] that the continuous spectrum reaches the origin
A=0.



2. Main Results

We first introduce some notation which will be used throughout the paper.
For a domain D and 1 < p < oo we denote by LP(D) the usual Lebesgue
space on D and its norm is denoted by || - ||zr(p). Let ¢ be a nonnegative
integer. The symbol W%?(D) denotes the ¢ th order LP Sobolev space on
D with norm || - lyes(p). When p = 2, the space W*2(D) is denoted by
HY(D) and its norm is denoted by || - ||g¢py. C§(D) stands for the set of
all C* functions which have compact support in D. We denote by Wol (D)
the completion of C}(D) in W'?(D). In particular, Wy*(D) is denoted by
H}(D).

We simply denote by LP(D) (resp., W4P(D), H*(D)) the set of all vector
fields m = T(m!,---,m™) on D with m’ € LP(D) (resp., W5(D), HY(D)),
j = 1,---,n, and its norm is also denoted by || - ||zopy (resp., || - [[wew(p),

I o). Foru = () with 6 € WA(D) and = Tt ) €

WD), we define [[ullyrrp)xweapy bY lullwrrpyxwesny = |@llwrroy +
|m|[weapy. When k& = £ and p = ¢, we simply write ||ul|wrrp)xwrr(p) =
[ullwre(p)-
In case D = (2 we abbreviate LP(§2) (resp., W P(£2), H*(£2)) as L? (resp.,
W, H*). In particular, the norm || - ||zr() = || - || z» is denoted by || - ||,
In case D = (0,a) we denote the norm of L”(0,a) by |- |,. The inner
product of L?(0,a) is denoted by

(f.9)= || Fleg(@) dee. f.g € L2(0.a).

Here § denotes the complex conjugate of g. We will also denote the bilinear
pairing f and g by

(1:9) = [ Fa)g(wn) dan.

The norms of W4?(0,a) and H*(0,a) are denoted by | - |yyer and | - |ge,
respectively.
/
We often write x € (2 as © = ( ;: , o =T(xy, - 201) € RV

Partial derivatives of a function « in z, 2’, x,, and ¢ are denoted by 0,u, O, u,
0., u and Oyu, respectively. We also write higher order partial derivatives of
win x as Ofu = (0%u; |a| = k).

We denote the k x k identity matrix by . In particular, when £ = n+1,
we simply write [ for I,,41. We also define (n+1) x (n+1) diagonal matrices



Q07 @7 Q/ and Qn by
Q():diag<1,0,“-,0,0), @:dlag<0717171)7
Q' = diag (0,1,---,1,0), @, =diag(0,0,---,0,1).

!/

n

0 0
Q0u<§>7@u<7g>anu(m/)aQnu(O)
0 m"

We next introduce some notation about integral operators. For a function
f = f(2) (z € R¥), we denote its Fourier transform by .7, f:

Foru:<7i> ER”“Withm:<m )eR”,Wehave

(ZDQ) = [, e d

~

In particular, when k =n — 1 (2/ € R"!), we denote .,/ f by f,

F=(Zuh€) = [ fa)e s aa

The inverse Fourier transform is denoted by .# gl:

(FT D) = o™ [ fQedc.

For a function K(z,,y,) on (0,a) x (0,a) we will denote by K f the inte-
gral operator [y K(2n, Yn)f(yn) dy,. Similarly, for a function K (2, z,, y,) on
R" 1% (0,a)x (0, a) we will denote by K f the integral operator [gn—1 [o K (2'—
Y's T,y Yn) [ (Yn) dy' dyy,.

We denote the resolvent set of a closed operator A by p(A) and the
spectrum of A by o(A). For A € R and § € (5, 7) we will denote the set
{N € C; |arg (A — A)| < 0} by Z(A,6):

(A, 0) = {\ € C; |arg (A — A)] < 6},

We now state the main results of this paper.

Theorem 2.1. Let 1 < p < oo. There exists a number 0 € (3, m) such

that for any n > 0 problem (1.1)—(1.2) has a unique solution u € WP x



(WQWHWOI”’) for any f € WP x LP, provided that \ € X(n,0). Fur-

thermore, uw = (A + L)™' f satisfies the following estimates uniformly in
A€ X(n,0):

[Qofllwes . 1Qfs },k:&L

OF(A+ L)~ gc{

and N
102Q(A + L)~ fll2 < Cl fllwroxre-

Furthermore, if Qf = 0, then there holds

xn=0,
C

A -1
0.0+ )7 flly < 7577

[ F -

In the application to the nonlinear problem we will also use the following
H?® — L estimates of the resolvent.

Theorem 2.2. Let 6 be the number given in Theorem 2.1 and let n be a
positive number. Then the following estimates hold uniformly in A € X(n, 0):

HQOfHH[%HH’“ + HQfHH[%];“ } . k=01,
4

H%Q@»%M*ngc{

Al +1 (IA] +1)
and
~ _ 1Qof |l yizies  NQF| izi-1sn
105QX+ L) flloo < C H2 + e 4 k=01
(Al +1)* ([A[+1)3

Here € 1s some number satisfying 0 < € < %
As for the LP estimates for p = 1, 00, we have the following result.

Theorem 2.3. Let 6 be the number given in Theorem 2.1 and let n be a
positive number. Then the following estimates hold uniformly in A € X(n, 0):
for p = 17 OO}

_ C
H(?!EQO()\ + L) lpr S m"f"wk+l,pxwk,p, k - 0, 1,

and

HQofHWk’p H@fHP } k=0.1.

QN+ L) C
ra0+ 1yl < ¢ {19 e o T

bt



e 0, then, there hold, for p =1, 0,

10:Q\+ L)~ £, < 1f lw.r-

]/\\+1

We see from Theorem 2.1 that —L generates the analytic semigroup %(t)
in WP x LP for 1 < p < co. Based on Theorems 2.1-2.3 we have the following
estimates of Z(t) for 0 <t < 1.

Corollary 2.4. Let ¢ = 0,1. Then there hold the estimates
|02 (B)uolly < CF 2 lfuollwansrn, 1< p < o0,

105 (tuollso < CE VD Jug| mrinse, yyimive
and

|05 (yuolly < C2 |fuo|lweormswen,  p= 1,00,

for 0 <t < 1 with some constant 0 < € < 1, provided that ug belongs to
the Sobolev spaces indicated on the right-hand side of each inequality above.
Furthermore, if Qugls,—0a = 0, then

0.2 (Byuolly < Clluollws v
holds for 0 <t < 1.

To investigate problem (1.1)—(1.2) we consider the Fourier transform in
2’ € R 1. Applying the Fourier transform, we have the following boundary
value problem for functions ¢(z,) and m(x,) on the interval (0, a):

(2.1) Au + Ef/u =f,
where v = | m/ (xn) , f = (xn) and Lg is a closed operator on

H'(0,a) x L*(0,a) defined by Lg/ — Ae + Be with domain of definition
D(Le) = H'(0,a) x (H*(0,a) N H}(0,a)). Here

0 0 0
A= 0 V(¢ =82 )1 +5E7¢ —iv€' Dy,
0 e, v(|€)? = 02,) — 002,



and
0 iy"¢ 0y,

Bg/ = Z’}/f/ 0 0

Y0, 0 0
In the analysis of the semigroup generated by —L, it is convenient to
decompose the phase space {{’ € R"'} into the parts |¢'| << 1 and || >>
1, since Lg has different characters between the cases || << 1 and || >> 1.
Motivated by this we introduce the following decomposition. Let r be a
positive number. We take a function x(¢') € C°(R"™!) satisfying 0 < y < 1

on R" 10 x(¢) = 0 for |¢'] < £ and x(¢) = 1 for [¢'| > r. We define the
operator R (\) by

ROWf =Fg" [x(&) A+ Le) ™ f] .

The estimates in Theorems 2.1-2.3 hold for a negative n with (A + L)™!
replaced by RV ().

Theorem 2.5. Let r be a positive number. B B
(i) There exist positive numbers 1) and 0 with 0 € (%, 7) such that X (—1,0) C

p(—ig/) for || > r.
(ii) Let 1 < p < oo and define RV(X\) as above. Then the following

estimates hold uniformly in A € X(—1,0):

QoS lwr . 1Qfl } F—01
A+ 1 (A +1)'2

|EROW) £, < {

and N
102QRD (N fll2 < Cllflwroxro-

Theorem 2.6 Let n and 6 be the numbers as in Theorem 2.5. Then the

following estimates hold uniformly in A € X (—1,0):

|QofIl 514145 N HQfHH[%J;k } k=01,
4

105Q0R™M () flloo < c{

Al +1 (IA] +1)
and
2 HQOfH [B1+E H@f“ [Z]-1+k
[05QRMW (M) flle < C Her H2 =0,1.
(Al +1)7 (Al + 1)1

7



Here € 1s some number satisfying 0 < € < %

Theorem 2.7. Letp = 1,00. Let n and 6 be the numbers as in Theorem
2.5. Then the following estimates hold uniformly in X\ € X(—n,0):

C
HaiQOR(l)()\)pr S m”f”wk-&-l,pxwk,p, k - 0, 1,

and

[Qoflwes 1@l } F=0,1

I*QRW (A C .
sar o, < oIl . @l

3. An integral representation of the resolvent

In this section we derive an integral representation of the resolvent. For
this purpose we take the Fourier transform of (1.1)—(1.2) in 2/ € R" ! and
consider the boundary value problem (2.1).

We begin with the following observation on the resolvent of —Iig/. If
A # 0, then, by the first row of equation (2.1), ¢ is written as

(3.1) o= % {fo — & -m' — ”y&,;nm”} :

Substituting (3.1) into the second and third rows of (2.1), we obtain

(3.2) LN EYm = F,

where £(\, &) = A\, &) + B(X, &) with domain of definition D(L(), &) =

f/ '5/
H?(0,a) N H(0,a) andF:)\( ) —”y( Z )fo. Here
f" O,

{A + VA€ = 92 ) Hna 0 )

AN €)=
e ( 0 N +vA(E - 0z,)

€/T€/ _Zflaacn
—iT¢d,, -2 )

We thus deduce that (2.1) is equivalent to (3.1) and (3.2) if A # 0. We also
write (3.2) as

B(X&) = (PA +77) (

(3.3) L E)Ym =F,

8



where

LOE) = =02 I, + A\ €) + B\, €)d,,

1 v
with domain of definition D(L£(X, &) = H2(0,a)NHL(0,a) and F = ( Vl’\ . ) :

v1A+y2
Here
. s A FVIE ) oa + (DA +22)ETE 0
/ —
ALY = 0 A )
V1 A2
and

R 0 e
B\ €) = .

UM T
ZV1>\+’YQ 5 0

Here and in what follows we write v for v + v:

vV =V—+U.

Lemma 3.1. Assume that X\ # 0 and )\ +~* # 0. Then \ € p(—ig/) if
and only if Ker L(A,€') = {0}.

Proof. Suppose that A\ € p(~Lg). Let m € H?(0,a) N H(0,a) satisty
L\, &)m = 0, namely, L(\,&)m = 0. We define ¢ as in (3.1) with f9 =0

¢

and set u = m ) It then follows that (A + Le)u = 0. Since A € p(—Legr),

we see that u = 0, in particular, m = 0. This shows that Ker £(\,¢’) = {0}.
Conversely, suppose that Ker £(),¢’) = {0}, namely, Ker £(A,&") = {0}. We
define F' as in (3.3). Since (2.1) is equivalent to (3.1) and (3.3), it suffices

to show the unique existence of the solution u = 7?; of (3.1) and (3.3)

satisfying [u)gixgz < C|f|mixz2 with some C > 0. Since Ker £(\,¢') = {0},
the standard theory of elliptic equations shows that there exists a unique
solution m € H%(0,a) N Hy(0,a) of (3.3) and m satisfies

[l < CAE) |F| < COLE) flan ez

It then follows from (3.1) that ¢ € H'(0,a) and |p[g < C(N &) f|mrxre-
We thus conclude that A € p(—Lg). This completes the proof.

We next give a fundamental set of solutions of the ordinary differential
equation (3.2) with F' = 0. For this purpose we introduce some notation.
We set

Ao = —v|¢[?

9



and

1% 1
Ao = =S €1 % SR — alerf,
and define
A+ v|€?
= mnJep?) = 2T
and

X F nEPA+ T
1/1)\+")/2 ’

po = pi2(A €)= \/

Remark 3.2. We observe that pu; = \/’\_—;\1’0 and o = %

Furthermore, A_ g = Ay o with Im A, o = v|¢'|4/1 — %]5’]2 when [£']| < 27/
and Ay € R when [£'| > 2/, and it holds that

v ! | ¢! !/
Moo = =5 | £l + O(€'T)

as [¢'| — 0, and

2

Mo ==+ 0(€), Ao =-nl¢+00)
1
as €| — oo.

Proposition 3.3. Assume that X # 0, DA+ # 0, A+ 7% # 0, A # A1
and X # Ay o. Then the following functions vy, ---,va, form a fundamental
set of solutions of the ordinary differential equation in (3.2) with F' = 0:
e cosh pixy, 25—; sinh pox,
Uj(xn) = & . 5 /Un(xn> = 5
—i sinh 2, cosh pox,

e;» iy sinh iy x, 1€’ cosh poxy,
Un+j (.Tn) = 5 Van (mn) = )

—i&; cosh pzy, o sinh pox,
J
where j =1,---,n—1and e; =" (0,---,1,---,0)e R\,

Remark. We note that vy, - - -, vg, are analytic in A and |¢’|2.

Proof. Setting w = T(w', -, w*") with w? = m?, w"™ = 9, m?, j =
1,---,n, we see that the ordinary differential equation in (3.2) with F' =0 is
equivalent to

dw

10



where

0 I
AN =1 + Sy
M08 = ey e )
with A\, &) and B(\, &) defined in (3.3).
To obtain a fundamental set of solutions of (3.4) we first consider the

characteristic equation of M(A,&’). Let 7" be an (n—1) x (n—1) orthogonal
matrix and set

7 0 0 0
0 1 0 O
7= 0 07T 0
0 0 0 1

It then follows that M(X, &) =T M\, T'¢)T.
We take 7" in such a way that 77¢" = |¢'|e!,_,. With this 7" we find that

det (,UIQn - M()\, 5/)) = det (,U[2n - M(Av T/€/)>
— det (21, — uBO\, T'¢') — A\, T'E))

= (1 —pd)" (W — pi).
Therefore, the eigenvalues of M(\,¢’) are given by £+, and £ps. Note that
w1 # Fpg since A # 0 and vA + 42 # 0. Furthermore, p; # 0, j=1,2, since
A 7é )\170 and A 7é )\j;o.
We next look for eigenvectors associated with ;. To obtain eigenvectors
for p; we consider the problem

M(%S’)(iﬁ)zmﬁf),

where XY € C". This is equivalent to
(AN E) +mB(A &) = i) X =0,

!/

We write X = ( i((n

) . Since ZA + 4% # 0, we have & - X' — i X,, = 0.
1€

This implies that X;, = ( 12_53 ), j=1,---,n — 1, are eigenvectors for
Y]
. — 1€ .

p1. Similarly, one can see that X;_ = i€ T, =1---,n—1, are

Y]
eigenvectors for —p;.

We next look for eigenvector for us. As in the case of pq, it suffices to
find a nontrivial solution X € C" of

(AN E) 4 peB(A, &) — p21,)X = 0.

11



Since UA + +% # 0, it follows that

V1>\>-\1-72Xj+§(€/X’)fj—Z[LQ%XRZO’ j:17...’n_1’

—ipa(€ - X7) — € X0 = 0.

!
This implies that X, ; = ( g/i ) is an eigenvector for uo. Similarly, we
—Up2
5/
can find that X, = i is an eigenvector for —ps.
2

Since p; # *po and p; # 0, 7 = 1,2, we have a fundamental set of
solutions of the ordinary differential equation in (3.2) with F' = 0: w4 =

Xj7iei”1“’" (j=1---n—1), upsx = Xniei””". One can now obtain
: i — 1 , , = L ,

the basis vy, -+, v9, by setting v; = m(uj,'f' —Uj—), Ungj = 5(Uj4+ + uj_)

=1 n=1), vn = g-(Uny — Upn-) and vy = 5(tn+ + tn-). This

completes the proof.

We next give a characterization of the resolvent set p(—lig/). We define
complex valued functions b; (j = 1,2,3) by

bi(\, € x,) = bi(\, €)%, x,) = cosh g, — cosh gy,

by(N, €, 23) = boy(\, |€)2, 2) = pa sinh pnz, — EL sinh pow,,

H2

b3\, &, 2n) = bs(\, €2, 20) = po sinh oz, — EL sinh j 2,

M1

with p; = p; (N, &), j =1,2. We set
DA, &) = DA %) = bs(A, &, a)ba(N, € a) + € 1Pb1(N, €, a)?.

In the following we will frequently abbreviate b;(\, ¢, z,,) to b;(z,). Note
that b; (j = 1,2,3) are analytic in A and |¢'|?, and hence, so is D. We also

set
A = —v|g®)?

for e R"tand k=1,2,---, where

km
R

Lemma 3.4. Assume that X\ # 0, DX + % # 0, 1\ —l—A”yQ #0, X # Ao
and X\ # Ay for any k = 0,1,2,---. Then X € p(—Lg) if and only if
D(\,€) #0.

12



Proof. By Proposition 3.3 the solution of the equation in (3.2) with /' =0
is written as
m = civ1 + -+ Coplzn

for some ¢; € C, j = 1,---,2n. This m satisfies the boundary condition
ml|, _y, = 0 if and only if
o A1(0) As(0)
(3.5) Al =0 with A= " ? ,
Ai(a)  As(a)
Con
where Ai(z,) = (vi(xn), -, vn(zn)) and Az(xy) = (Vni1(2n), -+, v2n(20)).

Note that A;(0) = I,,. In view of Lemma 3.1, A € p(—Lg ) if and only if (3.5)
has only the trivial solution ¢; =0, 7 = 1,-- -, 2n, namely, det A # 0.

Let us compute det A. Since A;(0) = I, by a well known formula, we
have

det A = det (Az(a) — A1(a)A2(0)).
A direct calculation gives

Ag(a) — Al (a)Ag(O)

pq sinh pral, 1 — %ﬁ sinh ppa —i&'by(a)
—in’bl(a) bg(a)

Let 7" be the (n — 1) x (n — 1) orthogonal matrix given in the proof of
Proposition 3.3 such as T'¢" = [¢'|e],_; and set

T 0
T = .
0 1

P I sta) - A Ao
1y sinh gnal, s 0 0
- 0 ba(a)  —il&'bi(a)
0 “ilelhia)  bola)

It follows that
det A = det (T'(As(a) — Ai(a)A(0))T7H

(3.6)
— {,ul sinh ,ula}”_QD()\a 5/)

13



Therefore, we see that A € p(—lié) if and only if D(A,&’) # 0. This completes
the proof.

To obtain a solution formula for (2.1) we next consider the Fourier series
expansion of the solution v = ( Ti ) of (2.1). We expand ¢ and m into the

Fourier series as

1= ] ~
o= §¢0 + Y drcosagz,, m = §m6 + 3 mj cosagay
k=1 k=1
and N
m® = ~mg + > mjsinagz,,
2 k=1
where a, = km/a; and m{ = 0,
2 ra , 2 fa
o = —/ ¢(xy) cos arry dr,, my = —/ m’(2,) cos ap, da,
aJo aJo
and 5 e
my =— | m™(x,)sinapx, dz,.
= [ mi(@)sina
fO
Similarly, we expand f = | f' | as
f?’L
0 1 0 - 0 / 1 / - /
f=gf+ > frcosag,, [ = 5fo+ 3 ficos agay,
k=1 k=1
and

1 o
" =<f0+ > fisinap,,
2 k=1

where the Fourier coefficients are defined as above.
Similarly to A1k, we also introduce A4 ; by

v 1
dai = =GO & G RIEO - a2E0P,
for € € R" ! and k = 1,2, --. Here, as above, [®|? = |¢/|? 4 a}.
k

Remark 3.5. We note that Ay have properties similar to those of Ay,
namely, Ay ; are the two roots of A2 + 1|€®) |2\ + 42[EW 12 = 0; A_j = A4

14



with Im Ay 5, = y[€®) [ /1 — %]f(’“)P when |¢®)| < 2y/1; and Ay € R when
W] > 2 /115 and

2
Atk = —Z—l +O(IEW72), Ay = -1 |€W)2 +0(1)

as || — oo. In contrast to the case k = 0, we find that there exists a
positive number 7, such that

Ak, Ak € {A Red > —no}
forall k> 1 and ¢ € R*L.

The Fourier expansions described above are based on the reflection sym-
metry of equation (1.1), but they do not fit in the boundary condition (1.2).
This leads to a decomposition of the Fourier coefficients ¢y, m), and m} into
two parts, one of which involves the boundary values of the x,, derivative of
m’ at x, = 0,a.

Proposition 3.6. Let & # 0. Assume that X\ # 0, DA+~2 £ 0, A ++2 # 0,
ANF Mg and X # Ay, for any k = 0,1,2,---. Then the Fourier coefficients

Up = ( Z’; ), k=0,1,2,---, are given by

U = Ek()\afl>_1fk + Ek()\afl)_lyk-

Here
R . : 0 0
Lk()\afl) =

1,k 0 p07k

A+ue®2 —inTe —qay

1 ! &re iy _a€

RO W Te e S )‘|£<k>l2 MIE(“IQ

N\ aTe a?
Tk iNgmz Ao

where Py, is an n X n matriz defined by

§/T§/ . ak&-/
PR ek

pO,k:In_



and Yy 1s given by

Vi = | Z{(=1)%0,,m'(a) — By, m(0)}

Proof. Since

%/Oaaxnw(xn)cosakxndxn = 2{(—1)%1(@)—“](0)}

2 a
—|—ak—/ w(zy,) sin ag, dx,
a Jo

and

2 [a . 2 [a
—/ O, W (Ty) SIn ag 2y, da, = —ak—/ w(Ty,) COS agTy dx,,
aJo a Jo

it is not so difficult to obtain the desired expression of uy from (2.1). We
omit the details.

We next compute the term Y, which involves the boundary values of the
xy, derivative of m/. To do so, we make use of Green’s formula for (3.2). We
define (n — 1) x (n — 1) matrices

B €/T€/

Po=Tep

/ /
Po,o — in-17 P1,0-

Proposition 3.7. Let the assumption of Proposition 3.6 be satisfied. Then
Y: has the form

Vi = 2 ,/oa{(_l)kB()‘a & yn) + B()‘a &' a—yn) Y f (Yn) dyn,

where B\, €, yn) and B\, €, y,) are (n+1) x (n + 1) matrices of the form

0 0 0
B()\,fl,yn) = bO()\a€/7yn> B’(A,f’,yn) bn()\aglayn>
0 0 0

and )
B()\a 5/7 yn) = B()\a 5/7 yn)dlag(la Tty 17 _1)
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Here bo(\, &, yn) and by,(N, &', yn) are (n — 1)-vectors of the form

bO()\a 5/7 yn) = ZEIBO()\’ 5/7 yn)

with
A 1 1
Bo(N € yn) = VIJJF o D(A,f’){bg(a)E sinh fiayy + b1(a) cosh payn }
and "
ba(M €' tm) = =3y (@) () = (@b}

and B'(\, &, yn) is an (n — 1) x (n — 1) matriz defined by

h " p /
B'(\ €& yn) = % — B\ €L )Pl
with .
BN € yn) = DO, f,>{ba( a)ba(yn) + 1€'1*b1(a)b1(yn)}-

Proof. In the proof we denote Y}, = ( )g ) Since A # 0, (2.1) is equivalent
k

o0 (3.1) and (3.2). Consider the following equation

(3.7) M &Ym=
where
M(X€)
{N+vA(€')? = 02 ) -1 + (PA +92)8T ¢ (DX +72)E'0,,
B ( (A +~*)TE 0, A2+ VAE? = {mA +12}02, ) |

As in the proof of Proposition 3.3, one can see that the following functions
U1, -+, U2y form a fundamental set of solutions of (3.7):

e’ - cosh iy, z 5 sinh pox,
v; (xn> = 5 ) QN)n(xn) = )
4 sinh pi cosh pox,

N eg» 1 sinh gy x, N —i&’ cosh psxy,
Un-l—j(xn) = 5 U2n(xn> = 5

1&; cosh px, o sinh pox,

17



where j = 1,---,n — 1. We note that 01, - - -, 0a, are analytic in A and |¢'|2.

By Green’s formula for (3.2), we see that

In=a

(Fug) = (m M\ €)5) = W [0,m’ - 7]

In=a

—{ A + 72} [&Cnmnﬁﬂ

= —9,,V(a)-;(a) + 0.,V (0) - 5;(0),

vam!(z,,)
V(z,) = ( ) :

{1A + 2 }m" (zn)

[ 8., V(0) FO
A —
v )~ (e

zn=0

where

We thus obtain

with
_ (AD(0) —AW(a) | |
A= ( ) FO = (A9, F) (j=12),
AP(0) —AP(a)
T?~11($n) T6n+1($n>
A(l)(%) _ 3 ’ A(Q)(%) =
T () T 0o ()

For a moment we assume that A is invertible. We write the inverse of A as

Al = )
S Sy
Then we have

aach(O) [ SIA(l)( n) +52A(2)( n)
( Or,V (a) ) _/0 ( SsA(”(Zn) + S4A(2)(Zn) )F (Yn) Ay,

and, hence,

Vo = Q{10 V(a) - 2,V (0)
= = [ D AV ) + 5142 (1)
_(SlA(l)(yn) + 5, A (Yn)) }E' (Yn) dyn-

18



Here and in what follows we denote the n x n matrix diag(1,---,1,0) by Q"

Q' = diag(1,---,1,0).
By a direct calculation we have
cosh pyx, I, 1 2% sinh 2,
A(l)(l'n) _ H1

Ter
—zl—f; sinh pox,,  cosh psz,

and
A () = (

We thus obtain

pq sinh px, I, 1 i€ cosh pyx, )

—iT¢ cosh pow, o sinh ppxy,

_ I, —AW(a)

A= .
A2(0) —AP(a)

Alyn) = AP(0)AW (y,) — AP (y,)

We define A(y,) by

— gy sinh pyp In_1 + %'2 sinh piy, Pl o —1b1(yn)&’ )
) ( —iby(yn)"¢’ “baua) )
One can see that if A(a) is invertible, then so is A, and A~ is given by
I = A A(e) T AB(0)  AD(a)A(a)”!
o ( —A(a) "t A®(0) Afa)™ ) |

We now verify that A(a) is invertible under the assumption of Proposition 3.7.
We denote the n x n diagonal matrix diag(1,---,1,—1) by I,. We observe
that AU)(z,) =T [anj(xn)fn],j = 1,2, where Aj(x,) are the matrices given
in the proof of Lemma 3.4. Therefore, we have

A=T [diag (I, —1I,) Adiag (I,, Ivn)} .
It then follows from (3.6) that
det A = (—=1)"det A = (—1)"{ 1 sinh pya}" " 2D(\, €'),

and hence, by Lemma 3.4, A(a) is invertible under the assumption of Propo-
sition 3.7.
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We thus obtain
(3.8) = 2 [P BOOE ) + BAOE, 4 E () du,

Where E(l)()\,f,yn) = _@/A(a)_lA(yn> and 5(2)(Aa€/7yn> = @/(A(l)(yn> -
AW (a)A(a) " Ayn)).
We next show that

(3.9) —A(a) " Ayn) = KON € yn) + KON yn),

where

: P, 0
e - S ()

sinh Hmia 0 0
and

K®(X\ € y,)

o ( {53(61)52(%) + 15'1261(0)51(%)13{70 i{b3(a)b1(yn) - 51(a)b3(yn)}f/ )
PO\ iba(@)ba(yn) — bi(@)ba(yn) T ba(a)bs(ya) + €201 (@)br(yn) )

Let us prove (3.9). Noting that P[, is an orthogonal projection onto the
subspace spanned by &', namely, P& = ¢, T¢'P{; = T¢ and P 02 = Py,
we see that

Aa)t = 1 Fyo 0 n 1 —bs(a) P}y ibi(a)¢
YT sinhma \ g g DOE)\ ibi(a)e —bo(a) )

since py sinh gya # 0 and D # 0. We now obtain (3.9) by a direct computa-
tion.

~ We next prove BA(X, € a —y,) = BOE, y) .. To do so, we write
BU(X, &, yn) as

/() d (9) /

for j = 1,2. Then we need to show

(3.11) B'YN € yn) = BP N a—y,)
and
(3.12) bV € yn) = =P (N a—y,).
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To prove (3.11) and (3.12) we make use of the following reflection symmetry
m'(xn)

of problem (3.2). For m(z,) = ( ) we define m(z,) by

m'(a — x,)
—m"(a — x,)

f'(an)
Let m(z,) be a solution of problem (3.2) with F(z,) = A ( -

13
Y ( ) f°(x,). Then m(z,) is a solution of problem (3.2) with F(z,)
F'(a— )

. Since 0, (m)'(a) = —0,,m'(0) and

replaced by F(z,) = (

—F"(a — x,)
O, (M) (0) = =0, m'(a), we have
(313) (=1)*8s, (1) (a) = s, (1) (0) = (=1)*{(=1)" s, m/(a) — Os,m/(0)}.

We next define By,(X, €', y,) and by, k(A &', yn) by

(3.14) B € yn) = (—1)FB YN € yn) + BN € )
and
(3.15) b k(N € yn) = (1) (N € y,) +BP (N, € yn).

Since by, 1 (X, &,0) = b,k (AN, €, a) = 0, integrating by parts, we see from (3.8)
that

—AV{( 1)¥0,, (m)'(a) — s, (m)'(0)}
/ By €y ) I (a = yn) — € fO(a — yn)}
_)\bn,k()\a 5 ) yn)]m(a - yﬂ)
(3.16) +70,, bn k(N € yn) f2(a — yu)] dyn
_ % LB a = g (o) = 9 £ ()}
—Ab, k(N € a—yn) " (yn)
Y0y, b (N, € @ = yn) 2 (yn)] dyn
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and
g)w{(—l)kﬁxnm’(a) —9,,m'(0)}

B = 2 P50 5 ) — € 10}
+)\bn,k()\a 5/7 yTL)fn (yn> + P)/ayn bn,k()\’ 5/7 yn)-fo (yTL)] dy”

Combining (3.13), (3.16) and (3.17) we obtain By, (\, &, a—yn) = (=1)¥Bi(\, &, y)
and b, £ (A, &, a—y,) = (—=1)F b, 1 (N, €, yn). This, together with (3.14) and
(3.15), implies that

(—1)FBYN ¢ a—yn) + BP0 a—y)

(3.18)

BYN € y) + (—1)FBD(N, € y)
and
510 (=D N, € a— ) + DD (N, € a—yn)

_bg—bl)()\a 5/7 yn) - (_1)kb§12)()\’ 5/7 yn)

It follows from (3.18), with k& being odd and even respectively, that

—BY\ ¢ a—y)+BP N a—yn) =BV ) — BPNE yn),

BN a—y,) + BPNE a—ya) = BYNE ya) + BN ),
which implies that B’(Q)()\,f’,a — Yp) = B’(l)()\,f’,yn). This shows (3.11).
Similarly, one can prove (3.12) by using (3.19).

We ﬁnauy set B/()\a 5/7 yn) = B/(l)()\a 5/7 yn): bn()\a 5/7 yn) = bg—bl)()\a 5/7 yn)
and bo(\, &', yn) = =3 {iB' (N, € yn)€ — 0y, 00(N, €', yn)}. Then, by a direct
calculation, we see that

YA 1

1
g A+ D\ ) {bg(a)m sinh fi2yn + bi(a) cosh pzy }

and the desired expression of Y} is obtained. This completes the proof.

We now give an integral representation of (A + Iig/)_l f. To do so, we
introduce some functions. We define glg (Tn,yn) (7 =1,2) by

g;LD] (.I'n, yn) = Sinh:uj(a - xn) Sinh,u/jyna Yn < T,

i sinh pi5a
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and x,, y, exchanged for z,, < y,. Similarly, we define g,]LV]- (T, yn) by

glji\i (x”’ y”) - cosh Hj (Cl o Jl'n) cosh HiYns  Yn < Tp,

; sinh pi5a
and x,, y, exchanged for x,, < y,. We set
gﬁ/ll,MQ(xn:yn) = gﬁ/ll(xn:yn> _g%(xn:yn>: M = DaN

Note that g.) and g} are the Green functions of the equation pfv — 93 v =
0 under the Dirichlet and Neumann boundary conditions at {z, = 0,a},
respectively. We also define hy,; () and hy,, ,,(z,) by

by, (zn) = cosh p;x,

; sinh pi5a

and
Py i (zn) = by, (zn) — Py, (Tn)-

We will denote the Dirac measure with point mass at x,, by d,,, namely,

beuf = [ 0w = yu)f ) dys = F(z.)

Theorem 3.8. Let A satisfy A # 0, PA+7% # 0, A ++> # 0. Assume that
ANFE Mg and N # Ay for any k=0,1,2,---. Assume also that \ € p(—L’f).
Then the solution (A + Le/)™'f of (2.1) is written as

(At Le) ' f = GNEVF+ KNS
with integral operators G(A,f’) and f(\()\,f’) defined by
(CAEIN ) = [ GOE @09 (32) d

and

(RN = [ KON 20, 5) F (1) dun
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Here G(A\, €, xp, yn) is an (n + 1) x (n+ 1) matriz of the form

GO E T, Yn)

= ﬁ(s(l‘n - yn)QO

#i)gjfg (T yn) =1 9N (T, Yn)  —02,95 (Tn, Yn)
+d_&_) —if/gﬁg (xn: yn) 0 0
N
_aﬂfngug ('1'717 yn) 0 0
0 0 0
4+ 0 %guj\i (xn: yn)Lz—l 0
0 0 L9 (0, Yn)
0 0 0
1T &1 ie!
+1 0 : /\f gu]\g,uz (%, Yn) _éax"gHDlvﬂz (@, yn) |

O _g\iaﬂfngu]\i,ug (xn:yn> _iagngHDhug (xn:yn>
where d(\) = 1A+ 72 and pj = (N &), j=1,2; and
R\()\, 5/: T,y yn) = H\()\, 5/: T, yn) + H()\, 5/: a—Tp,a — yn):
where

H(}\, 5/: 4G — Tp,a — yn) = H\()\, 5/: G — Tp,a — yn>dlag (In: _1)
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and
H()\ﬂ 5/7 xn? yn)

- %ih’” (x”>ﬁo(y”> %hlil (xn>B/(yn> %hlu (xn>bn(yn>
2 inTe inTe!
UL b (@) Bo () Dy (0n)Bulyn) — D5 By ()b ()

- i|£>|\ : hHth (xn>60(yn> 0 0

- |£>\| aﬂfnhlthuz (xn>60(yn> 0 0

0 0 0

1T ¢1 712

Y _%h’”’m () 51 (yn) |£A| Ppas i () b (Y

0 — i/ze axn hm 2 (-Tn)ﬁl (yn> ZTTg/axn hm M2 (x”> b” (yn>

with d()‘) = 1/1)\—’_’727 My = IU/j()‘ag/); j = 1727 Bj(yn) = Bj()\,flgyn), j = 07 17
Bl(?Jn) = B/()\aflayn) and bn(?Jn) = bn()\aglayn>

Proof. By assumption we see that the Fourier series of (A + Eg/)_l f takes
the form as in Proposition 3.6 with Y} given in Proposition 3.7.

The Fourier sine and cosine series of w" (z,) = [§ 90" (Zn, Yn )V (Yn) dyn
with M = D, N are given by

ad 1
D .
w” (xy,) = g — 5 Vs k SN ATy
i BT ag
and
N(x,) ! 1 EOO !
w™ (Tp) = =V V¢ }; COS AT
g 2 2 ) ?
2 ot ag

respectively. Here v,y and v,y are the Fourier sine and cosine coefficients of

v respectively. Since
1 1 1

A= vpdtal
1 1 1

A=) A =Ap)  mA+723+a?

and

1 A I WA 1
A=A l€®PR A =X )N = A ) €D X \pf+a}  p3+ai)’

25



we see that the Fourier coefficients of @(A, ¢') f are equal to Ek()\, &)
Also, since the Fourier cosine coefficients of e#*» are given by

2 p{(~1)f e — 1)
a W+ ai

; k:071727"'7

we see from Propositions 3.6 and 3.7 that the Fourier coefficients of K N f
are equal to Li (), &)Y, This completes the proof.

4. Preliminary estimates

In this section we prepare some estimates for the analysis of the integral
kernel given in Theorem 3.8.

We first give an estimate of the resolvent set by the energy method.

Proposition 4.1. (i) There exists a positive constant ¢y such that the set
5o = {\; Re A+ ¢ |Im A]* > 0}
is in the resolvent set p(—Le/) for all €.
(ii) There exists a positive number n, such that the set
{N Red > —m}n{X ReA <0, ImA=0}°

1s in the resolvent set p(—ig/) for all . Here and in what follows, for a set
E, the symbol E¢ denotes the complementary set of E.

Proof. Let us consider problem (2.1). We note that /Alg/ is self adjoint in
L*(0,a) and Bg is skew-symmetric and the following relations hold:

(Agu,u) = VIEPIml3+v|0s,ml3 + Dlig’ - m' + 8, m"[3,
@y
(Beu,u) = 2iyIm (i€ -m' + 0,,m", ¢).
¢
Let u = be a solution of (2.1). Taking the L?-inner product of

m
(2.1) with u we see from (4.1) that

Aul3 4+ v|€'[*m|3 4 v|0,,mf5 + D& - m' + 0., m"[3
(4.2)
+2iyIm (i€ - m' 4 0, m™, ¢) = (f,u).

The real part of (4.2) gives
Re Aluf3 + v[¢'*[ml3 + v|0,m[5 + P[ig’ - m' + Oy, m" |3

(4.3)
= Re (f,u) < eluls + 2| f[3
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for any € > 0. On the other hand, the imaginary part of (4.2) gives
Im Al = Im (f,u) — 2yIm (i€ - m/ + 0., m", @),

from which we obtain

(4.4) tm AP uf3 < 2{[£13 +72Ji€ - m + O, m"[3} .

It then follows from (4.3) and (4.4) that

(45)  (Rex+emAP =) [uf3 + 5 (I¢'Pml3 + |0.,m[3) < CcI13

for any € > 0 with some constant ¢; = ¢1(v,y) > 0.
We next estimate |0,,¢|2. Differentiating the first row of (2.1) with re-
spect to x, we have

(4.6) MOy, ¢ + 02 " = Oy, [ — i€ - O,
We also see from the third row of (2.1) that
(4.7) —1n10;,m" + 70,6 =g,

where g = f* — {Am"™ + v|¢'|*m" — v - 0,,m'}. By adding (4.7) x L to
(4.6) we obtain

151

2
(4.8) ()\ + 2 ) By = By fO —in€ - Dy’ + Vlg.
1

This implies that if A # —%, then

C ! !
(49)  10n6h < 1 (I 1mixze + INmlz + 1€/ Plmlz + €]]0n,ml2}

We thus deduce from (4.5) and (4.9) that

(4.10) [ulgixre < C|flmxre

for some C' > 0, provided that A € Y. This, together with (2.1), yields
(4.11) im|z < C|f| a1

with some constant C' = C/(no, 6o, &) > 0. Since A # 0 and 1y A + % # 0
when A € X , it follows from (4.10) and (4.11) that Ker £ = {0} for A € 2.
Lemma 3.1 then implies that Xy C p(—Lg ). This completes the proof of (i).
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We next prove (ii). In view of Lemma 3.1 it suffices to prove that (3.2) is
uniquely solvable for any F' € L*(0,a) if A € {\; ReA > —m;} N {\; Re X <
0,Im A = 0}¢ with some 7; > 0.

We take the L%-inner product of (3.2) with m. Then, integrating by parts,
we have

(4.12) (N +vAE ) |ml3+vAOp,m|3+ (FA+2)|i& -m/ + 0,,m"|5 = (F, m).
The imaginary part of (4.12) gives

Im A {(2Re)\ + € ) |ml3 + v|0p,m|3 + Dli& - m/ + 3xnm”]§} = Im (F,m).
It follows that if Im A # 0, then

Im (F
(4.13) (2Re)\ + 1/]5']2) ]m\% + u!&cnm!% + 17]@'5/ -m’ + &cnm”’% = %’)\m)

By the Poincaré inequality, there exists a positive constant n; such that the
left-hand side of (4.13) is bounded from below by

v
(2Re A+ V€' + 1) m3 + 5|02, ml3,
while the right-hand side of (4.13) is bounded from above by

m|ml; + m’ﬂ%

We thus conclude that

v C
(2Re)\—|—1/]£']2+3771) Im|3 + §’aa:nm’§ ‘21F12a

[Tm A

in particular, if A € ReA > —n; — ”'52—/|2, ImA # 0 and F' = 0, then m = 0.
This, together with (i), implies that {\; ReA > —n — ”'52—/|2} N{X\; Re <
0,ImA =0} C p(—lig/). This completes the proof.

We next investigate D(\, ). We first estimate |D(\,&’)| from below for
small .

Proposition 4.2. (i) Let r and Ry be any positive numbers with m < Ry.
Then there exists a positive number Ay = Ay(r1, Ry) such that the inequality

4

7"1’>“2

DO 2 5o
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holds for |\| < Ay and 1 < [€'| < Ry.
(ii) There are positive numbers Ay and Ry = Ra(As) such that the in-

equality
1 (sinh|¢|a)’
D ! > 2

holds for |\| < Ag and |§'| > Rs.

Proof. Assume that |13\ + 72] > gyil = ¢o. Let A and r be positive numbers
satisfying

2

A A
4.14 — <1 d — < 1.
( ) vr? an cor?

Then for |A] < A and |£'| > r, we have

A < A <1 d s ! A <1
— an ,
v|€?| — vr? A+ 22| T cor?
and hence,
Al A1
— A O (I\ 3| ¢l —5
H1 ’5’+2V’£/’ ]2 15/’34_ (’ °1€] )
and
n o L@ 5
Here \2 \
1) _ 2 _
= ———— and _—
M T At ) & 8(1A +7%)?
It then follows that
& & &
sinhpja = sinh|¢a+ L T cosh |¢'|a + -2 e sinh |'|a + -2 E cosh |¢'|a
+0 (IAPE e )
and
e e &
coshpja = coshl||a+ L~ ] sinh |'|a + -2 e cosh |¢'|a + -2 T sinh |¢'|a
+0 (JAPI|el€1?)
where 7 =1, 2,
1) _ da (1) _ _ Na (2) _ X2 (2 _ _ Ma?
€1 =3 € T a3par € sz €2 = Buia9)2



and
3 3
V=0 (A2), & =0(rY).
We thus obtain

CL2

(115) 13D\ €) = — 1oy H () + <412+d1()\)> (M

dy(\, €
’5,’ ) + 2( af):

where dy(\), di(N\) and da(A, £') are some functions satisfying

(4.16)  |do(N| < CA, [di(N)] < CIAL, da(A, )] < C,’g,‘g el

uniformly in A and ¢ with |A] < A and [£'| > r for some C' = C(r1) > 0.
Let r; > 0 and R; > 0 be fixed. Since

sinh]f’]a>2_ 2 _ (sinh]f’]a )(smh]f’]a ) at
() o= (Mt re) (et o) 2 5

for |¢'| > 0, we see from (4.15) and (4.16) that if r; < |¢'| < Ry, then

2R1a
n2 €
1+ —=

provided that |\| < A; for some A; satisfying (4.14) with A = A; and r = r;.
Here C' = C(r1) > 0. Therefore, there exists a constant Ay = A(r1, R1) > 0
such that

DA &) z

)\2

ol
for A and & with |A\| < Ay and r < || < Rl. This proves (i).

We next prove (ii). From (4.16) we see that there exists a positive number
As such that

7"1’>“2

1 1
—+d1()\)‘ —

42 R
for |A| < Ay. Furthermore, there exists a positive number Ry = Ry(A3) such
that (4.14) is satisfied with A = Ay and r = Ry, and the inequalities

a? 1 sinh]f’]a 1 (sinh|¢'|a ?

hold for all |A\| < Ay and [¢'| > R,. It then follows from (4.15) that

1 (sinh|¢'|a)?
BRGNS
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for all |\| < A and |'| > Ry. This completes the proof.
By Propositions 4.1 and 4.2 we have the following consequence on p(—lig/).

Lemma 4.3. (i) There exists a number 0, € (5,m) such that X(n,0;) C
p(—ig/) for any n >0 and & € R Furthermore, the integral representa-
tion of (\+ Lg)™" in Theorem 3.8 holds for A € X(n,0;) for any n > 0 and
& eRVL

(ii) For any r > 0 there exist positive numbers no and 0y with 0y € (5, 7)
such that X(—ns,02) C p(=Le) for |€'| > r. Furthermore, the integral rep-
resentation of (A + Lg)™" in Theorem 3.8 holds for X € X(—na,0) and
&' =

Proof. The first assertion of (i) is an easy consequence of Proposition 4.1. By
Remarks 3.2 and 3.5, changing 6, suitably if necessary, we see that Ay ;, Ay ¢
X(n,0:1) for any k = 0,1,2,---. Therefore, the integral representation in
Theorem 3.8 holds for A € X(n, 0,).

Similarly, we see from Lemma 3.4 and Propositions 4.1 and 4.2 that for
any 7 > 0 there exist positive numbers 7, and 6, with 6, € (3,7) such
that X (—ny,05) — {0} C p(—L¢) for |¢'| > r. Furthermore, by Remarks 3.2
and 3.5, changing 7, and 6, suitably if necessary, we deduce that A\j 5, Ay ¢
X (—=mng,0y) for any k =0, 1,2, -- -, and the integral representation in Theorem
3.8 holds for A € X (—n9,02) — {0} and || > r.

Let us prove 0 € p(—Le). Assume that & satisfies |¢/| > r. We note
that (A + Lg)~" is analytic in X(—n,, 63) — {0}. Furthermore, G(\,¢') and
K(\,€) are also analytic in X(—mny, 02) — {0}. Therefore, it suffices to prove
that G(X, &) and K(\,€) are bounded in X(—1ns,05) — {0}.

Since

A 1 A
( ) H1 — M2 ,u1+,u2{l/ 1/1)\—1-72}

we see that QG(X, €)Q is bounded in X(—1n,,05) — {0}. Tt is easy to see
that the other components of G(\, ') are bounded in X(—n,, 6;) — {0}, and
hence, C:’()\,/@:’) is bounded in X' (—ns,02) — {0}.

As for K(\, &), we easily see that b;(A\, &, y,) = O(N) as A — 0 for
j = 1,2,3. This, together with Proposition 4.2, implies that 3;(\, &, y,) =
O(1) (j = 0,1), BB((\,&,yn) = O(1) and b,(\, &, y,) = O(1) as A — 0.
Furthermore, using (4.17), we also see that h,, ., (z,) = O(X) as A — 0. It
then follows that K (X, &) is bounded in X(—ng, 62) — {0} and assertion (ii)
is proved. This completes the proof.
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We next derive estimates for | D(), ¢')| from below when |A|+[¢|? is large.

In the following we specify branches of u;(A,£'), 7 = 1,2, as a function of
A. As for g (A, €') we take the principal branch of the square root of /\++|£/|2’

i.e., for A ¢ (—oo, —v|¢'|?] we denote by u; (), €') the square root of ’\LV'&/'Q
with Re 1 (A, &) > 0. As for us(\, £') we take the branch in the following
way. When || < i—?, we use the branch specified by the requirement

arg (A — Aio) = F5 at A= Re A o and arg (A + %) =0atA=0
and take the branch cut
{\ ReA< -2, ImA=0}U{N€ I,,; Red <Redso}.

Here I’ ,, is the circle defined by I, ,, = {\; |\ + % = %} When |£'| > i—?,

we use the branch specified by arg (A — Ay o) = arg (A + %) =0at A=0and
take the branch cut

{\; ReA < -2 Im\ = 0}.

As shown in [6], it holds Re p2(A,€’) > 0 for A outside the branch cut.
We introduce a function D; (A, &) defined by

Di(X, &) = e~ tmtmep(x ).

To investigate the resolvent (A + L)™' = . ! [()\ - Lg)_l] for large A+ |¢'|?,
it is convenient to consider D; (A, &) rather than D(\, ).

Lemma 4.4. (i) There are positive numbers nz and 03 with 05 € (5,m) such

that the inequality
|AI”

A+ 1+ ¢
holds uniformly in A\ € X(—ns,03) N{X\; |A| > 0} and |{'| > Rs for any d >0
with some constant R3 = R3(d) > 0.

1Di(A, €)= C

(ii) There are positive numbers ny and 04 with 04 € (5,7) such that the
mequality
AP

AL+ 1+ [¢]?
holds uniformly in X\ € X(ns,04) and £ € R,

|Di(A, €)= C

Proof. We first observe that there are positive numbers 73, 63 € (3, 7) and
R5 such that

(4.18) Rep; > C(A+1+1¢1):  (j=1,2)
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for X € X(—ns,0s) and |¢'| > Rs. Furthermore, there exist positive numbers
ns and 04 € (5, ) such that (4.18) also holds for A € X(i, 0,) and & € R*™1.
In fact, it is easy to show the inequalities (4.18) for j = 1 with appropriate 73,
71, 03, 04 and Rs. As for j = 2 one can find (4.18) by using the observation
in Remark 3.2. It is also possible to see that

(4.19) ] < CON + 1+ [€]7)2

for A € X(—ns3,03) and & with |¢] > Rs, and for A € £(7j,6,) and & € R" 1.
Consider next the quadratic equation w? + (2v + )[€' 2w +2|€')*> = 0 for
w. This equation has two roots

1 1
we =~ (2 + D) £ 50/ (2w + DRI — a2l

Therefore, as in Remark 3.2, we see that
1 - :
we = =5+ D) £+ O(ET) as €] =0,
and wy € R for |¢| > 2~ and

w47

,.)/2

2V+

wy = +0(€17%), w-=-2v+D)E]P+0(1) as [¢'| - 0.

We thus deduce, by suitably changing 63, 0,4, Rs, 13 and 7, if necessary, that
N+ v+ D)EPA+2EP = (A —wi)(A—w-)
(4.20)
> CA+1+EP)(A+1)

for A € X(—ns3,03) and & with |¢] > Rs, and for A € £(7j,6,) and & € R" .
We now estimate D;(\, ). We write Dy (A, &) as

1 /14 .
(4.21) Di(A€) = (ﬂ — 211 + mm) + Di(\, €,
12
where
(4.22)
Y / 1 2 —(u+ ’5/’4 2 2(u +u2)a
Di(Ag) = y8lETe (hatua)a — 21" + papn e
12
’5/’4 2 —2p1a —2p0a
+ 28 P+ ppn | (€7 4 e720) 1
Hift2
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Since
2

€' 2 _
= 2|8 + ppe| =
H1 2

(p1p2)® — €|
papiz + €

12

and N
MN 4+ v+ D)IEPA+ 211}
1/1)\ -+ ")/2

(pap2)® — 1€ =

we see from (4.19) and (4.20) that

Y

112 MP
= 2|8* + ppa] >

4.23 Cp———MMM —
(4.23) = ORI Er

LT
4| paa a2
uniformly for A € X(—ns, 0s) and & with |¢/| > Rs, and for A € 2(7jy, 64) and
5/ c Rn_l.

We also see from (4.18) and (4.19) that

k

< Cr (Repja) ™" < Cu(IA + 14 €)™

for any k. This, together with (4.22), implies that for any § > 0 there exists
a positive number R3 = R3(J) with R3 > Rj such that if A € X (—ns,605) N
{\; [N = 0} and || > Rs, then

CAP Co  |AP
< < — .
T+ IHIEP)? T 2 A+ L[

Combining this with (4.23), we have

‘Bl(Aa €/>

Co_ AP
2 PI+1+ P

for A € X(—ns,05) N {X\; |A| > 0} and £ with |¢'| > Rs3. This proves (i).
We can also find a positive number n, with ny > 7, such that

O _ G AP
A+ L+ [EPE = 2 P11 [eP

for all A € X(ny,0,) and & € R"!, and hence,

BT
"2 I EP

[Di(A,€)] =

‘51()‘a€/>

<

’Dl()‘a €/>

for all such \ and &. This completes the proof.

To estimate each component of the integral kernel in Theorem 3.8, we
will use the following lemma.
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Lemma 4.5. Let o/ € Z"! be any multi-index with |o/| < n and let 04 be
the number given in Lemma 4.4. Then there exists a positive number ny such
that the following estimates hold uniformly in X\ € X(ny,04) and & € R™L:

() 08| < COA +1+1€P)5'F (G=1,2),
(i) 08 (1 — )| < CIN(N + 1+ [€2)73F,
(i) 98 (yus — 1€P)| < CIN(AL + 1+ [eP) %,
(V) [ogem| < CQA 4+ 14]gP) FetRemm (5= 1,2)

for all 0 <z, < a,

/ 1 _ f12ny1— el
v % (g )| < CAE A+ 14 e

! (cmee o)

(vi)

S C’)\‘(|)\‘ + 1 + ’5/’2>_1_% {e_éRelen + e-%Reugaf:n}

for all 0 <z, < a.
The inequalities (1)—(vi) also hold uniformly in A € X(—ns,0s) and |£'| >
R3 for some R3 > 0, where ns and 63 are the numbers given in Lemma 4.4.

Proof. Let 7y and 64 are the numbers given in Lemma 4.4 (ii). Then a direct
calculation gives the inequality in (i). The inequality in (ii) follows from (i),
(4.17) and (4.18).

Let us prove (iii). Suppose first that |\| < Co|¢’|?, where Cj is a positive
constant to be determined later. We write p1pe — |€']? as

(p1p2)? — €|
pa iz + €

(4.24) pape — €7 =
Since

e R
R v(n A+ ~2) v oA+ 2 ’
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we see that
(4.25) Fﬁ(WWﬁ”ﬁéﬂ\SCMMM+EWV"_

On the other hand, since ‘ (n4, 04), taking Cy suffi-

A+72
ciently small, we find that
/2 2 /2
A KRkl
v~ 2 mA+2 T 2

for A\ and f’ with [A] < Col¢'|* Applying the mean value theorem to p; =
1€\ /1 + V|£ T and pg = |€/| \/1 + W’ we obtain

Hapt2 + ’f/P = 2‘5/’2 + ;CII()\af/) + qu()\afl) + W?Wq?)()\af/):
where ¢;(\, &), 7 = 1,2, 3, are some functions satisfying

’qj()\’fl)’ S C? j = 172737

for A and & with |\ < Cp|¢’|?. Therefore, taking Cyy smaller if necessary, we
see that

(126) g+ €] 2 20— CIN 2 1P = COA + 1+ |¢P)
uniformly for A € X(ny, 04) and & with |\| < Co|&'[. Tt then follows from (i)
and (4.24)(4.26) that
/ _ll

08 (jpz — 1€72)| < CINI(A + 1+ [€) 2
uniformly for A € X(n4,0,) and & with |\ < Co|¢’|®. As for the case |\ >
Col€'|?, we easily see that

02 (i — 1€'2)| < CON + |€'2) 5 < OA(A + 1+

This proves (iii).
We next consider (iv). The case o/ = 0 is trivial. Let |@’| > 1. Then, by
(i) and (4.18), we have

/

o|

< CZ@ Remsen T ‘8 7 ,ujxn‘ e ‘8?//13»3:71‘

ar+tap=a’

‘aga/e_”ﬂ"

e_ 1]
< Czaf e (1N 414 €))7
|a/| 21|
< O (Repy)~femafemm (N + 14 |¢P)°
=1 e
< C(PM+1+[¢P) 7 emalern,
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This shows (iv).
. 114 2
As for (v), since % =21 + pape = o (tape — 1E'1%)”, we see from
(i) and (iii) that

12

o 5/ 4 Y
08 (L —oigp-t upa) | < cpa + 1+ 167
This, together with (4.21) and (4.22), implies that

(4.27) 08" D\ )| < CIAP(N + 1+ (€)=

Combining Lemma 4.4 (ii) and (4.27), we obtain the desired inequality in

(v).

We finally prove (vi). Since
T Y T g e )
0

we see from (ii) and (iv) that

08/ (7o — )

< Caa AN+ 1+ €)% / “aRe i+ (1-Onzhen g

< O AN + 1+ [¢/) 735 (eiReman f =ierasn)

< OI(A + 1+ [¢2) 75 (e ¥hemmn f o dReren)

The desired inequalities are thus proved for A € X(ny, 64).

Let us consider the case A € X(—n3,03). In the same way as above, one
can show the inequalities (i)—(iv) and (vi) for A € X (—ns,05) and |{'| > Rs,
where Rj is the positive number given in Lemma 4.4 (i). As for (v), we take
d = Ay in Lemma 4.4 (i) with Ay being the number given in Proposition 4.2
(ii). Similarly to the case A € X(m4,64), by using Lemma 4.4 (i), we can
also prove the inequality (v) for A € X(—ns, 03) and |£'| > Rj3, provided that
IA| > 8 = Ay. In case || < Ay, since e~ tm)ag2ele — (00T e see from
Proposition 4.2 (ii) that

|AI”
€12
for large |¢'|. Furthermore, similarly to the case A € X(my,0s), one can
obtain (4.27) with a more detailed computation for D;(A,¢’) given in (4.22)

1Di(A ) = C
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for A € X (—ns3,03) and large |£'|. The desired inequality (v) then follows by
changing Rjs suitably large if necessary. This completes the proof.

We next derive the estimates for the integral kernel of G (A, &), We set

gg) (Tny Yn) = %Me_ﬂj|wn_yn|’
J
92 (@ yn) = i (cmrentv) 4 gmmillammtemp})
(4.28) 13 o—2ns0
(1) L e et o iy () o))
g”f(”’y”)_Q—ujm(e ! +e ),

where p; = p; (A, &), 7 =1,2. In what follows we will denote |A| + 1 + [¢|?
by o(X,&):
o(A&) = A +1+¢T

Lemma 4.6. Let g (xn,yn), j = 1,2, k = 1,---,4, be defined in (4.28).
Then

W~

.I'nayn Z k—Hngj xnayn> gH xnayn Zg xnayn

gHJ J

and the following estimates hold for any multi-index o/ € Z"™' with |o/| <
[”T_l] +1 and any nonnegative integer £ uniformly in X € X(ny,0,), & € R*!
and T, Yy, € [0, al:

() 98/ (0, 9%) oy yn)]| < Ceo (1, €)EHF EO ()
fork=1,2 and j =1,2, and
) 108 [(05,95) (s ym) — (05, 98) (wn, )] |
v < CNo(L )55 B, )
for k=1,2. Here E®(x,,y,), k = 1,2, are the functions defined by

E(l) (xn’ yn> — e—CU(/\,f/)%|Z’n—yn|’

E® (1, yp) = e~ oM @ntm) | oeohe)E {(a—wn)+(a=pn))
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with some constant ¢ > 0 independent of X € X(n4,0s), & € R and
TnyYn € [0,a]. Furthermore, for any nonnegative integer q, there hold the
estimates

q+| |

(i) |08 (0L, 9) (@n, vn)|| < Cugo (N €)™, k=34, j=1,2.

The inequalities (1)—(iii) also hold uniformly in X € X(—ns,0s) and |£'| >
R3 for some R3 > 0, where ns and 63 are the numbers given in Lemma 4.4.

Proof. A direct computation shows that glﬂ‘f (Tn, Yn), M = D, N, are written
as above. One can prove inequalities (i) and (iii) by a direct application of
Lemma 4.5.

As for (ii), we write gl( WX, Yn) — gl( (T, yn) as

1/(1 1
(1) — g = ) e mlza—ynl
95 (-Tmyn> (7 (-Tn:yn> 2 (,ul /Lg) e
1
—p1]Tn—yn| _ ,—p2|®n—yn|
* 2 (e e H2 ).

Since 9%, e #ilen=vnl = (—p;sen (z,—yy)) e 91" =91 we can obtain inequality
(i) for k = 1. The case k = 2 can be proved similarly. This completes the
proof.

In the same manner we can estimate A, (x,).

Lemma 4.7. Let o/ € Z"! be a multi-index with |o/| < [%51] + 1 and let
¢ be a nonnegative integer. Then the following estimates hold uniformly in
A€ X(ny,0y), & and x, € [0,a]:

(i) ‘ ag y; (0 ‘< Coo (A, f)____‘_ —er()3 (amz)

for j=1,2, and

(i) 080 by ()| < Cror(0,€) 573 emerR 0 o),

The inequalities (1) and (ii) also hold uniformly in A\ € X(—ns,03) and
|€'| > Rs for some Rs > 0, where n3 and 03 are the numbers given in Lemma
4.4.

Proof. The proof is similar to that of Lemma 4.6. We omit it.

We next estimate 3;(\, &, yn), B' (N, €, yn) and b, (N, €, yn).
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Lemma 4.8. Let o/ € Z"™' be a multi-index with || < [%5*] + 1. Then the
following estimates hold uniformly in A € X(n4,04), & € R"™ and y,, € [0, a:

/
[

() |08 BN ya))| S Ce(N + 1) o (N, &) T emerhD e,

(i) 0% BN, € yn)| < Co(N, &)~ F emer e (amun),

(iii) & B/ (A€ ya)| < Co(A, &) T eerO)Z ),

iv & (N, € yn)| < Co(N, €)™ 7 eeoE) 2 (amm),
3

The inequalities (1)—(iv) also hold uniformly in A\ € X(—ns, 0s) and |£'| >
R3 for some R3 > 0, where ns and 63 are the numbers given in Lemma 4.4.

Proof. A direct calculation shows that

— A 1 o _|£/|2 — a—Yn
(4.29) BN Ewn) = Tmmmee e

+mﬁo(% &' Yn),

where Bo()\, ¢, yn) is written as the sum of terms of the form
e 2 — L I 1 ,
e HRaTHIEN TN o S polynomial in gy, pe, —, — and £ ¢, k=12,
M1 2

with z, and w, being linear functions of y, that satisfy z, > 0, w,, > 0 and
Re (pra+ 1 2, + powy,) > Re pa(a—1yy) for y, € [0, al. The desired inequality
in (i) is obtained by applying Lemma 4.5 to (4.29). Similarly, by a direct
computation, we see that 51(\, &, y,) and b, (A, £, yn) can be written as

_ |2 g2 a—yn _ Ay B .
Bl()‘ag:yn> = 11512(/\[2/') {HM:LQ1H|2£| e p2(a=yn) _ (e p(a—yn) —e p2(a—y ))}

+Bl ()‘a 5/: yn)

and

bn )\aglayn = — g 7 H1H2_|£/|2 €_u1(a_yn) — €_u2(a_yn)
4D1(A7§ ) M1

il BN € ),
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where Bj()\,f’,yn), j = 1,n, are written as the sum of terms of the same
form as that for Go(\, &, yn) with z, and w, satisfying z, > 0, w, > 0 and
Re (pra + p1 2y, + powy) > Re py(a — yp) for y, € [0,a], k=1,2 and £ =1 or
2. The desired inequalities in (ii) and (iv) now follow from Lemma 4.5.

We next consider inequality (iii). We write B'(\, £, y,) as

sinh 11y,
B/)\/ n:—ijn—_ )\alanpla
(A& yn) sinh ji;a 1= B & yn) 1,0
where il
sinh 11y,
)\a /7 n) — ., )\a /7 n)-
BAE, Yn) = BN € yn)

A direct computation shows that G(\, &', y,) is written as

12 11 pro—| € |2 —u1(a—yn —p2(a—yn
B()\agayn> = _4D|1£(1\,§/)“lu21u|2£| (6 i y)_e paley ))

/12
+4D1(/\,§/|)£(1|—e—2u1a)ﬁ()\a f/, yn),

where G(\, €, y,,) is written as the sum of the same form as that for 51 (X, €, yn).
Consequently we have

B'(\. € yn)

— 1 —mla—yn) €T ppa—lg1? (—m(a—yn) _ p—pz(a—yn)
T om € In—l + 4D1(\E7) H1p2 (6 ¢ )

1T ¢t =4

+i% (e—ul(Qa—yn) — e—ulyn) I_1+ 4D1(/\,§/§)(1§—e—2ﬂla)ﬁ()" ¢, yn)

The desired inequality in (iii) now follows from Lemma 4.5.
Similarly to above, one can prove the desired inequalities for A € X'(—ns, 03)
and |£'| > Rs with |A\| > §, where ¢ is any positive number.
Let us consider the case |A| < §. In this case a direct computation shows
that
08 B0 € )| < CIAPe™€1, =0, 1,m,

for small |[A| and large |¢’|. Combining this with Lemma 4.5, we can obtain
the desired inequalities for A € X(—ns,605) and |[¢'| > Rs with some large
R3 > 0. This completes the proof.

5. Proof of the main results

In this section we prove the main results stated in section 2.
To prove Theorem 2.1 we will apply the following Fourier multiplier the-
orem.
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Lemma 5.1. (Fourier multiplier theorem) Let 1 < p < oo and let s be an
integer satisfying s > [5] + 1. Suppose that ¥(¢) € C*(R* — {0}) N L=(RF)
and that there exists a positive constant Cy such that

¢l |ogw(¢)] < Ci

for all ¢ € R* — {0} and |a| < s. Then the operator ,3551 () (F Q)] is
extended to a bounded linear operator on LP(R¥) and there holds the estimate

|7 W(OF DO ey < CCOllfllors.

See, e.g., [4] for the proof.
We will also use the following lemma concerning integral operator.

Lemma 5.2. Let (x,,yn) be a measurable function on (0,a) x (0,a).

(1) Suppose that there exists a positive constant M such that [ |P(Tn, yn)| dyn <
M for a.e. x, and [ |P(zn, yn)|dx, < M for a.e. y,. Let 1 <p < oo. Then

it holds that
‘ / f(yn) dyn

(ii) Suppose that there exists a positive constant M such that ([§ |P(Tn, yn)|* dyn)
M for a.e. x,. Then it holds that

‘ / f(yn) dyn

The proof of the above lemma is well known. We omit it.

< M| fl,.

p

[

<

<M!f!z.

To obtain the estimates for derivatives of the resolvent we still need some
consideration. We proceed as in [3].

Lemma 5.3. There holds

g‘[g—/l [ QQLe Bl Tn— yn|f(€ yn) dyn] (.I'/,Jl'n) — g‘[g—l [ ,g[Ef(f)] (.I'/,Jl'n)
0 24y

W+ &

for j = 1,2, where £ = (£,&,) and Ef(2',xz,) is the zero-extension of
f(z',x,) to R™
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Proof. Since %, [ﬁe‘”ﬂ"””"q = we obtain the desired relation. This
J

completes the proof.

1
Hi+ER?

We will also use the following lemma ([3, Lemma 2.6]).

Lemma 5.4. ([3, Lemma 2.6]) Let 1 < p < co and define the operator T' by

@ f(Yn)
Tf(w) = [ -2 gy,
flan) = | s
for x, € (0,a) and f € LP(0,a). Then there exists a positive constant C' =
C(p) such that

T flp < Clflp-

This lemma follows from the fact that 7'f can be written in a form of the
Hilbert transformation on R. See [3, Lemma 2.6].
We are now in a position to Prove Theorem 2.1.

Proof of Theorem 2.1. Let n be any positive number. We will prove
Theorem 2.1 with 6 satisfying 7 < 6 < min {6, 03,04}, where 0; (j = 1,3,4)
are the numbers given in Lemmas 4.3 and 4.4. We note that X (n,0) C
X(n,01) N X (—ns,05) and that X (n,0) — X(n4,04) is a compact set. Here 73
and 7y are the numbers given in Lemma 4.4.

We see from Theorem 3.8 that there exists a solution u of problem (1.1)-
(1.2) which takes the form u = R(\)f, where R(\, &) = (A + Le) ™! =
GNE) + K\, &) with G\, €) and K (X, &) being the integral operators
given in Theorem 3.8. We first prove that the estimates in Theorem 2.1
hold for u = R(\)f. We then prove the uniqueness of solutions of problem
(1.1)—(1.2).

Let us estimate u = R(\)f. We first consider the case A € X(ny, 04). We
note that one can see from the form of Z%()\, ¢') that k-th order derivatives of
QoR(\)f are estimated as (k 4 1)-th order ones of QR(\)f. So we here give
the proof of the estimates for QR(\)f only. -

Hereafter we set G(\) = ,35571[@()\,5’)] and K(\) = ,95571[[(()\,5’)]. We
also write G(A) = GM(A) + -+ + GW(N), where G ()) is the matrix with
glg and g,]LV]- in G(\) replaced by (—1)“! gl(f;) and gl(f;,), respectively. Here gl(f;)
are the functions defined in (4.28).

Let us consider @R(A)@f. We first estimate 3§@G(A)@f for k < 1. Since
o7 (g%m@f) = (8§ngé‘/f - ngg%) [@ﬂ, we see from Lemma 4.6 that, for
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16|+ ¢<1and j=1,2,
og! (€7 21,0 (1. €. ) |

< CU(A,f')‘B/Q‘H_EJM {E(l)(%z )+E(2)(xn,yn)}

\5\ _1 1o
< (N +1)F 580N @, ya) €7,
where

EON, ny yn) = e~ NFDHzn=val o o=eN+DF @atun) - =eN+D {(a=zn)+(amyn)}

Since

sup [ EN @,y dyn+ sup [ EOn,ya) dan < CN +1)72,
0<z,<a /0 0<yn<a /0

we see from Lemmas 5.1 and 5.2 that

. C N
10*FQGD(NQfl, < W!\Qﬂ\p, j=1,2,

for k < 1. Similarly, one can estimate 3§@G(j)()\)@f ( =3,4) and 8;?@[(()\)@]‘
for k <1.

We next consider 92QR(N)Qf. We first estimate 92QGM(\)Qf. By
Lemma 5.3, we have

7o' |9l Qf| (@ a) = 7 [ %[@Eﬂ] (@), j=1,2,

W+ &
and, in particular,

Tt [00,,0F] (¢ 20) = FH [MON, ) FL[QES] (+/, 20),
where E f denotes the zero extension of f to R™ and

1 1
pi+ &2 s+ &2

M(Aa€> =

. . . v >\2 v 2)\ 2 2
with p; = p; (A, &), 7 = 1,2. Since 3 +&2 = ’\+V|£| , R &2 = AFEAATIEE ;'f/'\Jr:;W 1l

with [€]2 =[] + &2, and v; = v + I, we have

AN +92)
(A V1) (A2 + v €PN +2[¢12)

M(Aa€> ==
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Therefore, in view of the observation in Remarks 3.2 and 3.5, we obtain

e ()| < I for 151 = 2 and [og (0100, 9)| < U for |5] =
4 uniformly in A € X(n4,6,). It then follows from Lemma 5.1 that

102QGW NQf[lp < ClIQF Iy,
We next consider 92QG®(A\)Qf. For ||+ £ = 2, we see from Lemma

4.6 that
0 (i€)7 0L QGP (A, € 2, 9a)Q) |

S C{mn‘lf'yn - (a—zn)+(a—yn) }’5/’ |O‘
It then follows from Lemma 5.1 that

LP(RP1)

= C/oa {xn—ll—yn * (a —x,) i (a— yn)} H@f(’yn)

and hence, by Lemma 5.4, we obtain

|zac®mer|| < cfar, -

Le(RA-1) dyn,

In the same way one can also obtain the desired estimates for 6§@G(j) ()\)@ f
(j =3,4) and HQK(N)Qf.

We next consider QR(\)Qo f. Similarly to above, one can prove
W%HQO]”HP for £ < 1. As for 32@5’()\)@0]”, we first note that 8xnng0f =

gHD2 0., Qo f], which is obtained by integration by parts. It then follows that

0
QG )Qof = ——7T7 ( I V' Qo f] ) ;
A+ 2 s -
ST R 100,/
where V' =1(9,,,--+, 0., ,). Therefore, similarly to above, we obtain
)~
102QGNQo s < T3 1Qu I
As for 2QK (N Qo f, we write
0

QHNE)Qof = | (Bhufo + 5 ) [V'Q0f]
%\iaﬂfn hlthuz [V/Qof]
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The desired estimate for 6§C~2K (M) Qo f now follows similarly to above.
As mentioned before, one can prove the estimates for 9*QuR(\)f with
k < 1 similarly to the estimates for *T'QR(\)f. We thus omit the details.
Let us prove the last inequality in Theorem 2.1. We assume that @ f

xn=0,a

0. It suffices to prove

B

102, QRNQ Sl <

Since Qf

= 0, by integration by parts, we also have

xn=0,a
0a, 97 QF = gb) [0:,Qf] . =12

Therefore, we see from Lemmas 4.6, 5.1 and 5.2 that

102, QGRS < 00, Qf |-

]/\\+1H

As for QK ()\)@ [, we note that an application 0,, to hy,(z,) yields one of
the factors uj, j = 1,2. But, since B'(\, £, y,) and b, (), &, y,) are written

= 0, then

as linear combinations of e*¥ (j = 1,2), we see that if Qf

a P 1 a ] o~ )
/0 e Q f (yn) dyy = ]F;/o e 0, Qf (yn) dyn, j=1,2.
)

Therefore, we can gain one of the factors ,uj_l, j =1,2. Tt then follows that

B

102, QE(N)QS lp <
We have thus obtained the desired estimates when A € X(ny, 64).

We next consider the case A € X(n,0) — X(n4,0s). We fix a positive
number Rj3 in such a way that Lemmas 4.5-4.8 hold for A € X(—n;3,05) and
€'| > Rs.

We decompose R(\)f in the following way. Let x(£') be a C'*° function
on R" ! satisfying 0 < y < 1 on R"™, x(¢') =0 for |¢'| < Rz and x(¢') =1
for |¢'] > 2R3. We write R(\)f as

RONf =RONf+ RN,

where

RO = Zg' [(1- XEDROE)]]
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and B R R
RN =F5 [RE)RNE)F].

Similarly to the case of A € X(ny, 04), we can obtain the desired estimates
for RC)(\) f since X(n,0) C X(—ns, 0s). The desired estimates also hold for
E(O)(A)f. In fact, by Lemmas 3.4 and 4.3, we see that D(\,£’) # 0 on the
compact set X (n, 0) — X(ns, 04) x {&'; |§'| < 2R3}. Therefore, E(A,f’,xn,yn)
is analytic, and so we can obtain the desired estimates for R(®) (M) f. We thus
conclude that u = R(A)f satisfies the estimates in Theorem 2.1.

It remains to prove the uniqueness of solutions of problem (1.1)-(1.2). To
prove the uniqueness, we consider the adjoint problem

(5.1) A+LYw=g, Quw

=0,

xn=0,a

0 —vdiv
L= .
-V  —vAl, — vVdiv

Similarly to the case of problem (1.1)—(1.2), we consider the Fourier transform
of (5.1) in 2’ € R

where

A+LHo =3, Qu = 0.

xn=0,a

It is easily verified that (X + Iig/)_l has an integral representation R*(X, &)
corresponding to Theorem 3.8, which is written in terms of the components
of R(X,¢&). Therefore, R*(N)g = ,35571 [I%* (A, f’)@}, which is a solution of
(5.1), has the same estimates as those for R(A)f. We thus conclude that
for any A\ € X(n,0) and g € WP x LP problem (5.1) has a solution w €
Wi (W2 1),

Assume now that u € Wh? x (W“’ﬂ Wol’p) and (A + L)u = 0. Let
g € C(2) x Ce°(£2) and let w be a solution of (5.1) satisfying w € W' x
(W“’/ N Wol’p/) with 1/p/ =1 —1/p. It then follows that

0= (\+Lyu,w) = (u, A+ L*w) = (u, g).

This implies that u = 0, and the uniqueness of problem (1.1)—(1.2) holds for
A € X(n,0). This completes the proof.

We next give a proof of Theorem 2.2.

Proof of Theorem 2.2. We here prove the second inequality in Theorem
2.2 for 0,,Q,G(\)f only, since the other cases can be proved similarly by
applying Lemmas 4.6-4.8 and 5.2.

47



We first consider the case A € X(ny,04). Let EV(z,,yn), § = 1,2,
be the functions defined in Lemma 4.6 and set E(x,,y,) = EW(z,,y,) +
E®(2,,y,). Then we have

sup ([ B o)y ) < Co( )

0<zn<a

Since 69% (ngof) ( xngm) [Qof] — Qof, we see from Lemmas 4.6
and 5.2 that
L1 L }

102, QuGN) Qo flloe < W%{HQowaH(aingﬁ) Qo]
of (&) )

IN

o {HQofHoo o (RS EARE

IN

c{ﬁuczofuw
1Qof i

£ 1Qof a1 |

(\)\I—H

<
(\A|+1

We next consider 0,,Q,G(N)Q'f. Similarly to above, we see from Lem-
mas 4.6 and 5.2 that, for 0 < e < 1,

102, QuGNQ flloe < €0, @GN E)Q'f

L}, L,
< CllA+ 1+ R T IE|QFE),
< C|(A+ 1>—% (N +1+ 1) @ e,
<
- (\A|+1

with s > 7 — . Therefore, we can take s = [%} Similarly, we can obtain

C
(N +1DF

We next consider the case A € X(n,0) — X(n4,0s1). We decompose (A +
L)~ finto (A+ L)~ f = RO(X) f+ R (A) f as in the proof of Theorem 2.1.
It then follows that R(°®)(\)f can be estimated as above. One can also see

that R©(A)f has the desired estimates since D(),£') # 0 on the compact
set X (n,0) — X(na,04) x {&; |€'| < 2Rs}. This completes the proof.

102, QnG(A)Qn flloo < = IF (€ -

We next prove the LP estimates of the resolvent for p = 1,00. For this
purpose we prepare the following lemma.
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Lemma 5.5. Let £ = 0,1 and let @(5’,3%) be a function satisfying
o' B £ _J
08 2(€', ) < Ca(A, &)=
for all o with |o/| < n. Then ®(z', x,) = (9;15)@’,3@1) satisfies

9]l < C(A +1)57!

Proof. The proof is based on the Riemann-Lebesgue lemma as in the esti-
mates of solutions to the Cauchy problem given in [8].
Since 2 — ¢ 4+ n > n — 1, by integration by parts, we see that

n—1 "
’ _ n—1 3¢l Lj ix'-€ gl
[P(', )1 (2m) /Rn—1 (&, ) (Z i]:l:’]Qa&j) € dg
2%
< Ol [ X e )|, de

/|n

£ _q_n
< C’a:/’—n/Rn_l (’A‘+1+’£/’2)2 2 dfl

< Ol (A +1)E,
This implies that

[[@(z’ C(AL+1)72%5 2]~

. <
M s a1y S L@/ (N+1)73)

< C(A+1)71+5

We next show that

1P (2" CA+1)7 e

R P S

In case ¢ = 0, similarly to above, we have

n—1 n=2
(1. - _ ) n—l/ @ / . Ly ' iac/f/d /
’ (l’, )’1 ( 7T) Rn—1 (5 ) L ) (Z i]:z:’]2657> € 5

< Cl|” ”Q/Rnl Z ‘3g (€ 20)|,

o'|=n

< Ol | 0M+1+f%f‘"7d€
Rn—l
< Cla/|"=2(|A\ +1)"2.
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This implies

l[@(2", -) C(IAl+1)72

|x/’—(n—2)

<
ylHLlﬂxﬂgﬂAL+U_%) - Llustaxr+n‘%)

A\

C(IA| + 1)

The proof of the lemma for ¢ = 0 is thus complete.
Let us consider the case ¢ = 1. We first observe that

S GO b = — [ OB )T g
(5.2) ‘B R
- _ 0 B(E — 2/ wn)e™ ¥ de.
Rn—l

Here and in what follows we write 2’ = ﬁﬂ. From (5.2) we see that

|2 (=)

S C’$/’_(n_2) /

Rn—l

(5.3) S [0 (B¢ -+ aa) — BE 20)

la/|=n—2

dg’.

L,
By assumption, we have
(5.4) 08 (D — 2, 20) — D¢, 7))

where

< opW(¢ 2y,

n

Ly

oD, 2) = (N +1+1€7) 7 + (N +1+[g-2]7) 7.
We also have

08 (D& — 2, 0) — D¢, 30))

L}c”
! =y /
(5.5) < cyz'y| |Z /0 0SB — 02, ,)| | 0
B'|=n—1 on
S C]a:’]_léﬁ(Q)(f’,x’),
where ) .
PO (¢! ) :/ (A1 +1+1¢ —62/%) "% de.
0

Let 7 be a number satisfying 1 — + < 7 < 1. It then follows from (5.4) and
(5.5) that, for |o/| =n — 2,

,/Rn—l a?// (é(é-/ o Z/’ x”) o 5(5/7 xTL))

56 < O [ BB g

d¢’

1
Lz,

_ C«’a:/’—(l—r)/Q + 5 +/Q 5(1)(6/’x/)Té(Q)(él’x/>1—r df/,
1 2 3
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where

2 ={¢5 €] = 2]}
2y ={&5 €] < 2[[} 0 {E; € = 2] = 2|2},
25 ={&; [€] < 2[Z[} 0 {E; 1€ = /[ < 2]}

On 2, we have [¢' — 2/| > 1|¢'| and |¢' — 02| > L|¢| for any 6 € [0,1]. It
follows that
(5.7)

[ o0 ayd®ig a)mdg < e f (1 IgR) e
Ql Rn—l

< C(A+1)"2t5,

On (2, we have ¢/ —2/| > |¢'| and |€' — 02| > ¢/ — 2| — (1 = 0)|2'] > 3|¢| for
any 0 € [0, 1]. Therefore, as above, we obtain

(58) BV(g,2) BD(,2') T dg < C(IN +1)78FE.

29

As for the integral on (23, we have

@(1)(6/’ x/)v@(Q)(é:/’ Z'/)I_T df/

23

< C ’5/’—(n—1)7(’)\‘ + 1)—%(1—7)d€/
(5.9) {le'|<2l='1}

C/ €' — 2/|~=D7 (1N + 1) 20D ag!
{le—='|1<2]'|}
< C(A] 4+ 1) 207/~ A=) =1
Consequently we see from (5.6)—(5.9) that
/Rn—1 6?// (@(6/ _ Z/,Jl'n) . @(5/’xn))
< C{(N + 1752|7070 4 (A] 4 1)~ 50 g/~

d¢’

1
Ly,

This, together with (5.3), implies that
@) < C{(A+ 1) T

+(’)\‘ + 1)—%(1—7’)’:E/’—(n—Q)—(l—T)n} '
Since 1 — L < 7, integrating this over {z'; [z/| < (JA| + 1)~2}, we obtain

(") S C(A+1)2.

’1HL1<\x/|s<|A|+1>—% =
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This completes the proof.
We now prove the LP estimates of the resolvent for p = 1, cc.

Proof of Theorem 2.3. We here prove the estimates only for A € X' (n4, 64).
The other case can be treated by using the decomposition (A + L)™' f =
RO\ f + RC)(\)f as in the proof of Theorem 2.1.
Let us denote the integral kernels of (A + L)™', G(\)f and K(\)f by
R\ 2" =y xn,yn), GO\ 2" =, 2, yn) and K (N, 2" — 4/, T4, yn ), respectively.
Let E(2n,yn) = EW (20, yn) + E@(2,,y,) be defined as in the proof of
Theorem 2.2. It holds that

sup | E(tp,ya) dvg + sup [ E(rg,y.) dy, < Co(N,€)75.
0<yn<a /0 0<z,<a J0

Therefore, by Lemmas 4.6-4.8 and 5.5, we have
105QA+ L) Qflr < supocy, <a |O5QR(A, - ya) 1 |Qf 1

< (A1) 1_& HQlea kZO,l,

and
1EQA+ L)' Qf e < SUPgey,<a IOFQR(A, -, 2, ) 1L |QFf [l
< 1__HQfH007 =0,1.

(IA+1)

Similarly one can estimate Qo(A+ L)™' f to obtain the desired estimate.
We next consider 9,Qo(A+L)~'Q f. We here estimate only 9,QoG(\) Q.. f.
Since 0% G(\)f = G(N\)0% f, we see from Lemmas 4.6 and 5.5 that

102 QoG (N Qufllp < 102 Quflly, »=1,00, |a'| = 1.

]/\\+1

~

. N i~ 2
Since 82 (9\5) ) = 39 f — f and 3 = ;=5 + [¢']?, we have
1A+

02, QG (N @ f
ot {2 QuGNQ f + V' QG V' Quf] = Quf} -

It then follows from Lemmas 4.6 and 5.5 that

102, QoG (N Qn flp < {I1@nfllp + IV'@nufllp}, p=1,00.

]/\\+1
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The remaining part of 9,Qo(A+ L)_1@ f can be estimated similarly. One can
also estimate 9,Q(\ + L)™'Qof in a similar manner.
We next estimate 9,Qo(A+ L)1 Qof. Consider first QoK (\)Qof. We set

%(}\’x/’xmyn> =7 [huz ()‘aflaxn>50()"€/7yn>] (l'/)?

ENf = fans k@ =, 20, yn) Qo f (', yn) dy dy,.

Then
QoK (N)Qof = —WV 'KV [V'Qof].
It then follows from Lemmas 4.7, 4.8 and 5.5 that
100 QE NSy 5o 00V Quf Iy p= 1,00
%0 0 p_’)\‘—l-l ofllpy P=1, .
Also, since
i T /
K =——K A
QoK (N)Qof AT (M) [A'Qof],

we similarly obtain, by Lemmas 4.7, 4.8 and 5.5,

102, QoK (M) Qo fllp < [AQofllp-

|A] + 1’
As for 0,QoG(N) Qo f, one can treat it as in the case of &C@(A + L)_léf.
Let us finally consider 9,Q(\ + L)™' f, assuming that Qf = 0.

As for 0 @()\ + L)~ LQf, we rewrite it as in the proof of the last inequality

of Theorem 2.1. One can then estimate it similarly to the case of 6’“@()\ +
L)~ LQ f with k < 1 to obtain the desired inequality. The estimate for 9 Q()\—l—
L)™'Qof has been already obtained. This completes the proof.

xn=0,a

We finally prove Theorems 2.5-2.7.

Proof of Theorems 2.5-2.7. We prove Theorems 2.5-2.7 for 77 = min {ns, 73}
and § < 0 < min {02, 03,04}, where n; (j = 2,3) and 0; (j = 2,3,4) are the
numbers given in Lemmas 4.3 and 4.4. For this {7,0} we see from Lemma
4.3 that X(—7},0) C p(—Le) for |¢'| > r. Furthermore, we deduce that
2(—71,0) C Z(—n2,02) N Z(—ns3,05) and that X(—7,0) — X(ns,0,) is a com-
pact set. Here 4 and 6, are the numbers given in Lemma 4.4.

In view of the proof of Theorems 2.1-2.3, the desired estimates for R (\) f
hold for A € X(nu, 04).
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In case A € X(—1],0) — £(n4, 04), we decompose RV () f in the following
way. Let x(&') and x(¢') be the cut-off functions given in the definition of
RW(X)f and in the proof of Theorem 2.1, respectively. We write R () f as

RO\ f =R\ f+ RN,

where
RO f =" [x(€)(1 = X(€)NRON )]
and
RN f = Z5" [XERE)RNE)T].
By Lemma 3.4 and Lemma 4.3 (ii) we see that D(\,{') # 0 on the compact

set (=7, 0) — (04, 64). Therefore, as above, one can see that R (X)f has
the desired estimates for A € X(—1,0)— X(n4, 04) as in the proof of Theorems
2.1-2.3. This completes the proof.
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