作成者 |
|
|
本文言語 |
|
出版者 |
|
|
発行日 |
|
収録物名 |
|
出版タイプ |
|
アクセス権 |
|
関連DOI |
|
関連DOI |
|
|
関連URI |
|
|
関連ISBN |
|
関連HDL |
|
関連情報 |
|
|
|
概要 |
Abstract. Let $ M $ be a semi-finite von Neumann algebra equipped with a faithful semi-finite normal trace $ \tau $, and we assume that f(t) is a convex function with f(0) = 0. The trace Jensen inequa...lity $ \tau $(f(a*xa)) . $ \tau $(a*f(x)a) is proved for a contraction a ∈ $ M $ and a self adjoint operator x ∈ $ M $ (or more generally for a semi-bounded -measurable operator) together with an abundance of related weak majorizationtype inequalities. Notions of generalized singular numbers and spectral scales are used to express our results. Monotonicity properties for the map: x ∈ $ M $sa → $ \tau $(f(x)) are also investigated for an increasing function f(t) with f(0) = 0.続きを見る
|