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TRACE JENSEN INEQUALITY AND RELATED WEAK

MAJORIZATION IN SEMI-FINITE VON NEUMANN ALGEBRAS

TETSUO HARADA AND HIDEKI KOSAKI

Abstract. Let M be a semi-finite von Neumann algebra equipped with a faithful
semi-finite normal trace τ , and we assume that f(t) is a convex function with f(0) =
0. The trace Jensen inequality τ(f(a∗xa)) ≤ τ(a∗f(x)a) is proved for a contraction
a ∈ M and a self adjoint operator x ∈ M (or more generally for a semi-bounded
τ -measurable operator) together with an abundance of related weak majorization-
type inequalities. Notions of generalized singular numbers and spectral scales are
used to express our results. Monotonicity properties for the map: x ∈ Msa →
τ(f(x)) are also investigated for an increasing function f(t) with f(0) = 0.

1. Introduction

A continuous function f(t) on an interval I is said to be operator convex when
f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) is valid for each λ ∈ [0, 1] and self-adjoint
operators x, y with spectra included in I. It was shown in [8, 9] that such an operator
convex function f(t) satisfies

π(f(x)) ≥ f(π(x))

for a positive unital map π. A closely related inequality is the so-called operator
Jensen inequality ([13, 14, 15]) stating

a∗f(x)a ≥ f(a∗xa).

Here, a is a contraction (i.e., ||a|| ≤ 1) and both of 0 ∈ I, f(0) ≤ 0 have to be assumed.
A readable account on these and related subjects can be found in [5, 14, 15].

Operator convexity is much stronger than the usual convexity, and for trace in-
equalities we expect (or at least hope) that usual convexity (or concavity) is sufficient
to get estimates in similar nature. Indeed, the Jensen-type trace inequality

τ
(

a∗g(x)a
)

≤ τ
(

g(a∗xa)
)
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was obtained in [7] for a semi-finite von Neumann algebra M with a trace τ , where
g(t) is a continuous concave function with g(0) = 0. Here, a ∈ M is a contraction
again and in [7] (as well as in [24]) x ∈ M was assumed to be positive. Whenever such
trace inequalities are considered, we will assume g(0) = 0 (otherwise τ(|g(a∗xa)|) =
∞ for x = 0 unless τ(1) < ∞). The notion of spectral dominance (see §2.1) played
an important role in this work. The closely related inequality

τ
(

α(f(x))
)

≥ τ
(

f(α(x))
)

for a positive contractive map α : M → M and a convex function f(t) with f(0) = 0
was also proved in [24]. It is easy to see that these inequalities actually remain valid
for self-adjoint operators x (see Theorem 7 in §3).

In recent years some convexity inequalities of weak majorization-type were obtained
for eigenvalues of Hermitian matrices (see [4, 29] for instance). Weak majorization
for matrices deals with partial sums of eigenvalues, and usefulness of this technique
in the matrix and/or operator setting is concisely explained in the survey article [3].
The purpose of the present article is to prove the Jensen-type trace inequality for self-
adjoint operators at first and then to obtain many related weak majorization-type
inequalities in the semi-finite von Neumann algebra setting.

In §2 we will collect some basic notions (such as generalized singular numbers and
spectral scales) needed in the article. In §3 at first we will prove

τ
(

a∗f(x)a
)

≥ τ
(

f(a∗xa)
)

for a convex function f(t) with f(0) = 0 and x ∈ Msa (more precisely for a semi-
bounded τ -measurable operator), which will be referred to as the trace Jensen in-
equality. Then, by closely examining its proof, we will study Jensen-type weak ma-
jorization in the (semi-finite) von Neumann algebra setting. Here, “eigenvalues” make
no sense and we will use the notion of generalized singular numbers ([10, 11]) to for-
mulate our results. We will also obtain a certain comparison result between |x + y|
and |x|+ |y| (i.e., an operator valued triangle inequality). In §4 we will study Jensen-
type weak majorization with the notion of spectral scales ([23]). Thus, τ has to be
a finite trace, but results are more satisfactory in the sense that many results known
in the matrix setting can be proved. In §5 we will study monotonicity properties for
the map: x ∈ Msa → τ(f(x)) for a continuous increasing function f(t) satisfying
f(0) = 0. As expected, the map is indeed monotone relative to the ordinary order ≤
on Msa although required arguments are somewhat tricky. Results here are used in
our related analysis [16] and could be useful for other purposes as well.

Acknowledgements. The authors would like to thank the referee for suggesting
certain improvement of the original manuscript.
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2. Preliminaries

Let M be a semi-finite von Neumann algebra equipped with a faithful semi-finite
normal trace τ (throughout the article). A densely-defined closed operator x affiliated
with M is said to be τ -measurable if for any ε > 0 one can find a projection e ∈ M
such that the subspace cut by e is included in the domain of x and τ(1− e) ≤ ε. It is
known that the set M (⊃ M) of all τ -measurable operators forms a ∗-algebra (and
one can treat them without worrying “domain problems”). For ε, δ > 0 we set

V (ε, δ) = {x ∈ M; there exists a projection e ∈ M
such that ||xe|| ≤ ε and τ(1 − e) ≤ δ}.

The linear topology on M whose fundamental system of neighborhoods around 0
is given by V (ε, δ)’s is known as the measure topology. It is known that M is a
complete ∗-algebra relative to this topology. Basic facts on τ -measurable operators
and the measure topology can be found in [21] (see also [25]).

2.1. Spectral dominance. For positive operators x, y ∈ M (or rather positive
τ -measurable operators) the spectral dominance x & y (or y . x) means

ex
(s,∞) & ey

(s,∞) (s > 0)

in the Murray-von Neumann sense. Here (and in the rest), the spectral projection of
x (corresponding to a subset I ⊆ R) will be denoted by ex

I (or simply eI(x)).
The following facts will be repeatedly used:

(a) For positive τ -measurable operators x, y with x ≤ y we have the spectral
dominance x . y (see [7, Lemma 3,(i)]).

(b) For positive τ -measurable operators x, y with x . y we have g(x) . g(y) for
any continuous increasing function g(t) on [0,∞) satisfying g(0) = 0.

(c) If self-adjoint τ -measurable operators x, y satisfy x ≤ y, then we have x+ . y+.
Indeed, with the support projection e of x+ we compute

x+ = exe ≤ eye = ey+e − ey−e ≤ ey+e,

On the other hand, since e(s,∞)(ey+e), e(s,∞)((y+)1/2e(y+)1/2) are equivalent

projections and (y+)1/2e(y+)1/2 ≤ y+, we have x+ . y+.

2.2. Generalized singular number. For x ∈ M positive and t > 0 we set

µt(x) = inf
{

s ≥ 0; τ
(

ex
(s,∞)

)

≤ t
}

.

A positive operator x affiliated with M is τ -measurable exactly when τ
(

ex
(s,∞)

)

< ∞
for some s > 0 (and consequently lims→∞ τ

(

ex
(s,∞)

)

= 0 by the dominated conver-

gence theorem). Thus, the quantity µt(x) < ∞ (for each t > 0) makes sense for
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each positive τ -measurable operator x. It is known as the “t-th” generalized singular
number, and it also admits the “min-max” representation

µt(x) = inf sup{(xξ, ξ); ξ ∈ pH and ||ξ|| = 1},

where the infimum is taken over all projections p ∈ M satisfying τ(1 − p) ≤ t.
Actually, the quantity µt(x) (= µt(|x|)) is defined for an arbitrary x ∈ M, and
{µt(·)}t>0 serves as a continuous analog for singular numbers {µn(·)}n=0,1,2,··· (see
[12, 26]), i.e., the decreasing rearrangement of (positive) eigenvalues of the absolute
value part of a matrix in question.

The following properties are useful:

(a) The spectral dominance x & y (for x, y ≥ 0) implies µt(x) ≥ µt(y) (for t > 0).
(b) The trace value can be computed as

τ(|x|) =
∫ ∞

0
µs(x) ds.

(c) We have x ∈ V (ε, δ) ⇐⇒ µδ(x) ≤ ε (see [11, Lemma 3.1]). Thus, a sequence
{xn} in M tends to x in the measure topology if and only if

lim
n→∞

µt(x − xn) = 0 (for each t > 0).

(d) If a sequence {xn} in M tends to x in the measure topology, then we have

µt(x) ≤ lim inf
n→∞

µt(xn)

for each t > 0 (see [20, Lemma C in Appendix] or [11, Lemma 3.4]).

2.3. Spectral scale. We assume that M is a finite von Neumann algebra equipped
with a faithful normal trace τ satisfying τ(1) < ∞. For y ∈ Msa the quantity

λt(y) = inf
{

s ∈ R; τ
(

ey
(s,∞)

)

≤ t
}

(t ∈ (0, τ(1)))

is known as the (“t-th”) spectral scale of y. This notion is a continuous analog of the
decreasing rearrangement of (real) eigenvalues of a Hermitian matrix.

The above three notions will play important roles throughout, and their details (as
well as more information) can be found in [7], [10, 11] and [23] respectively.

2.4. Well-definedness of trace values. Let y be a self-adjoint τ -measurable op-
erator. We say that τ(y) is well-defined if either τ(y+) < ∞ or τ(y−) < ∞. In this
case we can set

τ(y) = τ(y+) − τ(y−) (∈ [−∞,∞]).

Let us summarize basic properties (see [7, Lemma 8 and Lemma 9]):
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(a) Let E be a τ -preserving conditional expectation (E to be used in §3 is very
explicit). We compute

E(y)+ − E(y)− = E(y) = E(y+ − y−) = E(y+) − E(y−)

with E(y±) ≥ 0. Thus, minimality of the Jordan decomposition (relative to
the spectral dominance) guarantees E(y)± . E(y±) (see [7, Lemma 6] or the
reasoning in 2.1,(c)) and consequently

τ(E(y)±) ≤ τ(E(y±)) = τ(y±) (≤ ∞).

(b) In particular, if τ(y) is well-defined, then so is τ(E(y)) and we have of course

τ(y) = τ(E(y)).

(c) We assume that τ(y1), τ(y2) are well-defined for self-adjoint yi ∈ M. If
τ(y1)+ τ(y2) is well-defined (in the sense that “∞−∞” does not occur), then
τ(y1 + y2) is also well-defined and

τ(y1 + y2) = τ(y1) + τ(y2).

This can be easily shown based on (y1+y2)± . (y1)±+(y2)±, which is another
consequence of minimality of the Jordan decomposition.

2.5. Miscellaneous facts. Some facts needed in later sections will be collected
here. We begin with the next fact (that is pointed out in [12, Chap.II §5] for compact
operators based on quite different arguments).

Proposition 1. Let E be a τ -preserving conditional expectation. For a τ -measurable

operator x (in M + L1(M; τ)) we have
∫ t

0
µs(E(x)) ds ≤

∫ t

0
µs(x) ds for each t > 0.

Proof. We observe ||E(x)|| ≤ ||x|| and ||E(x)||1 ≤ ||x||1, where || · ||1 is the trace
norm. The first inequality is obvious while for the second we note

||E(y)||1 = sup |τ(E(y)x)| = sup |τ(yE(x))|.
Here the supremum is over all x’s in the unit ball M1. But, for x ∈ M1 we estimate

|τ(yE(x))| ≤ ||y||1||E(x)|| ≤ ||y||1||x|| ≤ ||y||1.
Therefore, the desired result follows from the variational expression

∫ t

0
µs(x) ds = inf {t||x0|| + ||x1||1}

(as a “K-functional”), where the infimum is taken over all decompositions x = x0+x1

(see [11, p. 289]),[22])
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In the rest of the subsection we will assume τ(1) < ∞ and deal with spectral
scales λt(·) (t ∈ (0, τ(1))). The next characterization is well-known for Hermitian
matrices. The standard proof (presented in [3, Theorem 1.1] for instance) can be
easily modified to cover type II1 von Neumann algebras (see [17, Proposition 1.2]),
whose details are presented here for the reader’s convenience.

Proposition 2. For x, y ∈ Msa we have the weak majorization

∫ t

0
λs(x) ds ≤

∫ t

0
λs(y) ds (t ∈ (0, τ(1)))

if and only if τ ((x − r1)+) ≤ τ ((y − r1)+) for each r ∈ R.

Proof. We assume the weak majorization. If r > λ0(x), then we have (x − r1)+ = 0
and hence τ((x− r1)+) = 0 ≤ τ((y − r1)+). On the other hand, if r ≤ λτ(1)(x), then
we have (x − r1)+ = x − r1 and

τ((x − r1)+) = τ(x − r1) = τ(x) − rτ(1)

≤ τ(y) − rτ(1) = τ(y − r1) ≤ τ((y − r1)+).

Finally, if either r = λs0
(x) or lims→s−

0

λs(x) ≥ r > λs0
(x), then we estimate

τ ((x − r1)+) =
∫ τ(1)

0
(λs(x) − r)+ ds =

∫ s0

0
(λs(x) − r) ds

≤
∫ s0

0
(λs(y) − r) ds (by the assumption)

≤
∫ s0

0
(λs(y) − r)+ ds

≤
∫ τ(1)

0
(λs(y) − r)+ ds = τ ((y − r1)+) .

Conversely, when τ((x−r1)+) ≤ τ((y−r1)+) (r ∈ R), for t ∈ (0, τ(1)) we estimate

∫ t

0
λs(y) ds =

∫ t

0
{λs(y) − λt(y)}ds + tλt(y) = τ ((y − λt(y)1)+) + tλt(y)

≥ τ ((x − λt(y)1)+) + tλt(y) (by the assumption)

=
∫ τ(1)

0
(λs(x) − λt(y))+ ds + tλt(y)

≥
∫ t

0
(λs(x) − λt(y))+ ds + tλt(y)

≥
∫ t

0
{(λs(x) − λt(y)}ds + tλt(y) =

∫ t

0
λs(x) ds,

and we are done.
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For x ∈ M we set

x̂ =

[

x 0
0 0

]

∈ M⊗ M2(C).

A generalized singular number µt(·) satisfies µt(x̂) = µt(x) (for t < τ(1)), where µt(x̂)
is relative to the product trace τ ⊗ TrM2(C) with the unnormalized trace TrM2(C).
Although a spectral scale λt(·) does not possess this property, we have

Corollary 3. For x, y ∈ Msa we have
∫ t

0
λs(x) ds ≤

∫ t

0
λs(y) ds (t ∈ (0, τ(1)))

if and only if
∫ t

0
λs(x̂) ds ≤

∫ t

0
λs(ŷ) ds (t ∈ (0, 2τ(1))).

Proof. We note

(x̂ − r1)+ =

[

(x − r1)+ 0
0 (−r1)+1

]

,

(

τ ⊗ TrM2(C)

)

((x̂ − r1)+) = τ((x − r1)+) + (−r)+τ(1)

(and similarly for y’s) so that the result follows from Proposition 2.

3. Weak majorization (semi-finite trace case)

In this section the trace Jensen inequality (stated in §1) for x ∈ Msa will be proved
at first. More precisely it will be shown for semi-bounded τ -measurable operators (see
Remark 6). Arguments here will actually enable us to obtain some weak majorization
inequalities with the notion of generalized singular numbers (explained in 2.2).

Throughout the section f(t) is a continuous convex function satisfying f(0) = 0,
and let us recall two lemmas from [7]:

Lemma 4. Let a ∈ M be a contraction and we assume x ∈ Msa, the self-adjoint

operators in M. For a unit vector ξ we have

f
(

(a∗xaξ, ξ)
)

≤ (a∗f(x)aξ, ξ).

Lemma 5. Let I ⊂ R be an interval on which f(t) is monotone (either increasing

or decreasing). For a contraction a ∈ M and a self-adjoint x ∈ M we set p = ea∗xa
I .

(i) If f(t) ≥ 0 on I, then we have pa∗f(x)ap ≥ 0 and moreover

pa∗f(x)ap & pf(a∗xa)p.

(ii) If f(t) ≤ 0 on I, then the negative part (pa∗f(x)ap)− (≥ 0) of the Jordan

decomposition satisfies

−pf(a∗xa)p & (pa∗f(x)ap)−.
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The former is just the Jensen inequality applied to the probability measure

µ(I) = ||ex
Iaξ||2 + (1 − ||aξ||2) δ0(I) (for a subset I ⊂ R).

The latter (proved based on the former) was the main technical ingredient in [7]
(where x ≥ 0 and the concavity of f(t) were assumed). Proofs there work in the
current case as well with obvious modifications so that details are left to the reader.

Remark 6. For a general (unbounded) x = x∗ the “inner product” (a∗xaξ, ξ) makes

no sense. To avoid this difficulty, let us assume that a self-adjoint τ -measurable

operator x is semi-bounded, i.e.,

either −m ≤ x or x ≤ m (for some m ∈ R+).

We assume −m ≤ x for instance, and we set xn = xχ[−m,n](x) ∈ Msa for each

n ∈ N. Since f(t) is monotone (increasing or decreasing) for t large, we can set

(a∗f(x)aξ, ξ) = lim
n→∞

(a∗f(xn)aξ, ξ)

belonging to (−∞,∞] (resp. [−∞,∞)) in the increasing (resp. decreasing) case.

Note that (a∗xaξ, ξ) ∈ (−∞,∞] is well-defined due to lower semi-boundedness −m ≤
x. When (a∗xaξ, ξ) = ∞, we set

f((a∗xaξ, ξ)) = lim
t→∞

f(t).

With the conventions so far, Lemma 4 obviously remains valid for x ≥ −m (by
the obvious limiting argument). Of course we can play a similar game for a upper

semi-bounded x ≤ m.

Lemma 5 is just based on Lemma 4 (together with careful analysis on Murray-von

Neumann equivalence of relevant spectral projections), and consequently it remains

valid for semi-bounded (self-adjoint) τ -measurable operators.

Let us consider the case where f(t) is decreasing at the origin in this section. (The
opposite case can be handled by considering f(−t) and −x.) We assume that f(t) is

(i) positive and decreasing on I1 = (−∞, 0),
(ii) negative and decreasing on I2 = [0, t1),
(iii) negative and increasing on I3 = [t1, t2),
(iv) positive and increasing on I4 = [t2,∞).

Some of these intervals could be be ∅. For example, we have I2 = I3 = ∅ for f(t) ≥ 0,
and I3 = I4 = ∅ for f(t) decreasing.

Let x be a self-adjoint operator in M, and we set

pi = ea∗xa
Ii

(i = 1, 2, 3, 4) and E(y) =
4
∑

i=1

piypi.
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Since pi’s are spectral projections and f(0) = 0, we have pif(a∗xa)pi = f(pia
∗xapi).

It is convenient and intuitive to express f(a∗xa)
(

= E(f(a∗xa))
)

in the matrix form:

f(a∗xa) =











p1f(a∗xa)p1 0 0 0
0 p2f(a∗xa)p2 0 0
0 0 p3f(a∗xa)p3 0
0 0 0 p4f(a∗xa)p4











with
pif(a∗xa)pi ≥ 0 (i = 1, 4) and pif(a∗xa)pi ≤ 0 (i = 2, 3).

On the other hand, a∗f(x)a is not necessarily diagonal and we have

E(a∗f(x)a) =











p1a
∗f(x)ap1 0 0 0

0 p2a
∗f(x)ap2 0 0

0 0 p3a
∗f(x)ap3 0

0 0 0 p4a
∗f(x)ap4











with
pia

∗f(x)api ≥ 0 (i = 1, 4)

(thanks to the first part of Lemma 5,(i)). The Jordan decomposition

f(a∗xa) = f(a∗xa)+ − f(a∗xa)−

(with f(a∗xa)± ≥ 0 and orthogonal supports) is obviously given by

f(a∗xa)+ =











p1f(a∗xa)p1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 p4f(a∗xa)p4











,

f(a∗xa)− =











0 0 0 0
0 −p2f(a∗fxa)p2 0 0
0 0 −p3f(a∗xa)p3 0
0 0 0 0











.

On the other hand, the Jordan decomposition of a∗f(x)a is difficult to describe.
However, the one for E(a∗f(x)a) is simply given by

(

E(a∗f(x)a)
)

+
=











p1a
∗f(x)ap1 0 0 0

0 (p2a
∗f(x)ap2)+ 0 0

0 0 (p3a
∗f(x)ap3)+ 0

0 0 0 p4a
∗f(x)ap4











,

(

E(a∗f(x)a)
)

−
=











0 0 0 0
0 (p2a

∗f(x)ap2)− 0 0
0 0 (p3a

∗f(x)ap3)− 0
0 0 0 0











.
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Lemma 5 enables us to compare the diagonal blocks of f(a∗xa)± and
(

E(a∗f(x)a)
)

±
:

pia
∗f(x)api & pif(a∗xa)pi for i = 1, 4,

−pif(a∗xa)pi & (pia
∗f(x)api)− for i = 2, 3.

The spectral dominance is preserved under taking a direct sum and we have

(

E(a∗f(x)a)
)

+
≥











p1a
∗f(x)ap1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 p4a

∗f(x)ap4











& f(a∗xa)+,(1)

f(a∗xa)− &
(

E(a∗f(x)a)
)

−
.(2)

Note that (1) implies
(

E(a∗f(x)a)
)

+
& f(a∗xa)+ and τ

((

E(a∗f(x)a)
)

+

)

≥ τ
(

f(a∗xa)+

)

while (2) says

τ
(

f(a∗xa)−
)

≥ τ
((

E(a∗f(x)a)
)

−

)

.

Let us assume that both of τ(a∗f(x)a), τ(f(a∗xa)) are well-defined (see 2.4). Then,
so is τ(E(a∗f(x)a)), and from the above inequalities on trace values we have

τ
(

E(a∗f(x)a)
)

= τ
((

E(a∗f(x)a)
)

+

)

− τ
((

E(a∗f(x)a)
)

−

)

≥ τ
(

f(a∗xa)+

)

− τ
(

f(a∗xa)−
)

= τ
(

f(a∗xa)
)

.

But, since E preserves τ , the above means the following trace Jensen inequality:

τ
(

a∗f(x)a
)

≥ τ
(

f(a∗xa)
)

.

Note that the middle part in (1) is
(

E(a∗f(x)a)
)

+
− (p2a

∗f(x)ap2)+ − (p3a
∗f(x)ap3)+

(

& f(a∗xa)+

)

.

Thus, it is possible to strengthen the above trace inequality as follows:

τ
(

a∗f(x)a
)

≥ τ
(

f(a∗xa)
)

+ τ
(

(p2a
∗f(x)ap2)+

)

+ τ
(

(p3a
∗f(x)ap3)+

)

.

The discussions so far obviously remain valid for semi-bounded τ -measurable op-
erators (see Remark 6), and hence we have shown the next result.

Theorem 7. We assume that a ∈ M is a contraction and x is a semi-bounded τ -

measurable operator. For a continuous convex function f(t) with f(0) = 0 the trace

Jensen inequality

τ
(

f(a∗xa)
)

≤ τ
(

a∗f(x)a
)

holds true as long as the both sides are well-defined.
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The semi-boundedness requirement here can be dropped in certain cases. For
example, when f(t) ≥ 0 on R, for any self-adjoint τ -measurable operator x we have

τ
(

f(a∗xa)
)

≤ τ
(

a∗f(x)a
)

(≤ ∞).

To prove this based on “Fatou’s lemma for traces” (see [11, Theorem 3.5] for instance)
is an easy exercise, and the next Theorem 8 actually covers this fact.

Theorem 8. Let f(t) be a continuous convex function satisfying f(0) = 0. For a

contraction a ∈ M and a self-adjoint τ -measurable operator x the following weak

majorization holds true:

∫ t

0
µs(f(a∗xa)+) ds ≤

∫ t

0
µs((a

∗f(x)a)+) ds (for each t > 0).

In particular, by letting t → ∞, we always have

τ(f(a∗xa)+) ≤ τ((a∗f(x)a)+) (≤ ∞).

Proof. Let us begin with the case when x is a semi-bounded τ -measurable operator.
We have the spectral dominance

(

E(a∗f(x)a)
)

+
. E

(

(a∗f(x)a)+

)

(see 2.4,(a)), showing (together with (1))

f(a∗xa)+ . E
(

(a∗f(x)a)+

)

.

Thus, the weak majorization in this case follows from Proposition 1.
Let us move to the general case. It suffices to consider the following three situations:

(i) f(t) ≥ 0 on R,
(ii) f(t) is monotone decreasing on R,
(iii) f(t) is monotone decreasing on (−∞, t0] with t0 > 0, increasing on [t0,∞) and

limt→∞ f(t) = ∞.

Note that the case when f(t) is increasing at t = 0 can be reduced to the above
(ii) or (iii) by considering f(−t) and −x. Let us approximate x by the following
semi-bounded operators:

xn =

{

xχ[−n,n](x) in case (i),
xχ[−n,∞)(x) in cases (ii) and (iii).

Note f(xn) ≤ f(x) in all the cases (since f(t) ≥ 0 on (−∞, 0] in cases (ii) and (iii)).
We thus have the spectral dominance (a∗f(xn)a)+ . (a∗f(x)a)+ (see 2.1,(c)). Since
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f(a∗xna)+ → f(a∗xa)+ in measure (see [28]), lower semi-continuity of µs(·) relative
to the measure topology (see 2.2,(d)) and Fatou’s lemma guarantee
∫ t

0
µs(f(a∗xa)+) ds ≤

∫ t

0
lim inf
n→∞

µs(f(a∗xna)+) ds ≤ lim inf
n→∞

∫ t

0
µs(f(a∗xna)+) ds

≤ lim inf
n→∞

∫ t

0
µs((a

∗f(xn)a)+) ds ≤
∫ t

0
µs((a

∗f(x)a)+) ds.

The third inequality here of course follows from the first half of the proof.

Another weak majorization akin to Theorem 8 is also possible: We have

(p1 + p4)a
∗f(x)a(p1 + p4) =











p1a
∗f(x)ap1 0 0 p1a

∗f(x)ap4

0 0 0 0
0 0 0 0

p4a
∗f(x)ap1 0 0 p4a

∗f(x)ap4











.

By cutting off-diagonal blocks, i.e., E
(

(p1 + p4)a
∗f(x)a(p1 + p4)

)

, we get the middle

part (which majorizes f(a∗xa)+ in the sense of spectral dominance) in (1). Since the
sum e = p1 + p4 is nothing but the support projection of f(a∗xa)+, we conclude

∫ t

0
µs(f(a∗xa)+) ds ≤

∫ t

0
µs(e(a

∗f(x)a)e) ds for each t > 0.

Related estimates for the special convex function f(t) = |t|r with r ≥ 1 (and for
compact operators) were studied in [18, 19].

Corollary 9. Let f(t) be a continuous convex function with f(0) = 0. For self-

adjoint τ -measurable operators x, y and a, b ∈ M satisfying a∗a + b∗b ≤ 1 we have
∫ t

0
µs

(

f(a∗xa + b∗yb)+

)

ds ≤
∫ t

0
µs

((

a∗f(x)a + b∗f(y)b
)

+

)

ds (for each t > 0).

Proof. We set

A =

[

a 0
b 0

]

, X =

[

x 0
0 y

]

,

and observe that A ∈ M⊗ M2(C) is a contraction. It is also elementary to see

f(A∗XA)+ =

[

f(a∗xa + b∗yb)+ 0
0 0

]

and (A∗f(X)A)+ =

[

(a∗f(x)a + b∗f(y)b)+ 0
0 0

]

so that (from the very definition of µt(·)) we have

µt

(

f(A∗XA)+

)

= µt

(

f(a∗xa + b∗yb)+

)

,

µt

(

(A∗f(X)A)+

)

= µt

((

a∗f(x)a + b∗f(y)b
)

+

)

(where the left side µt(·) is relative to the product trace τ ⊗TrM2(C) with the unnor-
malized trace TrM2(C)). Thus, the result follows from Theorem 8.
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Notice that majorization of the form
∫ t

0
µs(f(a∗xa)) ds ≤

∫ t

0
µs(a

∗f(x)a) ds (t > 0)

cannot be expected (since ||f(a∗xa)|| ≤ ||a∗f(x)a|| is simply false). The fact that
µs(·) destroys information on “negative eigenvalues” is responsible for this failure,
and majorization of the above form holds true for spectral scales λs(·) (attached to
a finite trace τ) as will be clarified in the next section (see Theorem 12).

Operator triangle inequalities (for the absolute value part |x| =
√

x∗x) of the form

|x + y| ≤ u|x|u∗ + v|y|v∗

(with u, v unitaries or something alike) have been syudied by several authors (see
[1, 27]). Note that the operator inequality |x+y| ≤ |x|+|y| is false even for Hermitian

matrices. For example, 2 × 2 matices x =
[

1 1
1 1

]

and y =
[

0 0
0 −2

]

give us

|x + y| =
[√

2 0

0
√

2

]

and |x| + |y| =
[

1 1
1 3

]

,

and hence |x + y| 6≤ |x| + |y| (see [26, p.1]). The eigenvalus of the latter are

µ1(|x| + |y|) = 2 +
√

2, µ2(|x| + |y|) = 2 −
√

2,

and hence the spectral dominance |x + y| . |x| + |y| is not valid either.
On the other hand, Corollary 9 applied to the positive convex function f(t) = |t|

and a = b = 1/
√

2 yields
∫ t

0
µs

(

|x + y|
)

ds ≤
∫ t

0
µs

(

|x| + |y|
)

ds(3)

for self-adjoint τ -measurable operators x, y. For x =
[

1 0
0 0

]

, y =
[

0 1
0 0

]

we compute

||x + y|| (=
√

2) 6≤ || |x| + |y| || (= 1).

showing that the weak majorization (3) cannot be expected for general x, y.

Theorem 10. For a, b ∈ M we have
∫ t

0
f(µs(a + b)) ds ≤

∫ t

0
f
(

µs(|a| + |b|)1/2µs(|a∗| + |b∗|)1/2
)

ds (t > 0)

for a continuous increasing function f(t) on [0,∞) such that t → f(et) is convex and

f(0) = 0. In particular, (with f(t) = t) we have
∫ t

0
µs(a + b) ds ≤

∫ t

0
µs(|a| + |b|)1/2µs(|a∗| + |b∗|)1/2ds

≤ 1

2

∫ t

0

[

µs(|a| + |b|) + µs(|a∗| + |b∗|)
]

ds.
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Proof. For a ∈ M (with the polar decomposition a = u|a|) we have
[

|a| a∗

a |a∗|

]

=

[

|a| |a|u∗

u|a| u|a|u∗

]

=

[

1 0
0 u

] [

|a| |a|
|a| |a|

] [

1 0
0 u

]∗

≥ 0

(and positivity of the corresponding matrix for b), and consequently
[

|a| + |b| a∗ + b∗

a + b |a∗| + |b∗|

]

≥ 0.

Hence, there exists a contraction c ∈ M satisfying

a + b = (|a∗| + |b∗|)1/2c (|a| + |b|)1/2

(see [2] for instance). Since Λt(·) = exp
(

∫ t
0 log µs(·)ds

)

is submultiplicative (see [10]

or [11, Theorem 4.2]) and Λt(c) ≤ 1, we get

Λt(a + b) ≤ Λt

(

(|a∗| + |b∗|)1/2
)

Λt (c) Λt

(

(|a| + |b|)1/2
)

≤ Λt ((|a| + |b|))1/2 Λt ((|a∗| + |b∗|))1/2

(for each t > 0), which means
∫ t

0
log µs(a + b) ds ≤

∫ t

0

1

2

[

log µs(|a| + |b|) + log µs(|a∗| + |b∗|)
]

ds.

The result thus follows from standard majorization theory.

Note that we have Λt(a+ b) ≤ Λt(|a|+ |b|) for a, b normal, a considerable strength-
ening of (3). Also, standard approximation arguments (similar to those in the proof of
Theorem 8) enable us to get the above estimates for general τ -measurable operators.

4. Weak majorization (finite trace case)

In this section M is a finite von Neumann algebra without minimal projections
equipped with a faithful normal trace τ satisfying τ(1) < ∞. With the notion
of spectral scales (in 2.3) we will investigate weak majorization inequalities. For
simplicity only bounded self-adjoint operators will be dealt with although spectral
scales can be defined for unbounded ones as well.

Lemma 11. Let f(t) be a continuous convex function with f(0) = 0. For x ∈ Msa

and a contraction a ∈ M we have

τ
(

f(a∗xa)
)

≤ τ
(

a∗f(x)a
)

.

It was already proved in Theorem 7. In [24] the result is obtained with x ≥ 0 and
a positive contraction map x → α(x) Arguments there can actually deal with self-
adjoint operators, and slight modifications give us a completely elementary proof for
the lemma. This proof is quite direct in the sense that no technical apparatus such
as . is needed, and it will be presented in the appendix for the reader’s convenience.
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Theorem 12. Let f(t) be a continuous convex function with f(0) ≤ 0. For x ∈ Msa

and a contraction a ∈ M we have
∫ t

0
λs(f(a∗xa)) ds ≤

∫ t

0
λs(a

∗f(x)a) ds (for each t ∈ (0, τ(1))).

Proof. At first we assume f(0) = 0. For each t ∈ (0, τ(1)) we can find a projection
e ∈ M commuting with a∗xa such that

∫ t

0
λs(f(a∗xa)) ds = τ (ef(a∗xa)e)

and τ(e) ≤ t (see [23, Lemma 1] or [11, Lemma 4.1]). Since [e, f(a∗xa)] = 0 and
f(0) = 0, we have ef(a∗xa)e = f(ea∗xae). Thus, Lemma 11 yields

∫ t

0
λs(f(a∗xa)) ds = τ (f(ea∗xae)) ≤ τ (ea∗f(x)ae) = τ (a∗f(x)ae) ,

which is majorized by
∫ t
0 λs(a

∗f(x)a) ds due to τ(e) ≤ t (see [23, Theorem 3]).
When f(0) ≤ 0, with g(t) = f(t) − f(0) (vanishing at 0) we have

λs(f(a∗xa)) = λs(g(a∗xa) + f(0)1) = λs(g(a∗xa)) + f(0),

λs(a
∗f(x)a) ≥ λs(a

∗g(x)a + f(0)1) = λs(a
∗g(x)a) + f(0)

(due to f(0)a∗a ≥ f(0)1) and get the result by applying the first half to g(t).

When the convex function f(t) is monotone (either increasing or decreasing), the
conclusion of the theorem can be strengthened to

λt(f(a∗xa)) ≤ λt(a
∗f(x)a) for each t ∈ (0, τ(1)).

In fact, the “min-max” representation in 2.2 is also available for λs(·) (as is explained
in [23]). Thus, by assuming increasingness of f(t) (use f(−t) and −x otherwise), one
can repeat arguments in the proof of [11, Lemma 4.5] together with Lemma 4 (which
is easily shown to remain valid as long as f(0) ≤ 0).

Corollary 13. Let f(t) be a continuous convex function with f(0) ≤ 0. For x, y ∈
Msa and a, b ∈ M satisfying a∗a + b∗b ≤ 1 we have
∫ t

0
λs

(

f(a∗xa + b∗yb)
)

ds ≤
∫ t

0
λs

(

a∗f(x)a + b∗f(y)b
)

ds (for each t ∈ (0, τ(1))).

Moreover, when a∗a + b∗b = 1, the above holds true regardless of the parity of f(0).

Proof. When f(0) = 0, we can use the 2 × 2 matrix trick used in the proof of
Corollary 9 and the desired weak majorization is a consequence of Theorem 12.
One subtlety here is that λt(f(A∗XA)) = λt(f(a∗xa + b∗yb)) and λt(A

∗f(X)A) =
λt(a

∗f(x)a + b∗f(y)b) are false (which should be compared with the situation for
µt(·)). However, Corollary 3 is in rescue. On the other hand, to deal with the general
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case f(0) ≤ 0, we can repeat the same trick as in the proof of Theorem 12 thanks to
f(0)(a∗a + b∗b) ≥ f(0)1 (which comes free when a∗a + b∗b = 1).

5. Monotonicity

Let f(t) be a continuous increasing function on R satisfying f(0) = 0. Here, we
will collect various monotonicity properties on trace values τ(f(x)) for x self-adjoint.

Theorem 14. Let f(t) be a continuous increasing function (on R) with f(0) = 0,
and we assume that self-adjoint τ -measurable operators x, y satisfy x ≤ y.

(i) We have the spectral dominance f(x)+ . f(y)+, f(y)− . f(x)−, and the

trace inequality τ(f(x)) ≤ τ(f(y)) holds true as long as the both sides are

well-defined (in particular when f(x), f(y) ∈ L1(M; τ)).
(ii) We further assume strict increasingness of f(t) and integrability x, y, f(x),

f(y) ∈ L1(M; τ). Then, we have x = y if and only if τ(f(x)) = τ(f(y)).
(iii) We have the same conclusion as (ii) under convexity and strict increasingness

of f(t) and integrability f(x), f(y) ∈ L1(M; τ).

Proof. (i) Note f(x)+ = f(x+), f(y)+ = f(y+) since f(t) is increasing and f(0) = 0.
On the other hand, with the (increasing) function g(t) = −f(−t) we observe

f(x)− = (−f(x))+ = g(−x)+ = g((−x)+) = g(x−)

and similarly f(y)− = g(y−). Hence, the Jordan decompositions of f(x), f(y) are
{

f(x) = f(x)+ − f(x)− = f(x+) − g(x−),
f(y) = f(y)+ − f(y)− = f(y+) − g(y−).

Here, we have y+ & x+, i.e., µt(y+) ≥ µt(x+), t > 0 (as was seen in 2.1,(c)) while
−x ≥ −y yields x− = (−x)+ & (−y)+ = y−. Since f(t), g(t) are increasing, we
actually have f(y+) & f(x+) and g(x−) & g(y−) (see 2.1,(b)). Therefore, we have

τ(f(x+)) =
∫ ∞

0
f(µt(x+)) dt ≤

∫ ∞

0
f(µt(y+)) dt = τ(f(y+))(4)

(and similarly τ(g(y−)) ≤ τ(g(x−))), and hence

τ(f(y)) − τ(f(x)) =
(

τ(f(y+)) − τ(g(y−))
)

−
(

τ(f(x+)) − τ(g(x−))
)

=
(

τ(f(y+)) − τ(f(x+))
)

+
(

τ(g(x−)) − τ(g(y−))
)

≥ 0.

(ii) The assumption τ(f(x)) = τ(f(y)) and the above arguments in (i) force

τ(f(x+)) = τ(f(y+)) and τ(g(x−)) = τ(g(y−)).(5)

From the first equality we have f(µt(x+)) = f(µt(y+)) (see (4)) and µt(x+) = µt(y+)
(for f(t) strictly increasing). We similarly have µt(x−) = µt(y−). We claim

x+ ≤ y+ and y− ≤ x−(6)



TRACE JENSEN INEQUALITY 17

(in the usual positive definite sense), and note that the conclusion x = y is obtained
once this claim is shown. Indeed, the obvious computation

τ(y+ − x+) = τ(y+) − τ(x+) =
∫ ∞

0
µt(y+) dt−

∫ ∞

0
µt(x+) dt = 0

and the similar one τ(x− − y−) = 0 (with x, y ∈ L1(M; τ)) yield x± = y±.
To show the claim, we note

τ(x+) ≤ τ(eye) = τ(ey+e) − τ(ey−e) ≤ τ(ey+e) ≤ τ(y+)

(see 2.1,(c)). But, since τ(x+) = τ(y+) < ∞, we actually have

τ(ey−e) = 0, τ(y+) = τ(ey+e)
(

= τ
(

y
1/2
+ ey

1/2
+

))

,

showing y−e = 0 and y+(1 − e) = 0. Hence, the support of y− is majorized by 1 − e
and that of y+ is majorized by e. Since y± have orthogonal supports, this means

y+ = eye and y− = −(1 − e)y(1 − e).(7)

The same expressions for x± are obviously valid (always) and (6) holds true:

y+ − x+ = e (y − x) e ≥ 0,

x− − y− = −(1 − e)(x − y)(1 − e) ≥ 0.

(iii) The equality (5) is still valid, and the main issue here is to prove (6) in the
current setting (i.e., without x, y ∈ L1(M; τ)). We note

τ(f(x+)) ≤ τ(f(eye)) (because of 0 ≤ x+ ≤ eye)(8)

≤ τ(ef(y)e) ≤ τ(ef(y+)e) ≤ τ(f(y+)).

The second inequality is the trace Jensen inequality (Theorem 7). However, y is not
necessarily semi-bounded so that some justification is needed here. To do so, we set
yn = yχ[−n,∞)(y) for each n ∈ N. The semi-bounded operators yn obviously satisfy
y ≤ yn. Also, the assumption f(y) ∈ L1(M; τ) guarantees f(yn) ∈ L1(M; τ) and

lim
n→∞

||f(yn) − f(y)||1 = 0.(9)

Note 0 ≤ x+ = exe ≤ eye ≤ eyne and f(eyne) ≥ 0. In particular, τ(f(eyne))
is well-defined. Also so is τ(ef(yn)e) because of f(yn), ef(yn)e ∈ L1(M; τ). Since
f(eyne) → f(eye) (≥ 0) in measure (see [28]), “Fatou’s lemma for traces” (see [11,
Theorem 3.5])), Theorem 7 and (9) altogether yield the desired estimate:

τ(f(eye)) ≤ lim inf
n→∞

τ(f(eyne)) ≤ lim inf
n→∞

τ(ef(yn)e) = τ(ef(y)e).

The quantities appearing in (8) are all finite, and the equality (5) means

τ(eg(y−)e) = 0 and τ(f(y+)) = τ(ef(y+)e).
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Thus, the support of g(y−) (resp. f(y+)) is majorized by e (resp. 1 − e). However,
since f(y+), y+ and g(y−), y− have same supports, (7) and hence (6) remain valid.

We next make use of the estimates

τ(f(x+)) ≤ τ(f(x+)) + τ(f(y+ − x+)) ≤ τ(f(y+))

(see [11, Proposition 4.6,(ii)]). The equality (5) shows τ(f(y+ − x+)) = 0 and con-
sequently f(y+ − x+) = 0. Finally, f(t) being strictly increasing with f(0) = 0, we
conclude y+−x+ = 0. Similar arguments also yield x−−y− = 0 and we are done.

Appendix A. Direct proof of Lemma 11

In this appendix a direct proof of Lemma 11 is presented.
We choose and fix an arbitrary ε > 0. We can then choose δ > 0 satisfying

|s − t| ≤ δ =⇒ |f(s) − f(t)| ≤ ε.

for s, t ∈ [−||x||, ||x||] ∪ [−||a∗xa||, ||a∗xa||]. Let

x =
∫ ||x||

−||x||
s dex

s and a∗xa =
∫ ||a∗xa||

−||a∗xa||
t dea∗xa

t

be the spectral decomposition of x and a∗xa respectively. We divide the intervals
[−||x||, ||x||] and [−||a∗xa||, ||a∗xa||] into subintervals of length at most δ:

s0 = −||x|| < s1 < · · · < sn = ||x||, t0 = −||a∗xa|| < t1 < · · · < tm = ||a∗xa||.
Let

p1 = ex
[s0,s1]

, pi = ex
(si−1,si]

(i = 2, 3, · · · , n),

q1 = ea∗xa
[t0,t1], qj = ea∗xa

(tj−1,tj ]
(j = 2, 3, · · · , m)

be the corresponding spectral projections, and we set y =
∑n

i=1 sipi. We have

||x − y|| ≤ δ(10)

from the construction while uniform continuity guarantees

||f(x) − f(y)|| ≤ ε.(11)

To approximate τ(f(a∗xa)) by a Riemann sum (of the form
∑m

j=1 f(ξj)τ(qi)), we set

ξj =
τ(a∗xaqj)

τ(qj)
(j = 1, 2, · · · , m)

with the following convention: When τ(qj) = 0, we do not define ξi and simply omit
j from the sum

∑m
j=1. The obvious fact tj−1qj ≤ a∗xaqj ≤ tjqj yields

tj−1τ(qj) ≤ τ(a∗xaqj) ≤ tjτ(qj) and hence tj−1 ≤ ξj ≤ tj.
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So uniform continuity shows |f(t) − f(ξj)| ≤ ε on the j-th subinterval, and we have

∣

∣

∣τ(f(a∗xa)) −
m
∑

j=1

f(ξj)τ(qj)
∣

∣

∣(12)

=
∣

∣

∣

∫ ||a∗xa||

−||a∗xa||
f(t) dτ(ea∗xa

t ) −
m
∑

j=1

f(ξj)τ(qj)
∣

∣

∣ ≤ ετ(1).

Let us fix j satisfying τ(qj) > 0. We remark

f(ξj) = f

(

τ(a∗xaqj)

τ(qj)

)

= f

(

τ(a∗yaqj)

τ(qj)
+

τ(a∗(x − y)aqj)

τ(qj)

)

,

|τ(a∗(x − y)aqj)| ≤ ||a∗(x − y)a||τ(qj) ≤ ||a||2||x − y||τ(qj) ≤ δτ(qj)

(see (10)) so that (by uniform continuity again) we have

f(ξj) ≤ f

(

τ(a∗yaqj)

τ(qj)

)

+ ε.(13)

Since
∑n

i=1 pi = 1, we can estimate the above right side as follows:

f

(

τ(a∗yaqj)

τ(qj)

)

= f

(

n
∑

i=1

τ(a∗ypiaqj)

τ(qj)

)

= f

(

n
∑

i=1

(

si ×
τ(a∗piaqj)

τ(qj)

))

(because of ypi = sipi)

= f

(

0 × τ(qj) − τ(a∗aqj)

τ(qj)
+

n
∑

i=1

(

si ×
τ(a∗piaqj)

τ(qj)

))

≤ f(0) × τ(qj) − τ(a∗aqj)

τ(qj)
+

n
∑

i=1

(

f(si) ×
τ(a∗piaqj)

τ(qj)

)

=
n
∑

i=1

(

f(si) ×
τ(a∗piaqj)

τ(qj)

)

=
1

τ(qj)

n
∑

i=1

f(si)τ(a∗piaqj).

Here, convexity of f(t) and f(0) = 0 were used. This estimate (with (13)) means

f(ξj) ≤
1

τ(qj)

n
∑

i=1

f(si)τ(a∗piaqj) + ε,



20 T. HARADA AND H. KOSAKI

and consequently

m
∑

j=1

f(ξj)τ(qj) ≤
m
∑

j=1

n
∑

i=1

f(si)τ(a∗piaqj) + ε
m
∑

j=1

τ(qj)

=
n
∑

i=1

f(si)τ(a∗pia) + ετ(1)

= τ

(

a∗

(

n
∑

i=1

f(sj)pi

)

a

)

+ ετ(1) = τ (a∗f(y)a) + ετ(1).

From this estimate together with (12) and the obvious inequality

|τ(a∗f(x)a) − τ(a∗f(y)a)| ≤ ||a∗f(x)a − a∗f(y)a||τ(1) ≤ ετ(1)

(see (11)) we conclude

τ(f(a∗xa)) ≤ τ (a∗f(x)a) + 3ετ(1),

and we are done.
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