<学術雑誌論文>
Local ε-isomorphisms for rank two -adic representations of Gal(ℚ^^―_p/ℚ_p) and a functional equation of kato's Euler system

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
アクセス権
権利関係
関連DOI
関連URI
関連HDL
概要 In this article, we prove many parts of the rank two case of the Kato’s local ε-conjecture using the Colmez’s p-adic local Langlands correspondence for GL_2(ℚ_p). We show that a Colmez’s pairing defin...ed in his study of locally algebraic vectors gives us the conjectural ε-isomorphisms for (almost) all the families of p-adic representations of Gal(ℚ^^―_p/ℚ_p) of rank two, which satisfy the desired interpolation property for the de Rham and trianguline case. For the de Rham and non-trianguline case, we also show this interpolation property for the “critical” range of Hodge-Tate weights using the Emerton’s theorem on the compatibility of classical and p-adic local Langlands correspondence. As an application, we prove that the Kato’s Euler system associated to any Hecke eigen new form which is supercuspidal at p satisfies a functional equation which has the same form as predicted by the Kato’s global ε-conjecture.続きを見る

本文ファイル

pdf 7403326 pdf 1.36 MB 2  

詳細

PISSN
EISSN
レコードID
主題
助成情報
登録日 2026.01.29
更新日 2026.01.30