<学術雑誌論文>
On random walks of Pollard's rho method for the ECDLP on Koblitz curves

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
関連DOI
関連DOI
関連URI
関連ISBN
関連HDL
関連情報
概要 Pollard's rho method is the asymptotically fastest known attack for the elliptic curve discrete logarithm problem (ECDLP) except special cases. It works by giving a pseudo-random sequence defined by a...n iteration function and then detecting a collision in the sequence. We note that the number of iterations before obtaining a collision is significant for the running time of the rho method and depends on the choice of an iteration function. For many iteration functions suitable for the ECDLP on elliptic curves except Koblitz curves, the number of iterations before obtaining a collision had been investigated. In this paper, we propose a new iteration function on Koblitz curves which is an extension of the iteration function proposed by Gallant et al. and analyze the performance on our iteration function experimentally.続きを見る

本文ファイル

pdf JMI2011B-3 pdf 138 KB 413  

詳細

レコードID
査読有無
主題
注記
タイプ
登録日 2011.10.26
更新日 2020.12.15

この資料を見た人はこんな資料も見ています