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In this article, we prove many parts of the rank two case of the
Kato’s local e-conjecture using the Colmez’s p-adic local Langlands
correspondence for GL2(Q,). We show that a Colmez’s pairing de-
fined in his study of locally algebraic vectors gives us the conjec-
tural e-isomorphisms for (almost) all the families of p-adic repre-
sentations of Gal(Q,/Q,) of rank two, which satisfy the desired
interpolation property for the de Rham and trianguline case. For
the de Rham and non-trianguline case, we also show this interpola-
tion property for the “critical” range of Hodge-Tate weights using
the Emerton’s theorem on the compatibility of classical and p-adic
local Langlands correspondence. As an application, we prove that
the Kato’s Euler system associated to any Hecke eigen new form
which is supercuspidal at p satisfies a functional equation which
has the same form as predicted by the Kato’s global e-conjecture.
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1. Introduction

1.0.1. Background. By the ground breaking work of Colmez [ColOb]
and many other important works by Berger, Breuil, Dospinescu, Kisin and
Paskunas, the p-adic local Langlands correspondence for GL2(Q)) is now
a theorem ([Pal3], [CDP14b]). This gives us a correspondence between ab-
solutely irreducible two dimensional p-adic representations of Gal(@p /Qp)
and absolutely irreducible unitary Banach admissible non-ordinary repre-
sentations of GL2(Q)) via the so called the Montreal functor. An important
feature of this functor is that it also gives us a correspondence between
representations with torsion coefficients. From this property, the Colmez’s
theory is expected to have many applications to problems in number theory
concerning the relationship between the p-adic variations of the Galois side
and those of the automorphic side. For example, Emerton [Em] and Kisin
[Ki09] independently applied his theory to the Fontaine-Mazur conjecture
on the modularity of two dimensional geometric p-adic representation of
Gal(Q/Q).

In the present article, we give another application to the rank two case of
a series of Kato’s conjectures in [Ka93a], [Ka93b] on the p-adic interpolations
of special values of L-functions and local (L-and e-) constants. There are two
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main theorems in the article, the first one concerns with the p-adic local e-
conjecture, where the Colmez’s theory crucially enters in, and the second
concerns with the global e-conjecture, which we roughly explain now (see
§2.1, §3.1, §4.1 for more details).

In this introduction, we assume p # 2 (for simplicity), fix an isomorphism
toop : C = Q,, and set ¢® = (Loqp(exp(%))ngl € Zi(1) := T(Qp, Z(1))
for each prime [. Set I' := Gal(Q((p=)/Q) = Gal(Qp(Cp=)/Qp).

1.0.2. The p-adic local e-conjecture. Fix a prime [. Let R be a com-
mutative noetherian semi-local Zy-algebra such that R/Jac(R) is a finite ring
with a p-power order, or a finite extension of Q. To any R-representation 7'
of Gg,, one can functorially attach a (graded) invertible R-module Ag(T)
using the determinant of the perfect complex Cg. . (Gq,,T) of continuous
cochains of G, with values in T'. For a pair (R,T) = (L, V) such that L is a
finite extension of Q, and V' is arbitrary (resp. de Rham) L-representation
of Gg, when | # p (resp. | = p), one can define a representation W (V') of
the Weil-Deligne group 'Wpy, of @Q; by the Grothendieck local monodromy
theorem (resp. the p-adic monodromy theorem) when [ # p (resp. | = p).
Using the local (L-and e-) constants associated to W (V) (and the Bloch-
Kato fundamental exact sequence when [ = p), one can define a canonical
L-linear isomorphism which we call the de Rham e-isomorphism

e (V)(=efw(V)) : 1L = Ar(V)

depending on the choice of (), where, for any R, 1 := (R,0) is the trivial
graded invertible R-module of degree zero. The [-adic local e-conjecture
[Ka93b] predicts the existence of a canonical isomorphism

ER(T)(: ER,C(”(T)) . 1R :> AR(T)

(also depending on the choice of ¢()) for any pair (R,T) as above which
interpolates the de Rham e-isomorphisms (see Conjecture 2.1 for the precise
formulation). The [ # p case of this conjecture has been already proved by
Yasuda [Ya09]. The first main theorem of the present article concerns with
the rank two case of the p-adic local e-conjecture (see Theorem 3.1 for more
details).

Theorem 1.1. Assume | = p. For (almost) all the pairs (R,T) as above
such that T are of rank one or two, one can canonically define R-linear
isomorphisms

~

ER(T) : 1R — AR(T)
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which are compatible with arbitrary base changes, and satisfy the following:
for any pair (L, V') such that V is de Rham of rank one or two satisfying at
least one of the following two conditions (i) and (ii),

(i) V is trianguline,
(ii) the set of the Hodge-Tate weights of V is {k1,ko} such that k1 < 0,
k? z ]-7

then we have
er(V) = (V).

Remark 1.2. For [ = p, this conjecture is much more difficult than that
for [ # p, and has been proved only in some special cases before the present
article. For the rank one case, it is proved by Kato [Ka93b] (see also [Vel3]).
For the cyclotomic deformation, or more general abelian twists of crystalline
representations, it is proved by Benois-Berger [BB08] and Loeffler-Venjakob-
Zerbes [LVZ13]. For the trianguline case, it is proved by the author [Nal4b].
More precisely, in [Naldb], we generalized the p-adic local e-conjecture for
rigid analytic families of (p,I')-modules over the Robba ring, and proved
this generalized version of the conjecture for all the trianguline families of
(¢, I')-modules. Since the rigid analytic family of (¢, I')-modules associated
to any abelian twist of any crystalline representation is a trianguline family,
the result in [Nal4b] seems to be the most general one on the p-adic local e-
conjecture before the present article. In the theorem above, in particular, in
the condition (ii), we don’t need to assume that V' is trianguline. Therefore,
the theorem in the case of the condition (ii) seems to be an essentially new
result in the literatures on the p-adic local e-conjecture.

1.0.3. The global e-conjecture. We next explain the second main result
of the article. Let S be a finite set of primes containing p. Let Qg be the
maximal Galois extension of Q which is unramified outside SU{oo}, and set
Go,s := Gal(Qg/Q). For an R-representation 1" of Gg g, one can also define a
graded invertible R-module Ag 5(T') using C¢,,(Go,s,T). Set Ag ) (T) =
Ag(T|g,,) for each | € S.

The generalized Iwasawa main conjecture [Ka93a] predicts the existence
of the canonical isomorphism

zrs(T) : 1g = Aps(T)

for any pair (R,T') as above which interpolates the special values of the L-
functions of the motives over Q with good reduction outside S (see [Ka93a]
for the precise formulation).
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Ser T* := Hompg(T, R)(1) be the Tate dual of T'. By the Poitou-Tate
duality, one has a canonical isomorphism

Aps(T*) = (MiesAg ) (T)) B Ags(T).
Then, the global e-conjecture [Ka93b| asserts that one has the equality
2r,s(T%) = (Miesep,qy(T)) K zg,5(T),

where e ) (T) == er(Tlcy,) : 1r = A, (T) is the local e-isomorphism
defined by [Ya09] for [ # p and the conjectural local e-isomorphism for [ = p.
To state the second main theorem, we need to recall the notion of cy-

clotomic deformations. Set Ar := R|[I']], and define a Ap-representation
Dfm(T) := T ®r Ar on which Gg g acts by g(z ® \) := g(x) ® [g]"'\. We
set

AR (T) := Ap,,«(Dfm(T))
for x = 5, (1), and set (conjecturally)

25 (T) = 20, s(DIM(T)), ey (T) := en, ) (DEm(T)).

Define an involution ¢ : Agp = Ag : [y] = [y]™!, and denote M* for the base
change by ¢ for any Ag-module M. Then, one has a canonical isomorphism

ARS(T*) 5 A, s((DFm(T))").

The second main theorem of the present article concerns with the global
e-conjecture for Dfm(T}) for Hecke eigen new forms f (see §4.2 for the
precise statement). Let

F(r) =) an(f)q" € Spra(L1(N))"Y

n>1

be a normalized Hecke eigen new form of level N and of weight k£ + 1 for
some N,k € Z>,. Set

P =S e,

n>1

where @ is the complex conjugation, then f*(7) is also a Hecke eigen
new form in Sg41(I'1(N))™Y by the theory of new form. Set S := {l|N} U
{p}, L := Qp({tccp(an(f))}nz1) € Q,, and O := O the ring of integers
in L. For fo = f, f*, let T}, be the O-representation of Gg g of rank two
associated to fp defined by Deligne [De69]. In [Ka04], Kato defined an Euler
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system associated to fy which interpolates the critical values of the twisted
L-functions associated to f. Denote by Q(A) for the total fraction ring of
A := Ap. As a consequence of Kato’s theorem proved in §12 of [Ka04], we
define in §4.2 a canonical Q(A)-linear isomorphism

20'5(Ty, (1) : Loy = AP s(Ty, (1) ®a Q(A)

for any r € Z, which should be the base change to Q(A) of the conjectural
zeta isomorphism

zg‘:S(Tfo (T)) t1a :> AB‘ZS(TJCO (T))

We remark that one has a canonical isomorphism 7' (1)[1/p] = (T¢(k))*[1/p]
and one has a canonical isomorphism

AZs(Ty-(1)" = Ans((DEm(Ty(k)))")-

The second main theorem is the following.

Theorem 1.3. Assume that V := T¢[1/p]|c,, is non-trianguline. Then one
has the following equality

2005 (Ty- (1)) = (&es(sg,(z) (Ty(k)) ® idQ(A))> X Z5's(Ty (k)

under the base change to Q(A) of the canonical isomorphism

ABs(Ty- (1) 5 (Ries A ) (T (k) ) B A (T (k)
defined by the Poitou-Tate duality, where the isomorphism
0 o (Tr(k)) = 1a = AS () (Ty (k)

in the above equality is the local e-isomorphism for the pair (A,
Dfm(T(k))|c,,) defined by [Ya09] when | # p, by Theorem 1.1 when | = p.

Remark 1.4. In many cases where V is trianguline, we can obtain the same
result by almost the same proof. However, when V is ordinary, or is in the
exceptional zero case (special cases of the trianguline case), we need some
additional arguments. Since this additional arguments makes article a little
bit long, we will treat the trianguline case in our next article.

The following conjecture is a part of the generalized Iwasawa main con-
jecture for the pair (A, Dfm(7%, (7)).
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Conjecture 1.5. For any r € Z, the isomorphism Z¥ o(Ty, (1)) comes, by
extension of scalar, from a A-linear isomorphism

ngS(Tfo(r)) t1p :> AI(’?:S(TfO(T))?

i.e. one has EHS(TfO (r) = zng(TfO (7)) @idga)-

We remark that such zg‘: (T4, (r)) is unique if it exists since the natural
map A — Q(A) is injective, and, if the conjecture is true for one r € Z, then
it is true for all r € Z.

As an immediate corollary of the theorem, we obtain the following.

Corollary 1.6. Assume that V := T¢[1/pl|G,, is non-trianguline. Then,
the conjecture 1.5 is true for f if and only if it is true for f*.

1.0.4. Contents of the article. Now, we briefly describe the contents
of different sections.

In §2, §3, we study the p-adic local e-conjecture. We first remark that
many results in these sections heavily depend on many deep results in the
theory of the p-adic local Langlands correspondence for GL2(Q)) ([Col0al,
[ColOb], [Doll], [Em]). In particular, our local e-isomorphism defined in
Theorem 1.1 is nothing else but the Colmez’s pairing defined in VI.6 of
[Col0b]. Our contributions are to find the relation between the Colmez’s
pairing and the local e-isomorphism, and to show that this pairing satisfies
the interpolation property (i.e. the condition (i), (ii) in the theorem).

Section 2 is mainly for preliminaries. In §2.1, we first recall the l-adic and
the p-adic local e-conjecture. In §2.2, we recall the theory of (¢, I')-modules
and re-state the p-adic local e-conjecture in terms of (¢, I')-modules. In §2.3,
we propose a conjecture (Conjecture 2.11) on a conjectural definition of the
local e-isomorphism for any (¢, I')-modules of any rank using the Colmez’s
multiplicative convolution defined in [Col0a].

Section 3 is devoted to the proof of Theorem 1.1, in particular, we prove
Conjecture 2.11 for the rank two case. In §3.1, we state the main theorem.
In §3.2, we define our local e-isomorphism using the Colmez’s pairing de-
fined in VI.6 of [ColOb], and prove Conjecture 2.11 for the rank two case,
which is essentially a consequence of the GL2(Q)p)-compatibility (a notion
defined in §III of [CD14]) of the (¢, I')-modules of rank two. The subsec-
tions §3.3 and §3.4 are the technical hearts of this article, where we show
that our e-isomorphisms satisfy the conditions (i) and (ii) in Conjecture
1.1. In §3.3, we show the interpolation property for the trianguline case
(i.e. the condition (i) in the theorem) by comparing the local e-isomorphism
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defined in §3.2 with that defined in our previous work [Nal4b], where we
use a result of Dospinescu [Doll] on the explicit description of the action
of w:= ((1) (1) € GL2(Qp) on the locally analytic vectors (see Theorem
3.9). In §3.4, we show the interpolation property for the non-trianguline case
(i.e. the condition (ii) in the theorem). For a (¢, I')-module D of rank two
such that V(D) is de Rham and non-trianguline with distinct Hodge-Tate
weights {k1, k2} (k1 £ 0, ke 2 1), using the Colmez’s theory of Kirillov model
of locally algebraic vectors in VI of [Col0Ob], we prove two explicit formulas
(Proposition 3.16, Proposition 3.18) which respectively (essentially) describe
er(V) and $R(V). Finally, using the Emerton’s theorem [Em] on the com-
patibility of the p-adic and the classical local Langlands correspondence and
the classical explicit formula of the action of w on the (classical) Kirillov
model, we prove the condition (ii) in Theorem 1.1 for the non-trianguline
case.

The final section §4 is devoted to the proof of Theorem 1.3. In §4.1, we
recall the definition of the global fundamental lines and give a general set up.
In §4.2; we (re-)state our second main theorem (Theorem 4.2) and define our
(candidate of) zeta isomorphism Egv 5(Tf(r)) using the (p-th layer of ) Kato’s
Euler system [Ka04] associated to f. In the final subsection §4.3, we prove
Theorem 1.3 (Theorem 4.2), where we reduce the theorem to the classical
functional equation of the (twisted) L-function of f using the Kato’s explicit
reciprocity law and Theorem 1.1.

Notation 1.7. Let p be a prime number. For a field F, set Gp :=
Gal(F*°P/F') the absolute Galois group of F. For each prime [, let Wy, C Gy,
be the Weil group of Q;, I; € Wy, be the inertia subgroup. Let recg, : Q) 5
W@? be the reciprocity map of the local class field theory normalized so that
recg,(!) is a lift of the geometric Frobenius Fr; € Gy,. Throughout the ar-
ticle, we fix a Zj-basis ¢ = (G ),>0 € I'(Q,, Zi(1)). Here, we remark that
many objects defined in the main body of the article depend on this choice
of (. We will usually omit the notation ¢, but we will sometimes add the
notation { when we consider the dependence of (.

Set T' := Gal(Q(up~)/Q) = Gal(Qp(pp<)/Qp), and let x : ' = ZX be
the p-adic cyclotomic character which we also see as a character of Gg or
Gq, for any I. For [ = p, set Hyp, := Ker(x) € Gq,. For each b € Z, define
op € I' such that x(op) = b. For a perfect field k of characteristic p, we
denote W (k) for the ring of Witt vectors, on which the lift ¢ of the p-th
power Frobenius on k acts. Let [~] : K — W (k) be the Teichmiiller lift. Set
Et = @n>0 Oc, /p where the projective limit with respect to p-th power
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map, E:= Frac(EJr), At = W(E"),A:=W(E),Bt := At[1/p] and B :=
A[l/p]. Let 6 : AT — Oc, be the continuous Zp-algebra homomorphism
defined by 0([(Z,),0]) := limy, seezh for any (Z,),>o € ET, where z,, €
Oc, is a lift of Z, € Oc, /p. Set By, :=lim _ A*+[1/p]/Ker(6)"[1/p]. Using
the fixed Zy-basis ¢ = ({pn)nz0 € T(Qp, Zp(1)) for I = p, define t(:= t¢) :=
10g([(¢pn)nz0]) € By, which is a uniformizer of Bjy. Set Bag := B [1/t].

For a commutative ring R, we denote by D™ (R) the derived category of
bounded below complex of R-modules, by Dpe¢(R) the full subcategory of
perfect complexes of R-modules. We denote by P, (R) the category of finite
projective R-modules. For any P € Pg(R), we denote by rp its R-rank,
by PV := Homp(P,R) its dual. For P, P, € Pg(R) and (,) : P X P, —
R a perfect pairing of R-modules, we always identify P, with P}’ by the
isomorphism Py = P : x — [y — (y,2)].

2. Preliminaries and conjectures

In this section, we first recall the [-adic and the p-adic local e-conjectures.
Then, after reviewing the theory of Iwasawa cohomology of (p,I")-modules,
we formulate a conjecture on a conjectural definition of the p-adic local
g-isomorphism using a multivariable version of the Colmez’s multiplicative
convolution.

2.1. Review of the local e-conjecture

In this subsection, we quickly recall the local e-conjecture. See the origi-
nal articles [Ka93b], [FKO06] (the latter one includes the non-commutative
version) or [Nal4b] for more details.

2.1.1. Knudsen-Mumford’s determinant functor. The local e-con-
jecture is formulated using the theory of the determinant functor, for which
we use the Knudsen-Mumford’s one [KM76], which we briefly recall here
(see also §3.1 of [Naldb]).

Let R be a commutative ring. We define a category Pr, whose objects
are the pairs (L, r) where L is an invertible R-module and r : Spec(R) — Z
is a locally constant function, whose morphisms are defined by Morp, ((L, r),
(M,s)) := Isompg(L, M) if r = s, or empty otherwise. We call the objects
of this category graded invertible R-modules. For (L,r), (M, s), define its
product by (L,7)X (M, s) := (L®gr M, r + s) with the natural associativity
constraint and the commutativity constraint (L,r) X (M,s) = (M,s) X
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(L,r): l®@m— (—1)"*m ® (. We always identify (L,r)X (M,s) = (M,s)X
(L,7) by this constraint isomorphism. The unit object for the product is
1 := (R,0). For each (L,7), weset (L,r)~! := (LY, —r), which is the inverse
of (L,r) by the isomorphism iz, ) : (L,7) X (LY, —7r) = 1g induced by the
evaluation map L @ LY = R : 2 ® f ~ f(z). For a ring homomorphism
f: R — R, one has a base change functor (—) ®g R’ : Pr — P defined by
(L,r) = (L,r) ®gr R' :== (L ®@p R',r o f*) where f*: Spec(R') — Spec(R).

For a category C, denote by (C,is) the category such that the objects
are the same as C and the morphisms are all the isomorphisms in C. Define
a functor

Detp : (Pfg(R),iS) — Pr: P (detgP,rp)

where we set detg P := A} P. Note that Detp(0) = 1g is the unit object.
For a short exact sequence 0 — Py — P — P3 — 0 in Pg(R), we always
identify Detr(P;) X Detr(P3) with Detr(P) by the following functorial
isomorphism (put r; :=rp,)

(1) Detr(Py) X Detg(Ps) = Detr(Ps)
induced by
(T1 A ANZp)) @ (T g1 A ANTpy) XL A - ANTp, ATpyp1 A e ATy,

where x1, ..., 2, (resp. Ty, 11,...,%y,) are local sections of P; (resp. P3) and
x; € Py (i=1r1+1,...,719) is a lift of T; € P3. For a bounded complex P*®
in P (R), define Detr(P*®) € Pg by

Detg(P*) := WiezDet (P~
By the result of [KM76], Detg naturally extends to a functor
DetR : (Dperf<R),iS) — PR

such that the isomorphism (1) extends to the following situation: for any
exact sequence 0 — P — Py — P3 — 0 of bounded below complexes
of R-modules such that each P? is a perfect complex, then there exists a
canonical isomorphism

Detp(P?) K Detp(PS) = Detp(P3).

If P* € Dyet(R) satisfies that H(P®) are finite projective for all i, there
exists a canonical isomorphism

Detg(P*) = KiezDetr(H (P*)) D",
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For (L,r) € Pg, define (L,r)" := (LV,r) € Pgr, which induces an anti-
equivalence (—)" : Pg = Pg. For P € Pg,(R) and an R-basis {e1,..., e, },
we denote by {eY,... e } its dual basis of P¥. Then one has a canonical

isomorphism Detg(PY) = Detr(P)V defined by the isomorphism
detp(PY) 5 (detgP)Y 1ef A= Ael = (e1 A Aep,)Y.

This isomorphism naturally extends to (Dpe(R),is), i.e. for any P*® €
Dyerf(R), there exists a canonical isomorphism

(2) Detgr(RHompg(P®, R)) = Detg(P*)".

2.1.2. The local fundamental line. Now, we start to recall the local
e-conjecture. Fix a prime p. From now on until the end of the article, we use
the notation R to represent a commutative topological Z,-algebra satisfying
one of the following conditions (i) or (ii).

(i) R is a Jac(R)-adically complete noetherian semi-local ring such that
R/Jac(R) is a finite ring (equipped with the Jac(R)-adic topology),
where Jac(R) is the Jacobson radical of R,

(ii) R is a finite extension of Q, (equipped with the topology defined by
the p-adic valuation).

We note that a ring R satisfying (i) or (ii) satisfies (i) if and only if p & R*.
We use the notation L instead of R if we consider only the case (ii).

In this article, we mainly treat representations (of G, or GL2(Q,), etc.)
defined over such a ring R. Let G be a topological group. We say that T is an
R-representation of G if T is a finite projective R-module with a continuous
R-linear G-action. For a continuous homomorphism § : G — R*, we set
R(9) := Re; the R-representation of rank one with a fixed basis es on which
G acts by g(es) := d(g)es. We always identify R(6~!) with the R-dual R(5)Y
by R((Sfl) 5 R((S)v P eg-1 eg, and identify R(él) KRR R((SQ) 5 R((51(52)
by es5, ® es, — €s,5, for any 61,92 : G — R*. We set T(8) := T ®r R(6).
For an R-representation 7' of G, we set T'(§) := T ®pr R(J) and denote by
Ce (G, T) the complex of continuous cochains of G with values in T, i.e.
defined by C% (G, T) := {c: G** — T : continuous maps } for each i = 0

(G,T) as an object of

cont
with the usual boundary map. We also regard C¢,;
D~ (R).

Now, we fix another prime [ (we don’t assume [ # p). Let T be an
R-representation of Gg,. We set H/(Q;,T) := HY(C®,,+(Gq,,T)). For each

cont

r € Z, we set T(r) := T ®z, I'(Q},Z,(1))®". We denote by T* := TV(1)
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the Tate dual of T. By the classical theory of the Galois cohomology of
local fields, it is known that one has C& (Gq,,T) € Dpert(R). Using the

cont
determinant functor, we define the following graded invertible R-module

ARJ(T) = DetR(Cgont(GQz ) T))7

which is of degree —rp (resp. of degree 0) when | = p (resp. when [ # p) by
the Euler-Poincaré formula.
For a € R* (a € O* if R = L), we set

Ry = {z € W(F,)®z, R|(p ® idg)(z) = (1 ® a)z},

which is an invertible R-module. For T as above, we freely regard detgT" as
a continuous homomorphism detzT : G&E’ — R*. Define a constant

a)(T) := detgT (recg, (p)) € R,
and define another graded invertible R-module

(Ral(T)a O) (l 7& p)
(detpT ®pr Rap(T)7 T'T) (l= p).

ARQ(T) = {

Finally, we set
AR(T) = ARJ(T) & ARQ(T)

which we call the local fundamental line.
The local fundamental line is compatible with the functorial operations,
i.e. for any R — R’, one has a canonical isomorphism

Agr(T)®gr R 5 Ap(T ®pr R/),

for any exact sequence 0 — 11 — T — T3 — 0 of R-representations of Gg,,
one has a canonical isomorphism

AR(Ty) = Ag(Ty) K Ag(T3),

and one has the following canonical isomorphism

AR(T™)" (I # p)

Ar(T) — {AR(T*)V X (L(r7),0) (I=p)

defined as the product of the following two isomorphisms

Ap1(T) S A (TF)Y,



Local e-isomorphisms for rank two p-adic representations 293

which is induced by the Tate duality C8 (Gg,,T)~ RHompg(CS, . (Go,,
T*),R), and
~ | ARa(T*)Y [
Apa(T) 5 Rr2( *)v (I #p)
Apa(T7)" ¥ (L(rr),0) (I =p)

which is defined by =z +— [y — 2z ® y] for + € R, (71),y € Ry (r-) when
l#p,byr®y— [z@w— y®w @ z(z) for z € detgT,y € R, (1),2 €
detr(T*) = (detrT)Y(rr),w € R, (p-) when I = p (remark that one has
Ra, (1) ®R Ry (7+) = R since one has a;(T)a;(T*) = 1 for any I).

2.1.3. The de Rham e-isomorphism. The local e-conjecture concerns
with the existence of a compatible family of trivializations eg(T")(= eg,¢(T)) :
1z = Ag(T), (depending on the fixed choice ¢ € T'(Q,, Z(1))) which we call
the local e-isomorphisms, for all the pairs (R,T") as above which interpolate
the trivializations e{®(V)(= E%RC(V)) : 15, = Ar(V), which we call the de
Rham e-isomorphisms, for all the pairs (L, V) = (R,T) such that V is de
Rham (resp. arbitrary) if [ = p (resp. if [ # p), whose definition we briefly
recall now.

We first recall the e-constants defined for the representations of the Weil-
Deligne group 'Wy, of Q. Let K be a field of characteristic zero which
contains all the l-power roots of unity. For a Z;-basis ¢ = {(n},>9 €
I(K,7Z(1)) := Hm o win (K), define an additive character -

1
Ve : Q — K™ by wc(l—n) =(n

for any n = 0. By the theory of local constants [De73], one can attach a
constant

e(p,v,dx) € K~

to any smooth K-representation p = (M, p) of Wy, (i.e. M is a finite di-
mensional K-vector space with a K-linear smooth action p of Wy,), which
depends on the choices of an additive character ¢ : Q — K* and a (K-
valued) Haar measure dz on Q. In this article, we consider this constant
only for the pair (¢, dz) such that sz dxr = 1, which we denote by

5(/)7 C) = E(p) wﬁv dl’)

for simplicity. For a K-representation M = (M, p, N) of the Weil-Deligne
group 'Wy, (i.e. p :== (M, p) is a smooth K-representation of Wy, with a

K-linear endomorphism N : M — M such that 1/3\1"11 oN = I"!N o Fr; for
any lift Fr; € Wy, of the geometric Frobenius Fr; € Gp,), its e-constant is
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defined by
e(M,¢) := e(p, Q)det e (—Fry| M /(MN=0)1).

Now we recall the definition of de Rham e-isomorphism e{R(V) : 1, =
Ap(V) for arbitrary (resp. de Rham) L-representation V' of Gg, when [ #
p (resp. I = p). By the Grothendieck’s local monodromy theorem (resp.
the p-adic local monodromy theorem [Be02] and the Fontaine’s functor
D, (—) [FP94]) when I # p (resp. I = p), one can functorially define an
L-representation

W(V)=W({V),p,N)
of 'Wy,. Set Lo := L ®q, Qp(p=), and decompose it Lo, =[] L. into the
product of fields L. Then, we define a constant

en(W(V)) e L%

(depending on the choice of the fixed ¢ € I'(Q,, Z;(1))) as the product of the

e-constants e(W(V),,(;) € LX of W(V), := W(V) ®, L, for all 7, where

¢r € I'(L;,Z(1)) is the natural image of the fixed ¢ € I'(Qp (s ), Zi(1)).
We set

Dy (V) := W(V)", Deyis(V) 1= Dyt (V)V=0
on which the Frobenius ¢; := Fr; naturally acts. Remark that one has
Deis(V) = V"
if [ # p. Set
Dar(V) := (Bar ®q, V)", Dgr(V) := ('Bfy ®q, V)

and
ty = Dar(V)/Dgr(V)
(resp. Dar(V) = Dig (V) =ty := 0) when [ = p (resp. | # p).
Using these preliminaries, we first define an isomorphism
0L (V):1p 5 ALJ(V) X Detr (Dgr(V))

which is naturally induced by the following exact sequence of L-vector spaces

a b
(3) 0= HYQ,V) = Deia(V) " Doie (V) @ty 2 HY(Q,, V)

) Do (V)Y © DY (V) D Deis (V)Y — HE(Q;, V) — 0,
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where the map (a) is the sum of 1 — ¢ : Deis(V) — Depis(V) and the
canonical map De;is(V) — ty, and the maps (b) and (c) are defined by
using the Bloch-Kato’s exponential and its dual when [ = p, and the map
(d) is the dual of (a) for V* (see [Ka93b], [FK06] and [Nal4b] for the precise
definition).

Define a constant I'(V') € Q* by

{1 (1 #p)

(V)= ) .
( ) HrgZF*(r)_dlngr Dar(V) (l:p%

where we set

1)
0).

T (r) = {Efl}l)! ET
(=) r

We next define an isomorphism

A IV

far,.(V) : Detr,(Dar(V)) = Ar2(V)
which is induced by the isomorphism
det;Dgr(V) =L = Lal(V) cx e (W(V))x

when | # p (remark that one has e (W(V)) € Lq, vy when | # p), by the
inverse of the isomorphism

~ 1
L det dety D CB det : —_—
a,(7) @1 det V' — det . Dqr(V)(C Bgr ®q, detfV) : z — SL(W(V))tth
when | = p (Lemma 3.4 [Nal4b]), where we set hy = > _, 7 -

dingr_deR(V).
Finally, we define the de Rham e-isomorphism

8%R(V) : ]-L :> AL(V)
as the following composites
T(V)oL(

v
—)> ALJ(V) X DetL(DdR(V))
id@@dR,L(

E%R(V) : ]-L
Dy Api(V)B AL (V) = Ar(V).

As we remarked above, the isomorphism £{® (V) depends on the choice
of ¢. If we’d like to consider this dependence, we use the notation E%I}(V) =

IR (V).



296 Kentaro Nakamura

2.1.4. The local e-conjecture. The local e-conjecture (Conjecture 1.8
[Ka93b], Conjecture 3.4.3 [FK06], and Conjecture 3.8 [Nal4b]) is the follow-
ing, which is now a theorem when [ # p by [Ya09].

Conjecture 2.1. Fiz a prime l. Then, there erists a unique compatible
family of isomorphisms

er(T)(= erc¢(T)) : 1r = AR(T)

for all the pairs (R,T) such that T is an R-representation of Gg,, which
satisfies the following properties.

(1) For any continuous Zy,-algebra homomorphism R — R', one has
er(T) ®idp = er (T ®@r R)
under the canonical isomorphism
ArR(T)®r R = Ar/(T ®@r R).

(2) For any exact sequence 0 — T1 — Ty — T35 — 0 of R-representations
of Gq,, one has

€R(T2) = €R(T1) X é-jR(Tg)

under the canonical isomorphism
AR(Ty) = Ag(Ty) R Ag(T3).
(3) (dependence on ¢) For any a € Z], one has
eRr,ac(T) = detgT (recq,(a))er,c(T).

(4) One has the following commutative diagrams

ARg(T) ST ApR(T*)Y
ene(r)| [encry
1n detrT(recg, (—1))-id 1n

when | # p, and
Ag(T) — Ag(T*)Y ® (R(rr),0)
6R,f<(T)T lsR,c(T*)vg[erTm]

detgT —1))-
1n e (recg, (—1))-can 1,815
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when [ = p.
(5) For any pair (L, V') such that V is arbitrary (resp. de Rham) if | # p
(resp. if L = p), one has

er(V) = EdLR(V).

Remark 2.2. In the conjecture, the conditions (2), (3) and (4) should follow
from the other conditions (1) and (5). In fact, it is known that e{F(V)
satisfies the similar conditions (2), (3), (4) (e.g. Remark 3.5, Lemma 3.7
[Nal4b]). Hence, assuming the density of de Rham representations in the
universal deformation, which is known in many cases, the conditions (1) and

(5) induce the conditions (2), (3) and (4).

Remark 2.3. There exists a non-commutative version of this conjecture,
but we only consider the commutative case in this article. See [FKO06] for
the non-commutative version.

Remark 2.4. When [ # p, this conjecture has been already proved by
Yasuda [Ya09]. More precisely, he proved that the correspondence

(L, V) = g0 (V) i= det(—@[VM)er(W(V)) € Ly, vy

defined for all the pairs (L, V') as in the condition (5) (for [ # p) in Conjecture
2.1 uniquely extends to a correspondence

(Ra T) = 60,1%(11) € Ral (T)

for all the pairs (R, T') as in the conjecture, which satisfies the similar prop-
erties (1)-(5) in the conjecture. Then, the isomorphism eg(T) : 1z — Ag(T)
is defined as the product of the isomorphism 1z = Ag2(7T) induced by the
isomorphism

RS Ral(T) 1T = 607R(T):L’

with the isomorphism 1 = A r,1(T) defined by

1p = DetR(C' (Il,T)) X DetR(C"

cont cont

(I;,T)) ™" = Detp(Coont (G, T)),

cont

where the first isomorphism is the canonical one and the second isomorphism
is induced by the canonical quasi-isomorphism

° 1—p; °
C’cont (Ib T) — Ccont

(G, T) = [CS

cont

(I, T)].
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2.1.5. The cyclotomic deformation. Before proceeding to the next
subsection, we recall here the notion of the cyclotomic deformations of R-
representations, which will play an important role in this article.

For any R such that p ¢ R*, we set Ag := R[['] the Iwasawa algebra
of I" with coefficients in R, and set Ay := Ap,[1/p] for any L. For an R-
representation 7' of G,, we define a Apg-representation Dfm(7") which we
call the cyclotomic deformation of T' by

Dfm(T) :=T ®gr Ar
on which Gq, acts by
9z ® ) := g(x) @ [g] A

for g € Gg,, x € T, A € AR, where g € I' is the image of g by the natural
restriction map Gg, — I'. We set

ARL(T) == Ap,,«(Dfm(T)) and Hi,(Q;, T) := H(Q;, Dfm(T))

for x = 1,2, or * = ¢ (the empty set).
For a continuous homomorphism § : I' — R*, define a continuous R-
algebra homomorphism

fs:Ar = R:[y] = 6()7"

for any v € I'. Then, one has a canonical isomorphism of R-representations
of G,

Dfm(T) @Ap,fs B = TO): (z@N) ®@ar afs(N)x @ es

for x € T\ € Agr,a € R. By the compatibility with base changes, this
isomorphism induces a canonical isomorphism

AR (T) ®aps B AR(T(9)).

Let ¢ : Ap = Ag be the involution of the topological R-algebra defined
by «([y]) = [y]7! for any v € T'. For any Ag-module M, we set M‘ :=
M &p, AR, i.e. M* = M as R-module on which Ag acts by A-,z := () -z
for A € Ag,x € M, where -, is the action on M* and - is the usual action on
M. One has a canonical isomorphism of Apg-representations of Gg,

Dfm(7T*)" 5 DIfm(T)* : 2@ A= [y @ X = (AN @ z(y)]
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forx € T*, y € T, \, N € AR, which naturally induces a canonical isomor-
phism

(4) ARL(T")" = App«(Dfm(T)")
for x = 1,2, or * = ¢.
2.2. Review of the theory of étale (¢, I')-modules

From now on until the end of §3, we concentrate on the case where [ = p.
We set €1 := ¢ € Zy(1) :=T(Q,, Zy(1)) and e, := e} € Z,(r) for r € Z.

2.2.1. Etale (p,T')-modules. For R as in §2.1 such that p ¢ R*, we set
Er = @nzl(R/JaC(R)”[[X]}[1/X]), and set &, 1= Ep|[l/p] for R = L, on
which ¢ and I" acts as continuous R-algebra homomorphism by ¢(X) :=
(1+X)P =1, y(X):= 1+ X)XV —1 for y € T.

For R such that p ¢ R*, we say that D is an étale (¢, I")-module over
Er if D is a finite projective Ep-module equipped with a Frobenius structure
¢ :¢9*D:=D®g¢, ,Er — D and a commuting continuous semi-linear action
I'x D — D: (y,z) = v(x). For R = L, we say that D is an étale (p,T')-
module over &7, if D is the base change to &£, of an étale (¢, I')-module over
Eo. We denote by DV := Homg,(D,ER) the dual (p,T')-module of D, by
D(r) := D ®g, Zy(r) the r-th Tate twist of D (for r € Z), by D* := D" (1)
the Tate dual of D.

One has the Fontaine’s equivalence T+ D(T) between the category of
R-representations of G, and that of étale (¢,I')-modules over £g. In the
construction of this equivalence, we need to embed the ring &, (g for R =

Zyp) into the Fontaine ring At(:=W(E')) by X Xe:=[(Gr)nzol —1 €
A, which depends on the choice of the fixed basis ¢ = (Cpr)n>0 € Zp(1).

We remark that, for a different choice a( of a basis for a € Z;, one has
Xag = (XC —+ 1)a — 1.
Define a left inverse ¢ : D — D of ¢ by

p—1 p—1
Y:D =) (1+X)'p(D)—D: Y (1+X)p(x) — .
=1 i=0

2.2.2. Cohomology of étale (¢, I')-modules. We next recall the coho-
mology theory of (¢, I')-modules. Let I'yo; C I' denote the torsion subgroup
of T'. Define a finite subgroup A C Ty, by A := {1} when p > 2 and
A := Ty, when p = 2. Then I'/A has a topological generator 7, which we
fix. We also fix a lift v € I" of #.



300 Kentaro Nakamura

Remark 2.5. When p = 2 and p ¢ R*, the cohomology theory of (¢, I')-
modules over £r is a little more subtle than that in other cases since one
has |T'tor| = p in this case. To avoid this subtlety, we treat (¢, I')-modules
over the rings of the form R = Ry[1/p], where Ry is a topological Z,-algebra
satisfying the condition (i) in §2.1. For such R, we set g := Eg,[1/p], and
say that an Eg-module D is an étale (¢,I')-module over g if it is the base
change to &g of an étale (¢, I')-module over £g,. From now on until the end
of this article, we use the notation R to represent topological Z,-algebras of
the form Ry or Ro[1/p] (resp. Ro[1/2]) as above when p = 3 (resp. p = 2),
and we only consider the R-representations of G, or Gg g, and étale (¢, I')-
modules over £ for such R.

Definition 2.6. For any étale (¢, I')-module D over &g, define complexes
Ce (D) and C}, (D) of R-modules concentrated in degree [0,2], and define
a morphism ¥p between them as follows:

CoalD)= D7 DA g pA DRI pa

(5) \IfDl lid lid@_w l—w

Gl (D)= (D% O7Lem pa g pa WIDOUTN, KAy

Y—1p—1
( )

For i € Zx, we denote by H.,_ (D) (resp. HQW(D)) the i-th cohomology
of C (D) (resp.Cy,_(D)). It is known that the map ¥p : C (D) —
Cy, (D) is quasi-isomorphism by (for example) Proposition 1.5.1 and Lemme
1.5.2 of [CCY9]. In this article, we freely identify Cg_ (D) (resp. H., (D))
with Cf (D) in D™ (R) (resp. Hf/} (D)) via the quasi-isomorphism ¥p.

For étale (p,I')-modules D1, Dy over Eg, one has an R-bilinear cup prod-
uct pairing

€2 (D)) * O3, (D2) = €3, (D1 & D),

which induces the cup product pairing
U:HL, (D) x H), (D) — HSZ (D1 @ Dy).
For example, this pairing is explicitly defined by the formulae

zUyl =[r®@y|fori=0,j =2,
[21,91] U 2, y2] = [0 ©v(y2) — y1 @ p(a2)] for i = j = 1.

Definition 2.7. Using the cup product, the evaluation map ev : D* ®

~

D — Er(1) : f @z — f(z), the comparison isomorphism H*(Q,, R(1)) =
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H?DW(ER(l)) (see below), and the Tate’s trace map H?(Q,, R(1)) = R, one
gets the Tate duality pairings

Ce,(D*) x Cg, (D) — R[-2]
and
(= =)Tate : H, (D*) x HZ /(D) — R.

Let T be an R-representation of Gg,. By the result of [He98], one has a
canonical functorial isomorphism

cont(GQp7 ) = C;J,'y(D(T))

in D7 (R) and a canonical functorial R-linear isomorphism
H'(Qp, T) = HL,_(D(T)).

In particular, we obtain a canonical isomorphism

Ara(T) = Detp(Cy ,(D(T))) =: Apa(D(T)).

For an étale (¢,I')-module D. We freely regard the rank one (¢,I')-
module detg, D as a character detg, D : Gab — R* by the Fontaine’s equiva-
lence. Then, the (¢, I')-module detg, D has a basis e on which ¢ and I' act by

p(e) = dete, D(recg, (p))e, '(e) = detg, D(v)e

for v/ € T', where we regard I" as a subgroup of G&E by the canonical iso-
morphism Gal(ng /QpF) 5 T. Using the character detg, D, we set

which is a free R-module of rank one, and define the following graded in-
vertible R-modules

ARQ(D) = (,CR(D),TD) and AR(D) = ARJ(D) X ARQ(D).

By (the proof of) Lemma 3.1 of [Nal4b], there exists a canonical isomor-
phism

Ara(T) = Aga(D(T))
for any R-representation T' of Gg,. Therefore, we obtain a canonical isomor-
phism

AR(T) = Ar(D(T)),

by which we identify the both sides.
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2.2.3. Iwasawa cohomology of étale (¢, I')-modules. We next recall
the theory of the Iwasawa cohomology of étale (¢, I")-modules. For an étale
(p,T')-module D over Er, we define the cyclotomic deformation Dfm(D)
which is an étale (¢, I")-module over €z, by

Dfm(D) := D ®¢,, En,
as Ep,-module on which ¢ and I' act by
plz®y) = p(@) ® py), V(@ ®y) =) ® '] (y)
for x € D,y € Ep,, 7' € T. Then, one has a canonical isomorphism
D(Dfm(T)) = Dfm(D(T)).
Hence, if we set

tw.ony (D) :=H,_(Dfm(D)) and AR (D) := Ay, (Dfm(D)), etc.,

then we obtain the following canonical isomorphisms

tw(Qp, T) = Hiy o (D(T)) and AF(T) = AF(D(T)), ete.

for any R-representation T' of Gg,. For any continuous homomorphism ¢ :
I' — R*, the base change with respect to f5 : Ag — R : [/] — (7)1
induces canonical isomorphisms

Dfm(D) ®p,.1 R = D) : (2@y) @1 f5(y)r @ es

and
ABV(D) ®AR1f5 R = AR(D((S))v
and induces a canonical specialization map

SPs - H%w,cp,'y(D) - H;,W(D((S))

We remark that the continuous action of I' on D uniquely extends to
a Ag-module structure on D. We define a complex CJ (D) of Ag-modules
which concentrated in degree [1,2] by

o -1
Cy(D) : [D — D].
By the result of [CC99], there exists a canonical isomorphism

Cy(D) = Cy,_ (Dfm(D))
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in D7 (AR). In particular, there exists a canonical isomorphism
can: DV=! 5 HIlWM“/(D)

of Ag-modules which is explicitly defined by

oo (2 rogtatps - e 1.0}

where pa = ﬁZaeA[U] € Z[1/2][A] (remark that we have

pp%llog(x(’y))pA € Zy[A] for any p). Hence, if we define a specialization
map

5 DY (D) 0 = [ (2 og(x(0)pa (e 9 50 )]

for any continuous homomorphism § : I' — R*, then it makes the diagram

py=t =i, Hllwm(D)

(6) g s

), (D(8)) — HL_(D(5))

commutative.

2.2.4. The Iwasawa pairing. We next consider the Tate dual of
Dfm(D). For this, we first remark that the involution ¢ : Ag = Ag : [Y] —
[v']7! naturally induces an Eg-linear involution ¢ : €z, — Ea,,. For an étale

(p,I')-module D over Eg, define an étale (¢, I')-module D ®¢, Ep,, over Ep,
by
D ®¢, Er, = D ¢, En,

as €p,-module on which ¢ and I' act by
plz®y) =p(r) ®p(y) and ¥ (z @ y) =7'(z) @ [Y]7'(y)
for x € D, y € Ep,,,7 € T. Then, the isomorphism
D ®g,, Eny = D ®Rgp Eny 2@y > @ 1(y)
induces an isomorphism

D ®¢, Er,, ~ Dfm(D)"
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of (¢, I')-modules over &,,,. Since one has a canonical isomorphism
(D ®¢p gf;) OAnfs B DN :(z@y)®@1— fs(y)r® es
for any § : I' — R*, we obtain a canonical specialization map
is: DV= S HY_(Dfm(D)") 5 HY (D ®e¢, Ex,) — HY (DY)

which is explicitly defined by

o (B ogtna - w0 es).0)] .

We apply this to the Tate dual D* of D. Since one has a canonical
isomorphism

Dfm(D*)* 5 D* ®¢, Ex,, = Dfm(D)*,
we obtain canonical isomorphisms

AN (D*)* 5 Ay, (Dfm(D)*)

and

~

can : (D*)¥="* 5 H),_(Dfm(D*)") 5 H,, (Dfm(D)"),

which makes the diagram

(D*)¥=t+ —— HJ_(Dfm(D)")

(7) Z(sl lspg

H,(D(8)) —% HL_(D(6)")

for any 6 : I' — R* commutative, where the right vertical arrow is the
specialization map with respect to the base change

Dfm(D)* OAr, fs RS (Dfm(D) OAr,fs R)* = D((S)*
Using these preliminaries, we define a Ag-bilinear pairing
{= —hw (D)7 < DV = A

which we call the Iwasawa pairing by the following commutative diagram
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(D*)¥=tt x pr=t S22 gL (Dfm(D)*) x HY, _ (Dfm(D))
(8) {_7_}IWl l<_7_>Tate

AR ~£1——> AR.

From the arguments above, we obtain the commutative diagram

(D*)¥=tt x Y=t 225 |1 (D(6)*) x HY_(D(4))
(9) {_’_}le l<_7_>Tm,e
AR L R

for any 6 : I' — R*.

Remark 2.8. We remark that the pairing {—, —}1 coincides with the
Colmez’s Iwasawa pairing which is defined in §VI.1 of [Col0a] in a different
way.

For a continuous homomorphism § : I' — R*, we define a continuous
R-algebra automorphism g5 : Ag = Ag by gs([7]) = 6(v")"[y'] for ' € T

Lemma 2.9. For any 0 : I' — R*, one has the following commutative
diagram

{——}w

(D*)¥=ht x Dv=1 AR

(10) (2.9) (@@e; 1 ,y®e5)l lgs

{_7_}Iw

(D(5)")¥=1t x D(85)¥=1 Ag.

Proof. For a Ag-module M, we define a Ar-module gs,(M) := M on which
Ag-acts by gs. Then, we have isomorphisms Dfm(D) = gs.(Dfm(D(9))) :
TRy +— (r®es) @ gs(y) and DFm(D*)* = g5, (Dfm(D(6)*)") : 2 @ y
(x ® e5-1) ® gs-1(y), and these induce the following commutative diagram
(11)

H!,_(Dfm(D)) x HY,_(Dfm(D)) ——— g5, (I, (DEm(D(6)"))) % gs.(H!,_ (Dfm(D(5))))

(=1=)Tate | | ==

Ar — 95+(AR).
By definition of {—, —}1y, the lemma follows from this commutative dia-

gram. L]
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2.2.5. The local fundamental line over Er(T'). Take an isomorphism
I 5 Tiorx Zy, of topological groups. Let vg € I' be the element corresponding
to (e, 1) by this isomorphism, where e € I'y,, is the identity element. For R

such that p ¢ R*, define Eg(T") := AR[[%]#_l]A the Jac(R)-adic completion of

A R[[%];—l]’ which does not depend on the choice of the decomposition I' =
Lior X Zp. For R = Ry[1/p] such that p € R, define Eg(T') := Eg, (I')[1/p).

Here, we recall some properties of the base changes to Eg(T") of Ar(D)
and {—, — }1w, which are proved in [Col0a]. By II1.4 of [Col0a], 79 —1 acts on

D¥=0 as a topological automorphism and the induced action of AR[[%}%l]

on D¥=Y uniquely extends to an action of Eg(I'), which makes D¥=0 a

finite projective Eg(I')-module of rank rp. By VI.1 of [Col0a], the Ag-linear
homomorphism D¥=1 179, D¥=0 induces an isomorphism

D¥=t @y, Er(T) = DV=0
of Er(I")-modules, and one has
D#=t QAr 8R<F) = (D/(w - 1>D) QAR ER(F) =0

(since D¥=1 and D/(1) —1)D are finite generated R-modules). In particular,
we obtain a canonical isomorphism

C3(D) &%, Er(D) S DV=O[-1]
in D7 (ER(T)), and this induces a canonical isomorphism
AR (D) @p, Er(T) = (dete, DY, rp) "

Moreover, since we have Ly, (Dfm(D)) = Lr(D) ®gr Ar, we obtain the
following canonical isomorphism

(12) A%V(D) ®r, Er(T) 5 (deth(p)DwZO QR ER(D)V, 0)_1.

Using the isomorphism AW (D*)* 5 Ay, (Dfm(D)*), we similarly ob-
tain the following canonical isomorphism

A, (DEfm(D)*) @4, ER(T) = (detg, ) (D*)*=" @ Lr(D*)",0)7".

Finally, by Proposition VI.1.2 of [Col0a], the Iwasawa pairing {—, —}1w :
(D*)¥=1t x D¥=1 — AR uniquely extends to an E(T)-bilinear perfect pair-

ing
{—, _}O,IW : (D*)wzo’L X Dl/):O — 8R(F)
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sugh that {(1 — p)z, (1 — ©)y}orw = {7, Yy} for any = € (D*)¥=Ly €
Dv=1,

Remark 2.10. As we mentioned in Remark 1.2, Conjecture 2.1 is known
for the rank one case by [Ka93b]. Using the isomorphism (12), the base
change to Eg(T) of the local e-isomorphism ¥ (D(T)) := e (T) for any
R-representation T' of G, of rank one defined in [Ka93b] is explicitly de-
scribed as follows, which will play an important role in this article. Let
6 : Qy — R* be a continuous homomorphism corresponding to a charac-
ter 9 : G%‘i — R* by the local class field theory. Then, the (¢,I')-module
D(R(9)) corresponding to R(d) is isomorphic to Eg(0) := Eres on which
(¢,T) acts by p(es) = (p)es,7'(e5) = 6(+')es (7' € I). For Er(d), one has
an Eg(T)-linear isomorphism

ER(M) S ERMOY0 N X (1 + X) tey),

and, under the isomorphism (12) for D = Er(J), the base change to Ex(T")
of the local e-isomorphism ¥ (Eg(8)) : 15, — AN (ER(S)) which is defined
in [Ka93b] is the natural one induced by the isomorphism

~

ER(D) 5 ER()V™° @R (Res)Y : A= X- (1 + X)tes) @ey.

This fact easily follows from the another definition of e%¥(Eg(d)) given in
§4.1 (and Remark 4.9 and Lemma 4.10) of [Nal4b].

2.3. A conjectural definition of the local e-isomorphism

In this subsection, we first recall the definition of (a multivariable version of)
the Colmez’s multiplicative convolution. After that, we propose a conjectural
definition of the local e-isomorphism using the multiplicative convolution.

2.3.1. Colmez’s multiplicative convolution. Let Di,...,D,.1 be
étale (p,I')-modules over g, and let

M:D1XD2X---XDn—>Dn+1
be an Er-multilinear pairing compatible with ¢ and T, i.e. we have

M(So(x1)7 R @(mn)) = @(M(xla e ,:Cn))

and
M(’Y/(xl)7 - a’/(wn)) = VI(M(wlv s ;-Tn))
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for any x; € D; and 4/ € T'. For such a data, we define a map (depending on
the choice of ()
My

(= Mé?) DV x - x D0 5 DY (e )

,_)M;(:cl,...,xn) =: (%)

X
P

by the formula

(x) := lim Z (14 X)irinn

Nn—00
i1yee0sin €24 mod pn

x (M (0, (" (1 + X)™"an)), .., 05, (" ((1+ X) @),

where we set j; := [ £k ig-. This is a multivariable version of the Colmez’s
multiplicative convolution defined V.4 of [Col0a], whose well-definedness can
be proved in the same way as in Proposition V.4.1 of [Col0a]. We remark

that this pairing Méi) depends on the choice of the parameter X = X¢, i.e.
the choice of ¢ € Z,(1). We can easily check that this dependence can be
written by the formula

Mg;o —_ [O.a]f(nfl)Mé?

for any a € Z;'. Moreover, we have

M, (21, .. Y (), 2n) = fy'(MZ (T1ye s Tiye ey Tp))

X X
P P

for any ¢ and 4" € T', in particular, My is € r(I")-multilinear.

2.3.2. A conjectural definition of the local e-isomorphisms. We
next formulate a conjecture on a conjectural definition of the local e-isomor-
phisms using the multiplicative convolution. Let D be an étale (¢, I')-module
over £g. Applying the multiplicative convolution to the highest wedge prod-
uct

A: D0 — detg, D : (T1,...,&Zpp) > TL A AN Ty

we obtain an Eg(I')-multilinear pairing

Agx (= A(Ziﬁ) L (DY=0)%T> 5 (detg, D)¥=".

It is easy to see that this map is alternating. Hence this induces an Eg(T)-
linear morphism

Ny : dete,yDV=" — (detg, D)P=".
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Concerning the relationship between this map with the local e-isomor-
phism, we propose the following conjecture, which grew out from discussions
with S. Yasuda. Recall that we have canonical isomorphisms

AR(D) ®n, Er(T) 5 (detg, yDY=" ®r Lr(D)",rp) ™"

and Lr(D) = Lgr(detg, D).
Conjecture 2.11. (1) For any D, the map Agx deth(p)DwZO —

(detg, D)¥=0 is isomorphism.
(2) If (1) holds for D, then the isomorphism

Ngx - AR (D) @4, Er(T) = AR (dete, D) @, Er(T)
induced by the isomorphism
dete,, DV @ Lr(D)" = (dete, D)*=" @g Lg(dete, D)
defined by
(AN AZp,) @Y = Agx (1 A Aapy) ® Y
uniquely descends to a Ar-linear isomorphism
Agx + AR (D) & AR (detg, D).
(3) If (2) holds for D, then the conjectural e-isomorphism
(D) : 14, 3 AR(D)

satisfies the commutative diagram

A x
AY(D) —2 Al¥(dete, D)
EIR‘”(D)T Ts%"(dethD)

1A, —T 1A,
where the isomorphism egv(dethD) is the e-isomorphism defined by
Kato [Ka93b] (or Remark 2.10).

Remark 2.12. The condition (3) in the conjecture above says that, if (2)
is true for D, then the composite (/\Z;)_1 o el¥(detg, D) : 15, = AN(D)
satisfies all the conditions (1),...,(5) in Conjecture 2.1. For example, since
one has
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A = (o] AL AR (D) S AR (dete, D)
(which follows from /\(Za;) = [aa]_(TD_l)/\(Zix) rdete, ) (D¥=Y) — (detge, D)¥=0)

and

egac(dethD) = (detgARDfm(dethD)(a))eng(deth )
= detg, D(a)[oa]” 16£§VC(dethD)

for any a € Z;, we obtain

(/\(Z‘Zf))_l o el (dete, D)

= [oa] "7 (dete, D(a)loa] (AL 0 el (dete, D)

= detg, Dfm(D)(a)(/\(ZCX)) ol v (dete, D),

i.e. the isomorphism (/\Z;)_ o el¥(detg, D) satisfies the condition (3) in
Conjecture 2.1.

Remark 2.13. In the next section, we prove almost all the parts of the
conjecture above for the rank two case. In fact, we can prove many parts of
the conjecture even for the higher rank case. However, we do not pursue this
problem in the present article since the main theme of this article is to pursue
the connection between the local e-conjecture with the p-adic local Lang-
lands correspondence for GL2(Qp). In the next article [Na], we will prove
(1), (almost all the parts of) (2) for the higher rank case, and prove that the
isomorphism (/\Zx) oel¥(detg, D) : 15, = AW(D) (obtained by (2)) sat-
isfies the conditions (1),...,(4) in Conjecture 2.1. Moreover, we will prove
that this isomorphism satisfies the condition (5) for the crystabelline case.

3. Local e-isomorphisms for rank two p-adic representations

of Gal(Q,/Q,)

In this section, using the p-adic local Langlands correspondence for GL2(Q,),
we prove many parts of Conjecture 2.1 and Conjecture 2.11 for the rank two
case.

3.1. Statement of the main theorem on the local e-conjecture

We start this section by stating our main result concerning the local e-
conjecture for the rank two case. We say that an étale (¢,I')-module D
over &1, is de Rham, trianguline, etc. if the corresponding V(D) := T(D)
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is so. If D is de Rham, we set ei8(D) := ¢3®(V(D)), which we regard
as an isomorphism 17, — A (D) by the canonical isomorphism A (D) =
ArL(V(D)).
Theorem 3.1. (1) Conjecture 2.11(1) is true for all the (¢,T)-modules
of rank two.
(2) Conjecture 2.11(2) is true for “almost all” the (¢, T')-modules of rank
two.
(8) For D as in (2) (then we can define an isomorphism

e (D) := (Agy o el (dete, D) : 1n, = ARF(D)),

we define
er(D) : 1p = Agr(D)

to be the base change of e (D) by f1 : Ag = R: [y/] = 1 (¢ €
I'). Then the set of isomorphisms {egr(D)}r,p), where D run through
all the D of rank one or rank two as in (2), satisfies the conditions
(1),...,(4) in Conjecture 2.1 and satisfies the following:
For any pair (L, D) such that D is de Rham of rank one or two satis-
fying at least one of the following conditions (i) and (ii),
(i) D is trianguline,
(i1) the set of the Hodge-Tate weights of D is {k1,ka} such that ki <
07 kQ 2 17
then we have
er(D) = (D).
We will prove this theorem in the next subsections:(1) is proved in Propo-
sition 3.2, (2) is proved in Proposition 3.4 (see this proposition and Remark

3.5 for the precise meaning of “almost all” in the theorem above), (3) for (i)
is proved in §3.3, (3) for (ii) is proved in §3.4.

3.2. Definition of the e-isomorphisms

In [Col0b], Colmez constructed a correspondence D — II(D) from (almost
all) étale (¢, I")-modules of rank two to representations of GL2(Q,). In the
construction of IT1(D), he introduced a mysterious involution ws, : D¥=% 5
D¥=0 (whose definition we recall below) which is intimately related with

the action of <(1] (1)> € GL2(Qp) on II(D). Moreover, he proved a formula

describing the multiplicative convolution N using the involution ws,, and
the Iwasawa pairing {—, —}orw : (D*)¥=%¢ x D¥=0 — ER(I), which we
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also recall below. Since the e-constant of an irreducible smooth admissible
1

0
10
by the classical theory of Kirillov model, this formula is crucial for our
application to the local e-conjecture.

representation of GL2(Q,) can be described using the action of

3.2.1. Analytic operations on D¥=C, We start this subsection by re-
calling the definitions of some of analytic operations on D¥=0 defined in
[Col0a], [Col0b]. We remark that these operations also depend on the choice
of the parameter X = X € &, i.e., the choice of e; := ( € Zy(1), which we
have fixed.

For a continuous homomorphism 6 : I' =+ R*, Colmez defined in V of
[Col0a] the following map

my: DV DY im ) 61+ X) (14 X)),
i€Z, modp™

We remark that this map satisfies m1 = idpv=o for the trivial homomorphism
1:T — R*, mgs, omgs, = mg,s, for any 81, s, and o, 0 ms = 6(a) tms o o,
for a € Z}f. In particular, the map

ms @ es : DY=0 5 D(6)Y=0: 2 ms(z) @ es

is an isomorphism of Er(I")-modules. In V of [Col0a], he also defined an
involution

wy : DY=0 5 pv=0
by the formula

wofw) = lm 3T (LX) o (" (14 X))
i€7Zy) mod pm

and also defined in IT of [Col0b] an involution
W = Mg—1 O Wy : D¥=Y 5 p¥=0

for any 6 : I' — R*. By definition, the latter satisfies the equalities
ws(0q (7)) = 6(a)oq-1(ws(x)) for any a € Z;. In particular, this induces
an Er(I")-linear isomorphism

ws @ ez : DYTO S DOETHYT0 s wi(z) ® esor.

3.2.2. The definition of the local e-isomorphism over Er(I'). Now
we assume that D is of rank two. Set
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6p == x ‘detg, D : Q, — R™.

Using the canonical isomorphism £g @ Lr(D) = dete, D : f @z +— fx, we
obtain a canonical isomorphism

dete, D ®r ER(D)V 5 Er AR LR(D) ®Rr ER(D)V = Er.

Using this isomorphism, we define the following canonical isomorphism of
(¢, I')-modules

D@ Lr(D)Y 5DV :z@z" = y— (yAr)®2"]

for z,y € D,z € Li(D)* (and recall that 2z € Lg(D)V is the dual base of
z), by which we identify both sides. By these isomorphisms, we also obtain
the following canonical isomorphism

D= @p Lr(D)Y = (D)= 12 @ 2" — ws,(v) ® 2" ® e

of Er(T")-modules.
Using these preliminaries, we define the following Er(I")-bilinear perfect
pairing

[—, ]t : DY @ Lr(D)Y x DY = Ex(D) : (z @ 2, y)
= {UJ(SD (:E) & Zv by elvy}O,Iw

which is a modified version of the Colmez’s pairing defined in Corollaire
VI1.6.2 of [Col0b]. This pairing is related with the multiplicative convolution
Agx D¥=0 x D¥=9 — (detg, D)¥=Y as follows. Let us consider the R-linear
map d: Eg — Er(1) : f(X)— (14 X)% ® ej. It is easy to see that this
does not depend on the choice of ( € Zy(1), and satisfies 0, 0 d = d o g,
(a € Zy) and 9 od = pd o ¢, and induces an Eg(I')-linear isomorphism
d: ngo 5 €r(1)¥=0. We note that one has d\%:o = m, ® ey since both
are Er(I')-linear and one has d(1+ X) = (1+ X)® e =m, (1 + X) ® e1.

As a consequence of Colmez’s generalized reciprocity law (see Théoréeme
VI.2.1 of [Col0al), he proved, in the proof of Corollaire VI.6.2 [Col0b], that
[—, — 1w satisfies the following equality

(13)  d([z@z",ylw - (1 + X)) = =dp(~=1)ms=1(Agx (2,y)) @ 2" @ e
in (1)Y= 5 (detg, D)¥=° @ Lr(D)Y(1).

Since Az is anti-symmetric, this formula implies that the perfect pairing
[—, —|iw is also anti-symmetric, i.e. we have [z ® 2V, 9w = —[y ® 2V, 2|1y
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for any x,y € D¥=C and z € Lr(D). Therefore, this induces an Eg(T')-linear
isomorphism

dete, i DY=" ®r LR(D)" 5 Er(T) : (x Ay) ® 2¥ = [o1][z ® 2", Y]1w-

The last isomorphism, together with (12), naturally induces an Er(I')-linear
isomorphism (which we denote by)

nr(D) : g, ) = AF (D) ®n, Er(T).

3.2.3. Proof of (1) of Conjecture 2.11. We first prove the follow-
ing proposition concerning the alternative description of our conjectural e-
isomorphism, in particular, which proves Conjecture 2.11 (1) for the rank
two case.

Proposition 3.2. The map Ngzx : deth(F)DwZO — (detg, D)¥=0 is iso-
morphism, and the isomorphism nr(D) fits into the following commutative
diagram:
I My I
AR(D) @np ER(T) —— AR’ (dete, D) @, Er(T)
UR(D)T TEIR""(dethD)@ing(F)

15R(F) T} 1€R(F)'

Proof. By Remark 2.10, it suffices to show the equality
(14) o-1]fz @ 2¥, gl - (L+ X)712) = Ay (2, )

for any x,y € D¥=Y z € Li(D)* = Lg(dete,D)*.
We prove this equality as follows. We first remark that, since one has
d =m, ® ey, the equality (13) is equivalent to the equality

(15) my([z® 2", yhw - (1+ X)) @er = —0p(=L)myr (Agy (2,y)) ® 2" ®@er.

Applying the Er(T)-linear isomorphism ms, ® z ® e_1 : Er(1)¥=" 5
(detg, D)¥=0 to this equality, the right hand side is equal to

—dp(=1)ms, (ms-1(Agx (2,9)) @ 2 ® 1) ® 2@ ey
= —0p(=1)ms, (-1 (Azx (2,9)))®2" @e1@z@e_1 = —dp(—1)Agx (2,y)

since one has ms(z ® e5:) = ms(x) ® ey and mgoms = mgs for any D and
4,¢’, and the left hand side is equal to (set dp := dethD\Z;)
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ms, (My([z® 2%,y - (1+ X)) @ er) @ 2@ e
= ms, (my([zr@ 2", Yl - (1 + X)) @e1 @2 @ e
=ms,([r @27 ylw - (1+ X)) @2 = [z ® 2", ylw - (s, (1 + X) @ 2)
= [z ® 2",y - (1 + X)2) = =0p(=D)o][z @ 2", ylw - (1 + X)'2),

where the third equality follows from the Er(I')-linearity of ms, ® z, and
the fourth follows from ms, (1 + X) = 1 + X, from which the equality (14)
follows. O

3.2.4. Proof of (4) of Conjecture 2.11. Before proving (2) of Conjec-
ture 2.11, we show the isomorphism nr(D) satisfies the condition similar to
(4) in Conjecture 2.1 (over the ring Er(T)).

Lemma 3.3. Let D be an étale (p,1')-module over Eg of rank two. Then the
isomorphisms nr(D) and nr(D*) fit into the following commutative diagram:

AR (D) @an Er(l)  ——  (AF(D")" @a, Er(D))Y B (Er(T)(rr), 0)

(o) | im0 B

detg, D(o—1)-can
L RN

e, lep) W lepm)-

Here the upper horizontal arrow is the base change to Er(T") of the isomor-
phism AW(D) S (AW(D*)")Y K (Ag(rr),0) defined by the Tate duality.

Before starting the proof, let us introduce the following notation. In the
proof we will use the pairings [—, —]iw and {—, —}w,0 for D and those for
D* simultaneously. In order to distinguish the pairings for D with those for
D*, we will denote, for any étale (¢, I')-module D; of rank two, the pairings
[—, —Jiw and {—, —}1w,0 for Dy by [—, —|iw,p, and {—, — %70, respectively.
Proof. Fix z € Li(D)*. Then we have z¥ @ ea € Li(D*)*. By definition,
it suffices to show that the following diagram is commutative:

deth(F)Dd’:O —>(a)

wﬂ T@&@Hu

(detg,(r) (D*)¥=0)Y

Er() ®r Lr(D) — s (E(T) 0 Lr(DY))Y @5 R(2),

where the horizontal arrows are the natural one defined by the Tate duality,
and (b) is defined by z Ay — detg, D(c_1)[o_1][z ® 2V, yliw,p @ z for z,y €
D¥=0 and (c) is the dual of the map 2’ Ay — ([o_1][z'@(z®@e_2), ¥ |1w.0-)®
(zV @ eg) for o',y € (D*)¥=C. We prove this commutativity as follows.
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Take a basis {z,y} of D¥=C. Since we have an isomorphism ws, ®z"®e; :
D¥=0 5 (D*)¥=0¢ then {ws, (z) ® z¥ ® e1,ws, (y) ® z¥ @ e1} is a basis of
(D*)¥=0*. Then, (a) sends z Ay to f € (detg, ) (D*)¥="*)" defined by

Fl(ws, (x) ® 2V @ e1) A (ws, (y) @ 27 © e1))
=[z® 2", 2], ply ® 2", Ylw,p — [ ® 2", ylw,ply © 27, 2l1w,p
= ([z® 2", ylw,n)?,
where the first equality is by definition and the second follows since [, |1y

is anti-symmetric. By definition, the composite ((¢) X [e; — 1]) o (d) o (b)
sends z Ay to f/ € (detg, ) (D*)¥="*)" defined by

F((ws, () © 2¥ @ er) A (ws, (y) @ 2" @ er))
=detg, D(0_1)[z @ 2", y|1w.0
([(ws, (1) @ 2¥ @ e1) ® (2@ e_2), w5, (y) ® 2¥ @ e1)]tw,p+)-

Therefore, it suffices to show the equality

(16)
[z® 2", Y.
= detg, D(o_1)u([(ws, (2) @ 2@ e1) @ (2@ e_2),ws, (y) @ 2’ @ e1)]tw,p)-

To show this equality, we first remark that one has

ws,. (ws, (z) ® 2V @ ey)

= ws-1 (ws, (2) ® 2V ®ep)

= Mgy, 0 Wy (M1 0 Wi () ® 2V @eq)

= 0p(—1)(ms, 0 Mg-2 0wy 0 My-1 0 Wi (7)) @ 2V ® e

= 6p(—1)(ms, 0 mg=2 0 My, 0 Wy 0 Wy(2)) @ 2V ®ep

=0p(-)z®z" ®e,
where the third equality follows from wy(x @ e5) = d(—1)ms2 o wi(x) @ €5
(Corollaire V.5.2. of [Col0al) and the fourth follows from ms-1ow, = w,oms

(Proposition V.2.4 of [Col0a]) for any d. Hence, the right hand side of (16)
is equal to

detg, D(o_1)ép(—1)({(z®2" ®e1) @ (2@e_3)®er,ws, (y) @2" ® el}IDV;,o)
= —detg, D(o-1)6p(—1)e({z, ws,(y) ® 2" @ €1}y 0)
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= 1({z, ws,, (y) ® 2 @ €1}y )
= —{ws,(y) © ¥ @ er,a}y
= —[y®2", 2lwp

=[r® 2", y|w.D,

where the first equality follows from the fact that the composite of the
canonical isomorphisms (D®gr Lr(D)V)@rLr(DV)Y = DY@ Lp(DY)V =
(DY) is given by 2 ® 2V ® z + [f — —f(z)] for any z € Lg(D)*, which
shows the equality (16), hence finishes to prove the lemma. O

3.2.5. Proof of (2) of Conjecture 2.11. We next prove (2) of Con-
jecture 2.11 under the following assumption. Let V be an F-representation
of G, of over a finite field IF of characteristic p. We denote by Ry the
universal deformation ring of V' (resp. a versal deformation ring or the uni-
versal framed deformation ring) if it exists (resp. the universal deformation
ring does not exist), and denote by V™" the universal deformation (resp. a
versal deformation or the underlying representation of the universal framed
deformation) of V over Ry

Let Ry be a topological Z,-algebra satisfying the condition (i) in §2.1.
Let R be either Ry or Ry[1/p| (resp. R = Ry[1/p]) when p = 3 (resp. p = 2).
Let V' be an R-representation of Gg,. Set Vg := V (resp. Vj a Gg,-stable
Ry-lattice of V') if R = Ry (resp. R = Ry[1/p]). Since Ry is a finite product of
local rings, we may assume that Ry is local and denote by mp, the maximal
ideal of Ry. If we set V := Vo®pg, Ro/mg,, then there exists a homomorphism
Ry — R such that V"™V @p_ R 5 V. Set X := Spec(Ry[1/p]), and denote
by Xy the subset of all the closed points in X.

Proposition 3.4. Let D be an étale (p,1")-module over Eg of rank two. Set
V:=V(D) and V := Vy®g, Ro/mp, for an Ro-lattice Vi of V.. Assume one
of the following conditions (1) and (2):

(1) p=3.
(2) p=2 and, for an Ry as above,

Xois = {z € A|V, == " (VYY) is absolutely irreducible

and crystalline}

18 Zariski dense in X,

then the isomorphism nr(D) descends to Ar, which we denote by

(D) : 15, 5 AW(D).
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Proof. We first remark that, when p = 3, the second condition in (2) (i.e.
density of Xis) always holds for the universal (or a versal) deformation ring
Ry and it is known to be an integral domain (in particular p-torsion free)
by the results of [Co08], [Kil0], [Bol0] and [BJ14].

By the compatibility with the base change, it suffices to show the propo-
sition for V'V (for ViV[1/p] if p = 2). Set R := Ry and V := V"™V for
simplicity. The p-torsion freeness of R when p = 3 implies that we have
Ar = Er(T') N Agpp(L). Therefore, it suffices to show the theorem for
R[1/p] (for any p). Moreover, since we have Agj /(') = Ker(Egp /(1) —
[leex,, €L.(T)/AL, () (here, L, is the residue field at z) by the assump-
tion on the density, it suffices to show the proposition for V,, := x*(V) for
any x € Xyis-

Let V be an absolutely irreducible L-representation for a finite extension
L of Q, corresponding to a point in X'. Set D := D(V). Then, one has
D¥=! = D/(4p — 1)D = 0 and D¥=! 5 (1 — ¢)D¥=! =: C(D) is a free
A (T')-module of rank two by §II, §VI of [Col0a], and the same results hold
for D*. Hence, as in the case of AYW(D) ®x, Er(I"), we obtain a canonical
isomorphism

AT (D) 5 (dety, 1C(D) @ L(D)Y,0)".

Moreover, the Iwasawa pairing {—, —}ow @ C(D*)" x C(D) — Ar(I') is
perfect by Proposition VI.1.2 of [Col0a], and, if we fix z € L1,(D)*, one has
an isomorphism

C(D) S C(D*):z+— ws, (7)® 2" ®ey
by Proposition V.2.1 of [Col0b]. Therefore, we obtain an isomorphism
dety, C(D)@LLL(D)Y = AL(D) : (xAy) @2 = {ws, () @2 ®e1, y}o 1w,

which proves the proposition for D by definition of nr(D). O

Remark 3.5. Even when p = 2, the assumption in the proposition holds
for almost all the cases (the author does not know any example which does
not satisfies the assumption). For example, for any L-representation V for a
finite extension L of Q,, there exists an O-lattice Vy of V' such that its Ry
satisfies the assumption (see [CDP14a]).

3.2.6. The definition of the local e-isomorphisms. From now on,
we only treat the (¢, I')-modules of rank two which satisfy the assumption
in Proposition 3.4 without any comment, which gives no restriction to the
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results proved in the next sections since any L-representations of Gg, of
rank two satisfies the assumption by Remark 3.5.

Specializing the e-isomorphism above, we define the e-isomorphism
er(D) as follows.

Definition 3.6. Let D be an étale (¢, I')-module over g of rank two. We
define the isomorphism e (D) to be the base change

er(D) := ey (D) ®@ap.p, idr : 1p = AF (D) ®@a,.p, B Ar(D)

by the morphism f1 : Ag — R defined by f1([7']) := 1 for arbitrary 7' € T

Corollary 3.7. Our local e-isomorphism er(D) defined in Definition 3.6
satisfies the conditions (1), (3),(4) of Conjecture 2.1.

Proof. That eg(D) satisfies the condition (1) is trivial by definition. To show
that er(D) satisfies the conditions (3) and (4), it suffices to show that e (D)
satisfies (3) and (4). Since the canonical map Agp — Er(T) is injective, this
claim follows from Remark 2.12 and Lemma 3.3. O

Remark 3.8. By definition and Lemma 2.9, we also have
er(D(0)) = e (D) @ s R
for any § : I' — R* under the canonical isomorphism
Ag(D(8)) = AF(D) @,z R.

3.3. The verification of the de Rham condition: the trianguline
case

This and the next subsections are the technical hearts of this article, where
we prove that our e-isomorphism defined in Definition 3.6 satisfies the con-
dition (5) in Conjecture 2.1, which we call the de Rham condition. In this
subsection, we verify this condition in the trianguline case by comparing
the local e-isomorphism defined in Definition 3.6 with that defined in the
previous article [Nal4b].

3.3.1. Recall of the local e-conjecture for (¢, I')-modules over the
Robba ring. In [Nal4b], we generalized the p-adic local e-conjecture for
rigid analytic families of (¢, I')-modules over the Robba ring, and proved this
generalized version of conjecture for families of trianguline (¢, I')-modules,
(a special case of) which we briefly recall now. For details, see [KPX14]
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for the general results on the cohomology theory of (¢, I')-modules over the
Robba ring, and [Nal4b] for the generalized version of the local e-conjecture.

We denote by | — | : @; — Qs the absolute value normalized by |p| :=
1/p. Define topological L-algebras R(Ln) (n 2 1) and Rr, by

R(Ln) = { Z A X™

meZ

am € L, Z amX™
meZ

is convergent on |(,» — 1] < |X| < 1}

and Ry := UnlegL) on which ¢ and T" act by p(X) = (1 4+ X)? — 1
and v/ (X) = (1 + X)X0) —1 (y/ € I'). For n > 1, we say that M™ is a
(¢, T')-module over R%n) if M) is a finite free R(Ln)—module with a Frobenius
structure

oM™ =y o ,R(LnJrl) ) . ) . R(Ln+1)

and a continuous semi-linear action of I' which commutes with the Frobenius
structure. We say that an Rz-module M is a (¢, I')-module over Ry, if it is

the base change of a (i, I')-module M over R(Ln) for some n = 1. We denote
by n(M) > 1 the smallest such n, and set M) := N (M) B R(Ln).

By the theorems of Cherbonnier-Colmez [CC98] and Kedlaya [Ke04],
one has an exact fully faithful functor

D Dyig := D' @1 Ry,

from the category of étale (¢, I')-modules over &, to that of (p,I')-modules
over R, where D' is the largest étale (p,T')-submodule of D defined over
the following ring

Sz = {f(X) € E.|f(X) is convergent on r < | X| < 1 for some r < 1}.

For any (p,I')-module M over Ry, we can similarly define C, . (M),
Ap(M), Dfm(M) and AV (M), etc. as follows. First, we define

Cs (M), Cy, (M) and Ap 1 (M)

in the same way as in the étale (¢,I")-case. To define Apo(D), we first
recall that the rank one (¢, I')-modules over Ry, are classified by continuous
homomorphisms § : Q) — L*, i.e. the rank one (¢, I')-module corresponding
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to ¢ is defined by
RL(5) = RLe5
on which ¢ and I' act by

p(es) =d(p)es and  7'(es) =d(x(7'))es fory €T

For any (p,I')-module M over Ry, we also regard detg, M as continuous
homomorphisms detg, M : QF — L* or detg, M : Wab — L™ Dby this
correspondence and the local class field theory. Using the homomorphism
detr, M, we define

LL(M), Aps(M) and  ApL(M)

in the same way as in the étale case. To define Dfm(M) and A (M), we
first define A (T')-algebras R} (I') and R (I') as follows. Fix a decomposition

I' 5 Tior X Zy, and set g € I’ corresponding to (e, 1) on the right hand side.
Then, we set

Ry (D)
RL(T)

Zp[Tior] ®z, RE(I70] —1)  and
Zp[rtor] ®Zp RL(['YO} - 1)7

where we set

Ri([vw] —1) = { > am(fr) - 1™

Z amX™ € RL}

MEZ MEZL
and
R (ol = 1) =4 > am(frol — )™ € Re([y0] — 1)
m=0

We define a (p, I')-module Dfm (M) over R @R (I') (which is the relative
Robba ring with coefficients in R} (T')) to be

Dfm(M) := M® R} (T)
as an Ry®, R (I')-module on which ¢ and I act by
pla®y) = p(2)@y and  +(2®y) =7'(2)&N] "y

for v € M,y € Rf (') and / € I'. By [KPX14], one similarly has the
following canonical quasi-isomorphisms
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Cg, (Dfm(M)) 5 Cy,~(Dfm(M)) 5 Cy (M)

of complexes of RZ(F)—modules, and it is known that these are perfect com-
plexes of R} (I')-modules. One also has the (extended) Iwasawa pairing

{— —Jogw : (M*)P=0 x M¥=0 — R (T)

by §4.2 of [KPX14]. Therefore, we can similarly define the following graded
invertible R} (I')-modules

AR, (M) = Detg: () (C (Dfm(M)))
and
AL (M) == AP (M) B 1y (AL2(M) @ RE (L))
(remark that we have Ag+ p o(Dfm(M)) 5 Apo(M)®p RET)), and we
can similarly obtain a canonical isomorphism

AP (M) &gy Re(T) 5 (detr, yM¥=" @p L(M)Y,0)7!

using Proposition 4.3.8 (3) [KPX14] (precisely, this proposition is proved
under the assumption that M /(¢ —1) = M*/(¢) — 1) = 0, but we can easily
prove the statement (3) of this proposition for general M in a similar way).

One can also generalize the p-adic Hodge theory for (¢, I')-modules over
Rpr. For a field F' of characteristic zero and n € Z>, we set F,, := F ®q
Q(upn) and Foo := U,;>1 Fn. Set t :=log(1 + X) € Rp. Set Deyis(M) :=

M[1/t]'. For n > 1, one has the following I'-equivariant injection
 RYY > Lol : £(X) = F(Grexp(t/p") —1).
Using this map, we set, for n = n(M),
D (M) := M™ @, Ly[[t]l,  Daiea(M) := D, (M)[1/1]

and
D:;if,oo(M) = hﬂ Dgif,n(M)
for x = + or * = ¢ (the empty set), where the transition maps are defined

by Djl_if’n(M) — D$f7n+1(M) :x @y — ¢(r) ®y. Using these, we set

Dyr (M) := Dair,ee(M)",  Dig(M) := (t'DY; o (M))"
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and
tar := Dar(M)/Dgg (M)

for i € Z. Using these (and those for M @, Rp(K), where Ry (K) is the
Robba ring of a finite extension K of QQ)), one can define the notions of
a crystalline (p,I")-module, a de Rham (¢, I')-module, etc. over the Robba
ring. In particular, for any de Rham M (which is also known to be potentially
semi-stable), one can define Dy (M) and its associated L-representation
W (M) of 'Wqy,, as we usually do for de Rham representations of Gg,. By
§2 of [Nal4b], one can also generalize the Bloch-Kato’s fundamental exact
sequence

(17) 0= HY_ (M) = Derig(M) ‘% Degio(M) @ £y 25 HL_ (M)

9, Digie(M*)Y ® DY (M) 1D Do (M*)Y — H2_ (M) 0,

as in the exact sequence (3) in §2.1 for any de Rham M. Using this, one can
define the de Rham e-isomorphism

8%R(M) : ]-L :> AL(M)

for any de Rham M (see §3.3 of [Nal4b] for the precise definition) in the
same way as that for de Rham V.

Let D be an étale (¢, I')-module over £. Then, one has the following
canonical comparison isomorphisms

~

AL(D> — AL(Drig)
and
AT (D) @a,r) RE(T) = AL (Diig)

by Proposition 2.7 [Li08] and Theorem 1.9 of [Pol3] respectively. For any
de Rham L-representation V' of Gg,, one has canonical isomorphisms

DdR(V) :> DdR(D(V)rig)7 Dcris(v> :> Dcris(D(V)rig>

and
W(V) S W(D(V)sig).

Moreover, under these identifications, one also has

(18) el (V) = el (D(V)rig)
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under the isomorphism AL (V) = AL(D(V)) = AL(D(V )ig) (see [Naldb]),
by which we freely identify the both sides of (18) with each other.

3.3.2. The comparison of our local e-isomorphism with that de-
fined in [Nal4b]. Now, let us go back to our situation. Let D be an étale
(p,T')-module over &, of rank two. We assume that D is trianguline, which
means that there exist a finite extension L’ of L and continuous homomor-
phisms d1, 02 : Q) — (L')* such that Dy ®, L' sits in an exact sequence of
the following form

(19) 0— RL/((51) — Drig Xr L' — RL/((SQ) — 0.

Since scalar extensions do not affect our results, we assume that L' = L
from now on. In our previous article [Naldb], we defined an e-isomorphism

e’ (RL(9) : 1gs(ry = AL (RL(6))

for any continuous homomorphism ¢ : QF — L*, and showed that this
satisfies the same conditions (1), (3), (4) and (5) in Conjecture 2.1. The
main result of this subsection is the following theorem.

Theorem 3.9. Under the situation above, one has an equality
e’ (D) ® idgy ) = e (R1(61)) Bel (RL(62))
under the canonical isomorphisms
AL (D) @4, ry R (L) = AL (Dyig) = AR (Re(61)) K AL (R (62)),

where the latter is induced by the short exact sequence (19).
Before proving this theorem, we first show the equality e1,(D) = £¢R(D)
for trianguline and de Rham D as a corollary of this theorem.
Corollary 3.10. Let D be an étale (¢, ')-module over £, of rank two which
is de Rham and trianguline, then we have
er(D) = (D).

Proof. Specializing the equality e™ (D)@idg+ )= eW(RL(61))KeM (R L(82))
in the above theorem by the continuous L-algebra morphism fj : RZ(F) —
L:[]—1 (V4 €T), we obtain an equality

EL(D) = 6L(RL((51)) X €L(RL((52>).
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Then, the corollary follows from the equalities
er(Re(8:)) = e (Re(5:))
for i = 1,2 (Theorem 3.13 of [Nal4b]) and
e (D) = 1 (Drig) = €1 (R1(01)) KT (R1(82))

(Lemma 3.9 of [Nal4b]). O

To show the theorem above, we first prove a lemma concerning the ex-
plicit description of the extended Iwasawa pairing

{= —Jorw : (RL(6))¥=* x RL(8)"™% = R(T)

for M = R (). We identify Ry (6~ !) with R (§)" via the isomorphism
RL(671) = RL(8)" : fes-1 = [ges v fol.

Lemma 3.11. The extended Iwasawa pairing

{= —Yorw : (RL(8))P=H x RL(6)Y™° — R (T)
satisfies the equality

M (LX) Tesr @er), Ao - (14 X)es)bow = kg
for any A1, A2 € Rp(T).
Proof. We first remark that the isomorphism
e (RL(6)) ®idr, (1 : 1r, 1) = AL (RL()) @g: ry Re(T)
is equal to the one induced by the isomorphism
O(RL(9)) : Ru(T) @1 L(6) 3 Ru(0)"=0: A@es s A+ ((1+ X) ley)

and the isomorphism AMW(R(6)) = (R (6)¥=®y L(§)V,0)~ . This follows
easily from the definition of V(R (§)) given in §4.1 of [Nal4b.
Since one has

e’ (RL(9)")" = er (r)(Dfm(R1(4))")
under the canonical isomorphism

A (RL)) S Ags py(DEm(RL(5))%),
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the isomorphism g+ (Dfm(R1(5))") ®idg, (r) is equal to the one induced
by the isomorphism

O(RL(6)")": Re(T) @1 L5 H)(1) = (Rp(8))¥= : A @ (e5-1 @ e1)
= A (T4 X) e @ey).

Under the canonical isomorphism
AT (Rr(6)) = (AL (RL(6)")")Y B(RE(T) @1 L(1),0)
defined by the Tate duality (see §3.2 of [Nal4b]), one has
3(=1)[o-1]er" (R1(8)) ™ = (1" (Re(8)")")Y B [er = 1]

by the condition (4) of Conjecture 2.1 for Dfm(R(6)) (which is proved in
Theorem 3.13 of [Nal4b]). Using the isomorphisms §(R 4(9)) and (R 4(d)*)*,
we obtain from this equality the following commutative diagram of R (T')-
bilinear pairings:

O(RL(8)")" x0(RL(5))

Re(T) @r L(6~1)(1) x R () @1 L(9) (RL(8)")"="" x R (8)""

l(l@erl ®e1,1Qes)—1Req l{*w*}o,lw
R (T) @1 L(1) orohlo-l, RL(T).
The lemma follows from the commutativity of this diagram. O

Using this lemma, we prove the theorem as follows. As we show in the
proof, a result of Dospinescu [Dol1] on the explicit description of the action

of ws,, on D;pig: 0 which is intimately related with the action of w = ((1) (1)>

on the locally analytic vectors, is crucial for the proof.

Proof. (of Theorem 3.9) We first show the theorem when D is absolutely
irreducible. Since the canonical map RJLF (T') = R(T) is injective, it suffices
to show the equality after the base change to R (T').

By the results in V.2 of [Col0b], the involution ws, : D¥=Y = D¥=0
(first descends to ws, : DM¥=0 5 DH¥=0 and then) uniquely extends to
Ws, - foi’g: 0 Dfﬁ;o, and the isomorphism

EILW(D) & idRL(F) : 172L(F)
5 A (D) @, Re(@)(5 (detRL(r)Df{g:O ®r LL(D)Y,0)7")
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is the one which is naturally induced by the isomorphism

0(Drig) : detRL(p) Tl) 0 Rp(T)®L »CL(Drig) :
(CB A y) [0-*1} ! {w5D (:I") & Zv ® ey, y}O,IW &K z

for any z € L(Dyig)*. By the explicit descriptions of e}¥ (R (6;)) ® idg, ()
and e(D) ® idg, (1), it suffices to show that the following diagram is com-
mutative:

TQY—TAY
—_—

RL(61)Y=" @, (1) R (52)Y=° detRL(r)Dﬁgzo

O(RL(52) " @O(RL(52) " | |6

€5, ®652 —es; /\552

(Rr(T) ®r L(61)) @R, (r) (RL(I') @1 L(d2)) RL(I) ®r L1 (Drig)-

Here y € D:ﬁgzo (resp. €5, € Dyig) is a lift of y € Rp(2)¥=Y (resp. es, €
Rr(62)).

By definitions of §(R(9;)) and §(Diig), and the Ry, (I')-bilinearity of the
pairings in the diagram above, it suffices to show the equality
(20)
1) {ws, (14+X) " les, ) @(e5,A&5,) Y @er, 62(p) (14 X) " p(@s,) borw = 1.

Since one has an equality
w5D((1 + X)e51) = 61(_1)(1 + X)e51
by (the proof of) Proposition 3.2 of [Doll], one also has

(21) ws,, ((1 +X)71651) 01(—1)ws ( 1((1+ X)es,))

= 0p(—1)d1(—1)o—1(ws, (1 + X)es,))
= 6p(—1)01 (=11 (81 (=1)(1 + X)es,)
= 5p(=1)51(=1)(1 + X) e,

since one has w;, 0 04 = dp(a)o, t ows, (a € ZX) Using this equality and
the equality es, ® (e5, A€s,)" = —€;-1 in Rp(dy hc D;{g, the left hand side
of (20) is equal to

—p(=1)a1(=1)[o-1] - {(1 + X) " Tes: @er, 02(p) (1 + X) ' (&5,) o,1w
= —(SD(—l)(Sl(—l)[(j_l] . {(1 + X)_le(52—1 ® e, (1 + X)_legz}()JW
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= —0p(=1)é1(=1)02(~1)[o-1] - {(1+X)"les 1 @er, [o-1] - (1 + X)es, ) bo1w
={(1+ X)_le(sgl ®er, (1+ X)es, totw =1,

where the last equality follows from the equality —0p(—1)d1(—1)d2(—1) =1
and Lemma 3.11.

When D is not absolutely irreducible, then (after extending scalars L),
we have an exact sequence

0— SL(él) —D — 5[,((52) —0

for some continuous homomorphisms 61, d2 : Q; — O*. Then, the involution
ws,, acts on (61)¥=0 (in fact, it acts on any étale (¢, I')-modules), and one
can directly check that one has ws, (14 X)es,)) = d1(—1)(1+ X)es,. Then,
the theorem follows by the same argument as in the absolutely irreducible
case. U

Remark 3.12. In the last paragraph of the proof above, for any exact
sequence 0 — Er(d1) — D — Er(d2) — 0 of étale (p,I')-modules over g,
we show the equality

ei (D) = it (Er(01)) M e (ER(62))

under the canonical isomorphism AW (D) 5 AL(Er(61)) M AL (ER(d2)),
which shows that our e-isomorphism satisfies the condition (2) in Conjecture
2.1.

3.4. The verification of the de Rham condition: the
non-trianguline case

By the results in previous subsection, it remains to show the case (ii) of
Theorem 3.1 (3) for non-trianguline ones. Precisely, it suffices to show the
following theorem, whose proof will be given in the last part of this section.

Theorem 3.13. Let D be an étale (¢,1")-module over £, of rank two which
is de Rham and non-trianguline. Assume that the Hodge-Tate weights of D
are {k1,ko} such that k1 <0 and ko = 1. Then, we have

EL(D) = é‘%R(D).

We first reduce the proof of this theorem to Proposition 3.14 below by
explicitly describing the both sides of the equality in the theorem, then,
in the last part of this subsection, we prove this key proposition using the
Colmez’s theory of Kirillov model of locally algebraic vectors I1(D)# of
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II(D) and the Emerton’s theorem on the compatibility of the p-adic and the
classical local Langlands correspondence.

Hence, we first explicitly describe the e-isomorphism and the de Rham
e-isomorphism under the assumption in the theorem above.

3.4.1. Explicit description of e{®(D). From now on, let D be an étale
(p,I')-module over &£, of rank two which is de Rham and non-trianguline
with the Hodge-Tate weights {k1, k2} such that k1 < 0 and ko = 1. We set

Dyr(D) i= Dar(V(D)), W(D) := W(V(D)),ete.

We remark that, under the assumption that D is non-trianguline, D is ab-
solutely irreducible. One has

dim;Dig(D) =1 if and only if — (kg —1) < i < —k;.

In particular, one has dim; DYy (D) = 1. We fix a basis {f1, fo} of Dqr(D)
over L such that f; € D9 (D). Then, we have

tp = DdR(D)/DgR(D) =Lf,
where f, € tp is the image of f». Since D is absolutely irreducible, we have
H) (D)=H2_ (D) =0, dim H}_(D) =2
and the canonical specialization maps
p: DY=' » HL (D)
and

up- 1 (D*)P=! = HL (DY)

are surjective since the cokernel is contained in D/(¢) — 1) which is zero by
the absolutely irreducibility. Hence, we obtain a canonical isomorphism

Ap1(D) S (det H} (D),2)7",

and the Bloch-Kato’s exact sequence for D is just the following short exact
sequence

exp

0= tp 2B HL (D) 225 DYR(D) — 0.

Hence, the determinant detzHJ_ (D) has a basis of the form y A exp(fs)
such that exp*(y) # 0.
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We also fix a base ep of L1,(D), and set hp := kj + ka. Since we have
detLDdR(D) = DdR(detRLD> = (Loot*hDeD)F,

there exists a unique © € L such that

1
Jinfo= weD =: [p.
If we define a map
(22) a:DY=' 2 HL (D) — L

by the formula

exp*(tp(z)) == a(z) fi

for x € D¥=!, the de Rham e-isomorphism £$%(D) is defined as the com-

posite of the following isomorphisms

91 D
8%R(D) 17 M Ar1(D) X Detr(Dgr (D))

idX6, (D
[AR0(D) A, 1(D)R Ay (D) = Ap(D)

where the isomorphisms 0;(D) and 02(D) are respectively induced by the
isomorphisms defined by, for x € D¥=! such that a(z) # 0,

01 (D) : detLHiw(D) = detLDdR(D> : LD(.%') VAN eXp(fQ)
= I'(D)exp®(tp(x)) A f2 = T(D)a(z) fr A fo

and

1

02(D)~" : L(D) = det,Dar(D) : ep =L (W (D))o P

Here, we remark that we have I'(D) = ((jc)lk)l! (ke — 1)!. Hence, using a and

), the isomorphism
(D) := 62(D) 0 61(D) : det Hy, . (D) = L(D)
is explicitly described as follows:
(23)  a(D)(n(@) Aexp(fa) = T(D)er (W(D)Q a()ep.

3.4.2. Explicit description of er(D). We next consider the isomor-
phism e, (D). Let
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[— —lar : Dar(D") x Dar(D) — L

be the canonical dual pairing. We remarked in the proof of Proposition 3.4
that, under the assumption that D is absolutely irreducible, the natural
map 1 — ¢ : D¥=1 — D¥=0 is injective, by which we identify D¥=! with
C(D) (and similarly for D*), and one has ws, (C(D)) @1 Lr(D)Y = C(DV)
under the canonical isomorphism D ®7, £1,(D)Y = DV. By this fact and the
definition of e1,(D), e1,(D) is the isomorphism which is naturally induced by
the isomorphism

(D) : det H., (D) = L1(D) = ((Lep))"
defined by the following formula, for z € D¥=! such that a(z) # 0,
(24)

7 (D)(ep(x) Aexp(f2))((en)”) = (up- (0-1(ws, (x) ®ep@er)), exp(f2)) Tate
= —[exp"(vp- (0-1(ws,, (z) ® ep @ e1))), folar =: (%),

where the second equality follows from Proposition 2.16 of [Nalda]. Using
the canonical isomorphism (identification)

DIR(D*) =Lfi® fhot e

induced by the canonical isomorphism D ®; £ (D)¥ = DV (remark that
we have Qt're), = f)}), we define a map

. NI (p)p=1 Yo (01 (y®ep®er)) o1 *
(25) B: Do H. (D*) — L
by the formula

exp*(tp-(o_1(y@ep ®er))) :==By) Lo ot e

for y € D% (P)¥=1_ Using this 3, the last term (x) in the equalities (24) is
equal to

(26) (x) = ~[Bws, (2)) fr ® f) @t e1, folar = B(ws, ().

We see from the formulae (24) and (26) that the isomorphism
' (D) : det H, (D) 5 L (D)

is explicitly described as follows:

(27) 1 (D) (ep(x) Aexp(f2)) = B(ws, (z))ep.
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The formulae (23) and (27) show that the equality 1 (D) = £$®(D)
follows from the following key proposition. Thus the proof of Theorem 3.13
is reduced to this proposition.

Proposition 3.14. For any z € DY=", we have
B(ws, (2)) = T(D)er(W(D)Q ™ a(z).

In the rest of this subsection, we prove this key proposition. The proof
will be given in the last part of this subsection. Our proof heavily depends
on the Colmez’s theory of Kirillov model of locally algebraic vectors IT(D)#
of II(D) [Col0b], which we recall in details below.

3.4.3. Recall of the p-adic local Langlands correspondence for

X
GL2(Qp). Set G := GLy(Q,), B := {(3 :) EG}, P = <(%p Qip)
Pt .= <Zp \0{0} le> and Z := { (g 2) a € Qg} We identify Z with
. . . ~ a 0
Q, via the isomorphism Q) — Z :a — 0 al

Let us briefly recall the construction of the representation II(D) of G
T
for our D. Let the monoid P act on D by the rule <p0a ?) cx=(1+
X))o (oq(xz)) for n 20, a € Zy, b € Zy and x € D. Using the involution
ws, D¥=0 5 D¥=0 we define a topological L-vector space

D®Rs, P! = {(21,22) € D x D | ws, (1 = pp)z1) = (1 — pt) 20}
and an L-linear map
Resz, : D X5, P' — D : (21,22) v 1.

By the recipe in [ColOb] II, one can define a continuous action of G on
DXs, P! with the central character §p such that ((1] (1)> (21, 22) = (22, 21)

and the map Resz, is PT-equivariant. We denote by DX Q, the topological
L-vector space consisting of the sequences (2,,),>¢ such that ¥ (zn41) = 2
for all n 2 0. One can define a continuous action of P on D X Q, by

(5 0) Czoi= Gateizor (1) -z i= (neihuzo
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and
<3 b/ffn) o = (" (L+ X" 20 m))nzo0

for a € Z;,b € Zp and m = 0.

Take an étale (¢, I')-submodule Dy C D over E» such that Dy[1/p| = D.
By [Col0a], there exists the smallest y-stable compact O[[X]]-submodules of
Dy, which we denote by Dg C Dyg. One also has the largest 1-stable compact
O[[X]]-submodule Dg C Dy on which 1) is surjective. We set D := Dg[l/p]
and Df := Dg[l /p], which are independent of the choice of Dy. We note that
one has D' = D* under our assumption that D is absolutely irreducible
(Corollaire T1.5.21 of [Col0a]). One also has (D?)¥=! = (D#)¥=! = D¥=1,
where the second equality follows from Proposition I1.5.6 of [Col0a]. Define
a sub L[B]-module D X5, P! of DK, P! by

n
D' Rs Pl:= {zeD&;D P! ‘ Resz, ((po ?) z> e D" for aunzo}.

One of the deepest results in the theory of the p-adic local Langlands cor-
respondence for GLg(Q,) is that the pair (D,dp) is G-compatible, which
means that D% K5, P! is stable under the action of G (Théoréme I1.3.1 of
[Col0b], Proposition 10.1 of [CDP14a]). Finally, one defines

(D) := D Rs, P'/D*K;, P!

which is a topologically irreducible unitary L-Banach admissible represen-
tation of G.

3.4.4. Recall of the Kirillov model of the locally algebraic vectors.
We next recall in details the Colmez’s theory of the Kirillov model of the
locally algebraic vectors I1(D)¥# of II(D). We set Loo[[t] := U, >; Ln[[t]]-
For the fixed ¢ = {{pn }n>1 € Zp(1), we define a homomorphism

€7@ = (B sa s [,
For V :=V (D), we set
DT = (V®g, BY)A%, D= (Vag, B)% and D := (V ®q, Biz) 7.
One has a canonical isomorphism

N ~ Ho
Dgis = D¢ o (Drig) ©q, 1) (Br) -
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The natural inclusion ¢g : BT < B:{R induces a canonical I'-equivariant
inclusion

Lo - 15+ — ﬁc—li_lf
The group B acts on D, D and D/D* by the rule, for z € DY, D, D/D™,

;2o (5 2 3 )=

foraeQy,beZy,ne€Zand ce Q.
We set k :kg—kl 2 1. We denote by

r
HERTT

the L-vector space consisting of functions ¢ : Q; — L D$f / DJFf such that
the support is compact in Q,, (i.e. qS( -Z,) = 0 for any sufficiently large n)
and o4(é(z)) = ¢(ax) for any a € Z) and z € Q. We equip this space with
an action of B by

((8 2) .¢>(x) = ool ((8 (1)> -<z>> (2) = ¢(az),
<<f1) ll)) '¢> (2) = 10([C" )6 (a)

for a € Q; and b € Q). Remark that, for a = p% € Q, such that b € Z,
n = 0, one has LO([ZG]) Cb exp(at) € Lo][t]]*.
For z € Un>0 ( DJF/D+ (this is a B-stable subspace of D/D%),

define a function ¢, € LP ( o tlk Dchrlf/Ddlf) by

o= ((3 9)-)

for z € Q. By Lemme VI.5.4 (i) of [Col0b], this correspondence induces a
B-equivariant inclusion

r
U7R<X>kD+/D+<—>LP< x, kD;f/Ddlf) L2 ¢
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Let us write
Nt +(Drig) := Dar(Drig) @1 L[[t]]
for x =n 2 n(Dyig) or * = co. We set
X5 = ("N o (D)) /D¢ oo (D).

Since we have D(—;if,oo(Drig) = Loo[[t]](t** f1) @ Loo[[t]](t*2 f2), one has

X5 = (LoollE]) /P LoollE]) 1 L(# ) € D/ D

We denote by
LP(QX, X )F

p 1 <“roo
- AT
the B-stable L-subspace of LP ( s thD:ﬁf / D('fif) consisting of functions ¢
with values in X2, in other words, consisting of functions

k—1

¢:Qy = Xix— qui(a:)(:ct)“'kl ® fy

1=0

such that, for any 0 = i = k — 1, the function ¢; : Q) — Lo is locally
constant with compact support in Q,, and ¢;(ax) = oa(¢i(z)) for any a € Z)
and z € Q. We denote by

LPc(Q;, Xo)
the B-stable L-subspace of LP(Q?,XC;)F consisting of functions ¢ with
compact support in Q, i.e. ¢; (pi”Z;) = 0 for sufficiently large n.

By Corollaire I1.2.9 (ii) of [Col0Ob], one has a canonical B-equivariant

topological isomorphism

D/D* 3 11(D)
(under the assumption that D is absolutely irreducible), by which we iden-
tify the both sides with each other. We denote by II(D)*8 the G-stable
L-subspace of II(D) consisting of locally algebraic vectors, which is non zero
due to Théoreme VI.6.18 of [ColOb]. By Lemme VI.5.3, Corollaire VI.5.9,
and Théoreme VI.6.30 of [ColOb], one has

1 ~ o~
(D) C - Dt/Dt
(D) gow"(X)’“ /DT,
n
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and the map z — ¢, defined above induces a B-equivariant isomorphism
(28) II(D)™ 5 LPo(Qy, X3)"
under our assumption that D is non-trianguline.
We denote by
LC(Q), Loo)"
the L-vector space consisting of locally constant functions ¢ : Q) — Lo
such that the support of ¢ is compact in Q,; and that o4(¢ (7)) = ¢(ax) for

any a € Z, and x € Q. We similarly define an action of B on this space
by the rule

() )=t (5 )-¢) ot

((5 1))@= wemow

for a € Q) and b € Qp, where ¢¢ : Qp — L% is the additive character
associated to ¢ (i.e. we define ¥¢(a) := an € L for a = 1% € Q, with
b € Z, and n = 0). Let Sym*~1L? be the (k — 1)-th symmetric power of the
standard representation L? of G. Set Sym*~1L? @ deth := @f;olLe’legflﬂ
on which G acts by

(CCL Z> . 621161267171' = (ad — bc)kl (CL€1 + C€2)i(b€1 + d€2)k—1—i‘

Then, one has a canonical (up to the choice of f2) B-equivariant isomorphism

(29) LCc(Q), Loo)' @7 Sym" 'L? ® det™ 5 LP.(Q), X))
k—1

z Y (k—1—1)lgi(x)(xt) ™™ @ f,
=0

k-1
Z o ® eﬁeg_l_’ —
i=0

Therefore, as the composite of isomorphism (28) and the inverse of (29),
one obtains a B-equivariant isomorphism

(30) (D) 5 LC(Q), L)' ®p Sym" 'L ® det®.
~ (ZX 0
Using the map z — ¢,, we define a I' — ( 6’ 1>—equivariant map

i (D)™ = X5t 20 6:(p7") (= (0™ (2)))

for each 7 € Z.
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Set
X,y =D, (Drig) /t* Nip | (Drig) = (Lu[[t]] /£ La[[t)]) @1 L(t* f)
for each n 2 n(Dyig), and set
XTRQ, = @X,j
where the transition maps are the maps induced by

1
;TYLM/LH : L ((1)) fi

— Ln((t))fZ : Z amtmfi — Z %TrL,LH/L”(am)tmfi

meZ meZ

for i = 1,2. Set g, = (g ?) For each i € Z and n 2 n(D;ig), define a

X
rs <Z6’ (1)> -equivariant map

an ‘D', Pt = Xz tn(Resz, (g;“i 2)) € X,

where ¢, : Dﬁing) < D% (Dyig) is the canonical map (remark that we have
Db C Dig by Corollaire I1.7.2 of [Co10al), which also induces a I'-equivariant
map

e D'RP! = XE iz (uF (2))n=n(Dusy)-

©,n

Let
(—,—): D" x D — &L(1)

be the canonical £7-bilinear pairing. Since we have D$f7n(RL(1)) = Ly[[t]]e1,
this pairing also induces an L, ((t))-bilinear pairing

(=, =) : Dait,n(Drig) X Dait,n(Drig) — Ln((t))er,
by which we identify D (Dj,) with Homp (Dg . (Drig), Ln[[t]]er).
Then, using the canonical isomorphism Dji'if’n (detr, Dyig) — Lp(D) ®r
L,[[t]], we define a canonical isomorphism
(31)

Dt (Drig) @1 L1(D) @rL(1) = Dy (D) : 2020e1 = [y = 2(yAx)ed].
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Using this isomorphism and the fixed basis ep € L(D), we define a pairing

[—, —lait : Dait,n(Drig) X Daitn(Drig) : (@, y) — resp({o-1(z @ e}, @ e1),y)),
where resy, is the map

1

resy, : Ly ((t))er — L : Z amte; — mTan/L(a_l).

meZ
We remark that one has
[0a(), 0a(Y)]ait = dp(a)[z, Ylait
for any a € Z;. This pairing also induces a pairing
[—, —Jait : X, x X, — L,
and, by taking limits, one also obtains a pairing
[—, —Jait : XTXQ, x X — L.

Similarly, using the canonical isomorphism D®y Ly (D)"Y ®@p L(1) = D*,
we define a pairing

[, =] :DxD — L:(x,y9) —reso({o_1(z @ e}, ®e1),y))

using the residue map

reso : €r(1) = L : f(X)e; — Resx—o (ﬁ_—X;{) .

This pairing also induces a pairing

[—,—]p: : DR, P! x DR, P!
— L: ((Z17Z2)7 (levzé)) = [2’1,2’1] + [¢¢(22)790¢(Zé)]7

which satisfies
l9-2,9-ylpr = dp(det(g))[z,y]p:

for any z,y € D K5, P! and g € G by Théoreme 11.1.13 of [Col0b]. By
Théoreme 11.3.1 of [Col0b], this pairing [—, —]p: satisfies that [z, y]p: = 0 for
any x,y € Df Xs, P! and induces a G-equivariant topological isomorphism

(32)  D'Rs, P' ST(D)Y @ (6p odet) : z — [y € I[(D) — [z, y]p1],
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where we set II(D)Y := Hom{™(II(D), L). The following proposition is
crucial for the proof of the key proposition

Proposition 3.15. (Proposition VI.5.12.(ii) of [Co10b]) For any x € D*Xs,
P! and y € TI(D)*e, one has

[z, ylpr = > ()i (), 17 (1)]ait-
1E€EL

3.4.5. Explicit formulae of the maps a and (3. Using these prelimi-
naries, we prove two propositions below (Proposition 3.16 and Proposition
3.18) which explicitly describe the maps « and § introduced in (22) and
(25) in terms of the pairing [—, —]p:.

Since D is absolutely irreducible, one has D = D¥, and then one has a
natural P-equivariant isomorphism

D" X, P! 3 D'NQ,: z— (Resz, (g5 - 2))

n>0"
This isomorphism and the inverse of the natural isomorphism
DY=! = (DF)P=! = (DF)P=! 5 (DFRQp) "= 2 2 = (20)n20,
where z,, := z for any n, induce an isomorphism
(D* Ry, P17~ 5 DY=: 2 5 Resy, (2).

For z € DY=', we denote by T € (D" Xy, P')%=! the element which
corresponds to x via the last isomorphism.
For each m € Z, define a function

¢m € LP(Q), X3)"

oo (PN ) ifn=m

m(p"a) = {0 if n#£m

for n € Z and a € Z). Since we have Qt%eD = fi N\ fo € Dgr(detg, D), we
have 04(2) = %(U")Q = detW(D)(0,)S2 for any a € Z,. Hence, we have

hp

O (chrl) Ty = detW (D)(00)Qat)» 1 F,.
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Proposition 3.16. For any x € D¥=' and m € Z, we have

a(e) = L5 (") F. bl

Proof. Since 7 is fixed by g, for any i € Z and n 2 n(Dyig), we have

Lj,n(i) = 1n (Resg, (gg_i - 7)) = in(Resz, (7)) = tn().

1 (@) = (0 (@)nzn(Dag) = (@) nzn(D,,) € X HQy.

Then, by Proposition 3.15, we have

T, om|pr = 2513 Dn2n(Dug)» G (0"t

1EZ
= 0P (tn(2))n2n(D)> 2" folait = Sp(p™™) e (), Q"7 fol aie

for any n 2 n(Dyig).

For an L[[']-module N, we set H}/(N) := N2/(y — 1)N* using the fixed
A CTyy and v € T in §2.2.

By Proposition 2.16 of [Nal4a|, one has a commutative diagram

HL_ (D) —— H(Dgyno(D))
idl Twelogum)[x]

exp”
HL (D) 2 Dun(D).
where the upper horizontal arrow is the map defined by [(z,y)] — [t ()] for
any sufficiently large n 2 n(Dyig) (which is independent of n). We remark
that the right vertical arrow is isomorphism since D is de Rham. Hence, we
have

[tn(en())] = llog(x(7))a(2) f1] € H) (Dait, o (D))

for any n 2 n(Dyig) by definition of c. Since we have

(i () =2 Log(x(1)pa - in(2).

we have

[t (@), Q"7 fo] i = Z%[04(30)]”1’ Q" fo) i
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= P _Res((o_1(a(@)f1 @ ey @ er), 2L fy))

p—1
= L p(-Da(Ress (1 © e} © o1, 2 )
— _Z%léD(—l)a(x),

where the first equality follows form Lemma 3.17 below. Hence, we obtain
the equality
p—1 M~
a(r) = —TéD(—p )Z, dmlpr. O
Recall that we put pa = ﬁ > sealo] € LIA]
Lemma 3.17. The following hold.
(i) Fory € Dgitn(D), we have
[y, "~ folaie = [pa -y, Q"7 folair.

(i1) Fory € Dgif (D), we have

(v — 1) -y, Q"> folgie = 0.

Proof. We first remark that, for any z,y € Dagif »(Drig) and a € Z, , we have

[0a(2), ylait = dp(a)[z, 05 (y)]ait-

Using these, for y and y; as in (i), we have
(A -y, U folgie = [y, P - (ch”_l) folaie = [y, 2" fo air,

where we set p‘k = ﬁ > wen dn(x(0))[o]™t € L[A], and the third equality

follows from the fact that o, (Qt"»~1) = 6p(a)Qt"» ! for any a € Zy -
Similarly, we have

(v = 1)y, Q2" folaie = [y, Gp(x(M))y ' = 1) - (" folaze = 0. O

We next consider the map 3 : D»®¥=1 _ [ We first recall that,
under the canonical inclusions 1 — ¢ : D¥=! < D¥=0 and 1 — ép(p) Ly :
Dor®¥=1 <y D¥=0_one has ws, (DY=') = DI»P¥=1 by Proposition V.2.1
of [ColOb].

Similarly, for the case D¥=!, one has the following isomorphism

(D" X, Pyor=00() 5 pon)V=1 . ; Resy (2),



342 Kentaro Nakamura

which induces the commutative diagram (set g, = <€ (1)> LW =

z+Resz,, (2)

01
<1 0) €qG)
(D" Ry, P1)9=!

zb—>w~zl lzﬁwaD(z)

z—Resz,, (2)

Dv=1

(D" Ko, P1)9»=0p () Dop(P)=1

in which all the arrows are isomorphism. For z € D%®)¥=1 " we denote by
T € (D" s, P1)9=90(P) the element such that Resz, (7) = =.
For each m € Z, define a function

m € LP(Q), X3)"

fo ifn=m

Ym(p™a) = {0 £ £ 0

andfornEZandaEZ;.

Proposition 3.18. For any x € D»?®¥=1 m c 7 we have

Blo) = 2= L, Yl

Proof. By Proposition 3.15, we have

T, Ymlpr = Y 6p(p U (0)]ait = 0D (D)™ [t (T), folait-

€L

Since we have
[’;i_n,n(i) = ln (ReSZ (gg " N)) =dp (p)n—an(x)

for any n 2 n(Dyig), we have

[Z,Ym]p1 = 0p(p)" [tn (), fo]ait-

On the other hand, since we have

exp*(ip-(o_1(z®ep®e))) =B) L@ fHot le

by definition of £, we obtain
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[tn(tp-(0-1(z @ ep @ e1)))]
= log(x(7)B(x)[f1 @ fy ® t~"e1] € Hi(Dait,o0(D"))

by Proposition 2.16 of [Nal4al. Since we have

-1

m(ep- (0 1(z @ €y @ €1))) = E—log(x(7))pa - (tn(0-1(z @ ey @ €1)))

=" ; L og(x(1))5p ()" pa - (in(x) ® € @ €1),

we obtain

[tn(x), folair = 5D(p)7np%1ﬁ(ﬂ?) Q"2 £, folaie

= 3n(p) "B Ress (o1 (1@ S @1 en). f2)
= 0n(p) "L B Rese((y © f © 1 er, o)) = ~dn(p) " L5 A(x),

where the first equality follows from Lemma 3.19 below. By this equality,
we obtain

~ p
(2, hm]pr = _ﬁ/@(x)a
which proves the proposition. O
Lemma 3.19. The following hold.
(i) Fory® e}, ® e1 € Dyt n(D*), set
pa-(y@ep@e) =y @ep ey,

then we have
[y, folait = [y1, folait-
(ii) Fory® e}, @ e1 € D n(D*), set
(v—1) - (y®epRe) =y Qep Rey,

then we have
[y2, f2lait = 0.
Proof. We first remark that we have

[z ®ef,®er,y®e) ®e]ar = op(—1)[z, ylair
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and
ou(fo®ep®er) =dp-(a)fa ®ep e

for any a € Z)
For y,y; as in (i), then we have

[y1, folait = 0p(—1)[y1 ® ep, @ e1, f2 @ e ® e1]air
=0p(—1pa - (y®@ep ®@e1), fo ® e} ® eilait
=dp(—1)[y @ e} @er,pX" - (f2 @ e} @ eyl
=dp(-Dy®e) ®ei, fa®ep @ el
= [y, fo]ait-
We can also prove (ii) in the same way, hence we omit the proof. O

3.4.6. The compatibility of the p-adic and the classical local Lang-
lands correspondence. We next recall the theorem of Emerton on the
compatibility of the p-adic and the classical local Langlands correspondence
for the non-trianguline D. Fix an isomorphism ¢ : L = C.

Let m,(D) be the irreducible smooth admissible representation of G
defined over C corresponding to the absolutely irreducible representation
W(D) ®r,, C of Wy, over C of rank two via the unitary normalized local
Langlands correspondence. We remark that, under this normalization, the
local L- and e-factors attached to W(D)®, ,C coincide with those for 7, (D),
and the central character of m,(D) is equal to

vodetyW(D): Z(= Q) — C,

where we regard det, W (D) as a character det, W (D) : Q; — L* via local
class field theory.

For our purpose, we need another normalization called Tate’s normal-
ization, which we define by

(D) == (m(D) @ |det|,/?) ®¢,-1 L.

Then, it is known that m,(D); does not depend on the choice of ¢, and is
defined over L. Then, we denote 7, (D) for the model of 7,(D)t defined over
L. Let wy (py : Q) — L™ be the central character of (D). Since we have

det; W (D) = detg, D - 27" then one has an equality
(33) wry(p) = detW(D) - | = [} = 6p -2~ 27D,

Wherewesetxi:QIf%LX:yb—>yifori€Z.
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Theorem 3.20. Under the situation above, there exists a G-equivariant
isomorphism

(34) (D)8 5 7,(D) @1, Sym* 1 L? ® (det).

Proof. Theorem 3.3.22 of [Em] (for the non-trianguline case). O

Remark 3.21. The proof of Theorem 3.3.22 of [Em]| is done by a global
method using the complete cohomology of modular curves. No purely local
proof of this theorem has been known (at least to the author) until now. As
we can easily see from the proof below, this theorem is in fact equivalent
to Proposition 3.14. Hence, our proof of Proposition 3.14 given below also
depends on the global method.

3.4.7. The Kirillov model of supercuspidal representations. We
next recall a formula of the action of w := (1) (1)> € G on the Kirillov
model of the supercuspidal representation m,(D) of G following the book of
Bushnell-Henniart [BH].

Under our assumption that D is non-trianguline, 7,(D) is a supercuspi-
dal representation of G.. By the classical theory of Kirillov model, then there

exists a B-equivariant isomorphism
7p(D) = LC(Qp, Loo)™

which is unique up to L* (see, for example, VI.4 of [ColOb]). Using this
isomorphism, we can uniquely extend the action of B on LC.(Q), LOO)F to
that of G such that this isomorphism is G-equivariant, which we denote by
mp(g) - f for g € G and f € LC( ;,LOO)F.

10
LCc(Qp, Loo)' using the e-factor associated to m,(D). Decompose Lo, =
[I, Lr into a finite product of fields L,. For each 7, fix an isomorphism
tr: Ly = C. Let

We now recall a formula on the action of m,(w) (w = (0 1)) on

e(mp(D) ®r,, C,s,i,01¢) (seC)

be the e-factor associated to m,(D) ®r,. C with respect to the additive
character ¢, o9 : @, — C*. Since (m,(D) ®,,. C) @ |det|'/? corresponds to
W (D) ®r,,. C via the unitary local Langlands correspondence, we have
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1
e(mp(D) @14, C. 55 tr 0 %) = £((mp(D) @1, C) @ |det] /2, 0,1 0 9)
=e(W(D) ®L,., C,tr0tp¢) = e(W(D)@r Lr, o) @1 € Ly @, C.

Hence, e,(W (D)) =1, e(W(D) ®1, Lr,v¥¢) € (Loo)* satisfies the equality
1
(35) (WD) B, 1 = elry(D) @r. €, 507 01k)

for arbitrary 7.
For m € Z and a locally constant homomorphism 7 : Q; — L*, define
a locally constant function &, : Q) — L with compact support by

n(x) ifxepmZy
m(x) == .
Sm(2) {0 otherwise

We remark that we have a;lgmk c LCC(Q;,LOO)F if we take a base a,e, €
Leo(n)! since we have o, () = n(a) Loy, for any a € Zy.
Under these preliminaries, we have the following formula.

Theorem 3.22. (/BH] 37.3) For any locally constant homomorphism n :
Q) — L* and any m € Z, we have

mp(w) - (g &y m) = n(=1)ay eL(W (D)) 1w, o),—a(W (D) (1)) =m>

where a(W(D)(n™1)) is the exponent of the Artin conductor of W (D)(n™1t)
(see [De73] for the definition).

Proof. We first remark that the right hand side in the theorem is contained
in LC.( ;,LOO)F since we have

oa(eL(W(D)(™))) = det,W(D)(a)n(a) *e(W(D)(n ™))
for any a € Z; . Since we have
1
eL(W(D)(n)) @r. 1 = e((mp(D) ® (" 0 det)) ®r,, C, 5517 0 1)
for any 7, the theorem follows from Theorem 37.3 of [BH]. O

Remark 3.23. We will apply this theorem only in the most simple case,
i.e. when n = 1 is the trivial homomorphism (and o, = 1).

3.4.8. Proof of the key proposition. We recall that one has a canonical
B-equivariant isomorphism
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(D)8 5 LPe(Q,, X5)"

(under the assumption that D is non-trianguline), by which we extend the
action of B on the right hand side to that of G such that this isomorphism
becomes G-equivariant. We denote this action by II(g) - f for ¢ € G and
f e LPe(Qy, X)"

To show the key proposition, we need the following corollary of Theorem
3.22.

Corollary 3.24.

er(W(D))

— -1
H(w) : wm = F(D)( w, (D)( )phD 1) (W(D))—i—mQ ¢—a(W(D))—m

Proof. We first remark that, under the B-equivariant isomorphism

(36) LC(Q),Loo)" ®L Sym* 'L? @ (det)™ 5 LP(Q), X )"
¢ @etey e [w e (k= 1= 0)lg(a) (at) T fo,
m € LP( ;,XO_O)F corresponds to

1

(ks — 1)! E1m @ e "ebr ! € LCe(Qy, Loo)' @ Sym" 'L @ (det)™

for the trivial homomorphism 1 : QF — L* : a + 1. Applying Theorem
3.22 to &1,m, then we obtain

(=D*

H(U/) R m( ( ) (51 m) ( . (61—k1612gg_1))
(_1)k1 ko— 1 —ky
- mgL(W(D))gwﬂp(D)7_a(W( ))—m ® eq €5
—H T By L -a(W D) -m;

(wr,(py(p)phe—1)eW(
where the third equality follows from the fact that ¢, corresponds to

(wr, (py(p)p"P 1)~

(ko)

by the isomorphism (36). O

ko—1 —k1

Qéww p(D),M ® 6
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Finally, we prove Proposition 3.14.

Proof. (of Proposition 3.14) Take z € D¥=!. Take 7 € (D" Xus Pl)s»=1
such that Resy, (7) = z. Then, w- & € (D" N, P1)9=00() gatisfies that

Resz, (w-2) = ws, (x) € D=1,

By Proposition 3.16 for m = —a(W (D)), Proposition 3.18 for m = 0 and
Corollary 3.24, then we have

Blws, (z)) = —]%[w &, dolps = —7%15D(det(w))[gz, T(w) - o]
(p—1) e, (W (D)) o
== D 5D(_1)F(D) (wwp(D) (;)p(hpfl))a(W(D)) Q l[xa ¢—a(W(D))]P1

er(W(D))
(e, (D) (p)pho—1))a(W(D)

=T(D) Q" Lop (p)" " PVa(a)

=I(D)er(W(D)Q " a(),
where the last equality follows from the equality 6p = wy ( D)th_l. O
4. A functional equation of Kato’s Euler system

Throughout this section, we fix embeddings 1o : Q — C and Lp : Q —
@p, and fix an isomorphism ¢ : C = @p such that ¢ o 1 = ¢p. Using
this isomorphism, we identify I'(C, Z;(1)) = I'(Q,, Z(1)) =: Zj(1), and set
¢W = {u(exp(2E))},>1 € Zi(1) for each prime I. Let S be a finite set
of primes containing p. Let Qg(C Q) be the maximal Galois extension of
Q which is unramified outside S U {oo}, and set Gg g := Gal(Qs/Q). Set
¢ € Gg,s be the restriction by ts of the complex conjugation. For each
Z|Gr]-module M and k € Z, we define a canonical Gg-equivariant map
M (k) :== M @z, Z(2mi)* — My, (k) := (M ®zZy) ®z, Zy(k) by z® (2mi)* —
z ® (¢P)®F using the basis (P) € Z,(1). We set M+ := Me=*L,

4.1. The global fundamental lines and its compatibility with the
Poitou-Tate duality

In this subsection, we recall, for global Galois representations, the definition
of the global fundamental lines and its compatibility with the Poitou-Tate
duality, which we need to formulate our second main theorem.
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4.1.1. The global fundamental lines. Let T be an R-representation of
Gq,s. We set

H'(Z[1/S],T) i= H'(Coot (G5, T))
for i 2 0. For each [ € S and i = 1,2, we set

AR,Z’,(Z) (T) = AR,i(T|GQL) and AR,(Z) (T) = AR(T’GQL)

which are defined in §2.1. Set ¢y := rankgT(—1)" (remark that T'(—1)" is
a finite projective R-module since we have assumed that 2 € R*). We set

Ag1s(T) == Detg(Coni(Gas, 1)), Apgas(T) == (detr(T(-=1)%),cr)~!

and
Ars(T) :=Ap1,s(T)XAgrao s(T).

We remark that Ag g(T) is a graded invertible R-module of degree zero by
the global Euler-Poincaré characteristic formula.

4.1.2. Compatibility with the Poitou-Tate duality. We next recall
the definition of the isomorphism

(37) Ars(T*) = RiesAp ) (T) R Ag,s(T)

induced by the Poitou-Tate duality.
By the Poitou-Tate duality, one has a canonical quasi-isomorphism

RHomR(Cgont(GQ,S) T*)v R) [_2]
= Cone(Cey (G5, T) = @iesCoon (Gars Tlag,))[—1],

from which we obtain a canonical isomorphism

(38) (Ap1,s(T*)™")Y 5 Detg(RHomp(Coi (Go,s, T), R))

= WiesApr1,0)(T) K AR 15(T).
We next define the following isomorphism
(39)
(Ap2,s(T*)™")Y 5 (detpT, r7) K Ap2,s(T) = KiesApa oy (T) K AR2,s(T),

where the first isomorphism is naturally induced by the isomorphism

~ 1
T+ EBT(—l)+ =T:(x,y) — 2x+ §y® C(p)
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and the canonical isomorphism
"= (1)) = (T (-1)")" = (T (-1)")"

(where the last map is defined by f — f
phism is induced by the isomorphism

7+(~1)+), and the second isomor-

(detrT, rr) = RiesAg o o) (T)

defined by (the inverse of) the isomorphism

®QresRa,(r) © detgT 5 detrT : (®pesm)) @y — (H xl> Y
les

for z; € R, (1) and y € detgT (remark that one has ®ies Ry, () = R since
one has [[;cga(T) = 1 by the global class field theory).

Finally, the isomorphism (37) is defined as the product of the isomor-
phisms (38) and (39) (remark that one has (A s(T*)™1)Y = Ag g(T*) since
AR s(T*) is of degree zero).

4.2. Statement of the main theorem on the global e-conjecture

4.2.1. Setting. Let k,N = 1 be positive integers. Let f(7) =
Yo L an(f)g" € Sk+1(T1(N))™¥ be a normalized Hecke eigen new form
of level N, weight k + 1, where 7 € C such that Im(7) > 0, ¢ := exp(2mirT)
and

Ty (N) = {g € SL(Z) ‘gz (é I) mod N}.

Set f*(1) == > o7, an(f)g" (an(f) is the complex conjugation of an(f)),
which is also a Hecke eigen new form in Si41(I'1(V))"*" by the theory of
new forms.

For each homomorphism § : Z,; — C* with finite image (which we
naturally regard as a Dirichlet character § : (Z/p™®)* — C* (n(d) is the
conductor of 4), or a Hecke character 0 : Ag/Q* — C*), set

L(f6.5) =3 200 g L= Y Um)

ns ns
n>1 nz1,(n,p)=1

These functions absolutely converge when Re(s) > g + 1. The L-function
L(f,0,s) is analytically continued to the whole C, and, if we denote by
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Tf = ®hplace of 0T fv the automorphic cuspidal representation of GLa(Ag)
associated to f, then it satisfies the following functional equation

(40) FC(S)L(fv 5, 3) = €(fa 5, S)FC(k+ 1—- S)L(f*75_1>k+ 1- 5) (S € (C)a
T'(s)

(2m)*
7§ @ (0 o det), which is defined as the product of the local e-factors

where we set I'c(s) := and e(f, 9, s) is the global e-factor associated to

E(fv 6) S) = 5oo(fa 55 8) Hgl(fv 6) 5)7

les

where, for v € SU{o0}, ,(f,d, s) is the local e-factor associated to the v-th
component 7y, ® (6 o det) with respect to the additive character ¥, : Q, —
C* and the Haar measure dx, on Q, which are uniquely characterized by
Yoo(a) == exp(—2mi - a) (a € R), () = exp(ZE) (n € Z), J7, dzi =1 and
dx is the standard Lebesgue measure on R. We remark that one has

(41) eoo(f,0,5) = iFFL,

Set F:= Q{1 (an(f))}Inz1) € Q, L= Qp({tp(t (an(f))}nz1) € Qp
and S := {{|[N}U{p}. Let denote by Op, O := O, the rings of integers of F,
L respectively. For fo = f, f*, let T, be the O-representation of Gg s of rank
two associated to fo which is obtained as a quotient of the étale cohomology
(with coefficients) of a modular curve (this is denoted by Vo, (fo) in § 8.3 of
[Ka04]). Set Vy, = T}, [1/p]. By the Poincaré duality of the étale cohomology
of a modular curve, one has a canonical G s-equivariant isomorphism

Vi (1) = (Ve(k)",

which induces a canonical isomorphism AILVYS(Vf*(l)) 5 AILWS((Vf(k))*)
Since the sub A := Ap-module ALY o(T) of A(V) is independent of the
choice of Ggq, s-stable lattice T' of V for any i—representation V of Gog,s
(because Agf g(T') is of grade zero), the latter also induces a canonical iso-
morphism

ASs(Ty- (1)) = AZ (T (K))*)-
Therefore, we obtain a canonical isomorphism

(42)  AZs(Ty- (1) = AZs((Ty(k)")" = AX(DEm(Ty(k))"),

where the second isomorphism is defined in the same way as in the last part
of §2.1.
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We denote by Q(A) the total fraction ring of A. For a A-module or a
graded invertible A-module M, we set

Mg =M ®p Q(A)
to simplify the notation.

4.2.2. Statement of the main theorem. Using (the p-th layer of) the
Kato’s Euler system associated to fy, we define below a candidate of the
zeta-isomorphism

28'5(Tr, (1) : Loy = A s(Tr, (1)q

for fo=f, f" and r € Z.

Before defining this isomorphism, we propose the following conjecture,
and state the second main theorem of this article concerning the global
g-conjecture, whose proof is given in the next subsection.

Conjecture 4.1. One has the equality

(T (1) = Ries (8 (Ty (k) @ idgea) ) B 2Bs(Ty (k)

under the isomorphism obtained by the base change to Q(A) of the canonical
isomorphism

A s(Ty- (1) = Ries A 4y (Tr (k) B AS s(Ty ()

defined by (37) for (R,T) = (A,Dfm(Ty(k))) and (42), where the isomor-
phism

e ) (Tr (k) = ey co (Tr(K)cg,) = 1a 5 AY V(T3 (k)

is the local e-isomorphism defined by Theorem 3.1 (resp. [Ya09]) for 1 =p
(resp.l # p) for the pair (A, Dfm(T¢(k)|cg,))-

Theorem 4.2. Assume that Vf‘G@p 18 non-trianguline. Then, the conjecture
4.1 1s true.

Rernark 4.3. Assuming Conjecture 1.5 which state that the isomorphism
zo Y¥¢(T¢(k)) comes from the conjectural zeta isomorphism for Dfm(T%(k))
defined over A, then Conjecture 4.1 is equivalent to the global e-conjecture
in [Ka93b] and [FKO06] for Dfm(T%(k)).

4.2.3. Definition of the zeta isomorphism. In the rest of this subsec-
tion, we define our zeta isomorphism Eg’fs(Tfo (r)) using the p-th layer of the
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Kato’s Euler system which we recall now. Since the definitions for f and f*
are the same, we only define it for fy = f.

For an O-representation T of Gg g (which we also regard as a smooth
O-sheaf on the étale site over Spec(Z[1/S5])), we define a A-module

H'(T) := Hi,(Z[1/p]. T) == im H'(Z[1/p, (], T)

n=0

for i 2 0, where we define for n = 0

HY(Z[1/p, G, T) := Hi (Spec(Z[1/p, Gpn1), (Gn)«(Tlspec(zii/sic,n )

for the canonical inclusion j,, : Spec(Z[1/S,(p]) < Spec(Z[1/p, (pn]). For
V = T[1/p], we set H (V) := H'(T)[1/p].

For the eigen form f, Kato defined in Theorem 12.5 [Ka04] an L-linear
map

Vi — Hl(Vf) Dy zgfp)(f)

which interpolates the critical values of the L-functions L(f*,4,s) for all §,
whose precise meaning we explain in the next subsection. By Theorem 12.4
of [Ka04], H'(TYy) is torsion free over A, and H'(V}) is a free Af, := A[1/p]-
module of rank one, and H?(T}) is a torsion A-module (and H!(Ty) = 0
for i # 1,2). The restriction map H'(Ty) — Hi (Z[1/S],Ty) induces an
isomorphism

H'(Ty) = Hi, (Z[1/8], Ty)

and an exact sequence

0 — H*(Ty) = H{,(Z[1/S]. Ty) —» @ Hi(Q.Ty) =0,
15\ ()

which follow from (for example) the proof of Lemma 8.5 of [Ka04]. Since

H? (Q;,T) is a torsion A-module for any [ by Proposition A.2.3 of [Pe95],

H? (Z[1/S],Ty) is also a torsion A-module by the above exact sequence.
By these facts, we obtain a canonical Q(A)-linear isomorphism

(43) AGs(Ty(r)q = (H(Ty(r))q. 1)

for r = 0. For general r € Z, we also define the isomorphism above induced
by that for » = 0 using the canonical (not A-linear) isomorphism

Hi(Tf) = Hi(Tf(T)) 1z — z(r)
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which is induced by the isomorphism
Tr@o A= Tir)@oA:z@y — (zQe) @ gy (y)

defined in the same way as in the proof of Lemma 2.9.
For each [ € S\ {p} and r € Z, we set

LTy (r)) = deta (1 — o[ DEm(Ty (1)) = 1 — ai(f)I " [on] € AN Q(A)

W

(remark that Dfm(Ty(r))" = TJ{’ (r) ®o A is free over A), where the sec-
ond equality follows from the global-local compatibility of the Langlands
correspondence proved by [La73], [Ca86].

Denote the sign of (—1)" by sgn(r) € {£}. Set A* ;= {A € Al[o_1] - A =
+A}.

Using these, we define an isomorphism

207s(Tr(r)) : Loy = A s(Th(r)q

which corresponds to the isomorphism

O,(f) : A s(Tr(r)g" = (HY(T4(r))g: 1)
defined as the base change to Q(A) of the A-linear morphism

(44)
O, (f) : (Dfm(Ty(r))(-1))"
=TV 1) 0o AT @ T (r — 1) @0 A”
— Hl(Vf(r)) (Y®e 1A, Y e 1 @A)
O NNt L (D) - (P
= [ L@+ k=) A - @2 () () + A - (27 () (),
les\{p}

where we set \' := () for A € Q(A), and the fact that the base change to
Q(A) of this morphism is isomorphism follows from Theorem 12.5 of [Ka04].

4.3. Proof of Theorem 4.2

In this subsection, we give a proof of Theorem 4.2. We first precisely recall
the interpolation property of the Kato’s Euler system which is so called the
explicit reciprocity law (Theorem 12.5 (1) of [Ka04]), which is crucial in our
proof of the theorem.
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4.3.1. Kato’s explicit reciprocity law. Using the comparison between
the Betti and the étale cohomologies, one has a canonical Op-lattice T o,
of Ty which is stable by the action of Gr(C Gq,s5). Set V¢ :=Tr 0, ®o, F,
which is a Gr-stable F-lattice of V;. Using the comparison theorem in the
p-adic Hodge theory, one has a canonical F-lattice S(f) = Ff of D}z (V}) =
DQR(Vf )-

By the theory of Eichler-Shimura, one has a canonical F-linear map

pery: S(f) = Vic = Vyr®@p,. C

For each pair (r,0) such that 0 Sr <k—1land §: T — Q™ a homomor-
phism with finite image (which we regard as a homomorphism with values
in C* or @; by the fixed embeddings it o1 ¢p), we set Vi(k —7)(6) :=
Vi(k —r) ®1 Qy(0), and define an L-linear map

(15)  H'(Vy) Dl (Vy(k ~ r)(6)) = L(f © renr) 1 (T (0))"

as the composites of the following morphisms
H' (V;) =5 H (Q,, Vi) ——5 HY(Qy, Vi (k—7)(8)) 225 DY (Vi (k—1)(6)),

For v € V} p, we decompose v = v + v~ such that 4+ € VfiF. For each
(r,9) as above, we denote by sgn(r,d) € {£} the sign of 6(—1)(—1)".

Under these preliminaries, the interpolation property of zgp )( f) can be

described as follows. By Theorem 12.5 (1) of [Ka04], the image of z,(yp )( f) by
the map (45) is contained in the sub F-vector space

1 _
F(f @ genr) ®0 (@)

of DY (V¢(k —7)(d)), and is sent to

(46) (27m~)k:—r—1L{p} (f*7 5—1’ r+ l)vsgn(k—r—l,é) c V;’%:n(k—r—l,é)'

by the injection map defined by the following composite

s 1 _ sgn
perl " P(f & gery) 9 @ (0) = Vie = V72

(k—r—1,6)
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where the first map is defined by

(f®tk pol = ) Zb ® cies) F Loo Zb Ci perf
i€l i€l

for b; € Q, ¢ € Q(Cp )(C Q), and the second map is the canonical projection
Vf}((j—>v ciTe $(z £ c(z)).

4.3.2. Comparison of z,(yp)(_f)(k:) with z.(yz,))(f*)(l). We next reduce
Theorem 4.2 to the following Theorem 4.6 below concerning the equality of
the two elements in D - (1)¥=! respectively defined by using ng )( f)(k) and

zglf)(f*)(l). We denote by Dy, the étale (¢, I')-module over £, associated to
Vi,laq, for fo = f, f*. By the following canonical morphisms (for r € Z)

H'(V}, (1) <2 HL,(Qp, Vi, (1) S Dy, (r)=" =5 Dy, (r)¥=,

we freely regard z'y ( fo)( ) as an element in these modules.
Fix an Op-basis v& of ;EOF for each +, and set

vi=7T+97 € To, and £, := (3 Fep) A (v~ Vey) € deto, Tt 0, (k).

We take the basis v of iji 7 such that the ordered pair {v;",~, } is the

sgn(k—1)

dual basis of {y%e"(Fe,, ~ ei} under the canonical F-bilinear perfect

pairing
Vf*,F X ijp(k) — F
induced by the Poincaré duality. We also set
At -
Y = Vi +7>)< € Vf*,F
For each [ € S\ {p}, set
50,(1)(Tf(k)) = 50,O(Tf(k)|G@,a<(l)) € (O):,(Tf(k))

the eo-constant associated to the triple (O, Tt (k)|cq, » ¢ (1)) defined in Remark
2.4. Using the canonical isomorphism

@1e5(O)ay 1y ) — O : Dreszi— [ 2,
les
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we set
e0 := ®es\ (0,1 (Tr (k) ™" € (®istpes(O)ay it (k) -1) " = (O) e (7 (k)
Using this, we also set
ey :=f, ®eg € Lo(Ty(k)) = detoTs(k) ®0 (O)a, (1, (k))-

For [ € S and an L-representation V' of Gg, g such that V\GQP is de Rham,
we denote by a¥(V) the exponent of the Artin conductor of W(Vl]cg,)
defined in 8.12 of [De73], and set LO(V) := det (1 — ¢i|Deris(Vlgy, ) € L
and e, 1) (V) = ep(W(Vl]ag, ), ¢W) € Ly, which we also regard as elements
in C by the injection L C Q, Y, C and the projection Lo, = L@gQ((p~) —
C:a®b— 17Ha)io(b).

Conjecture 4.4. One has the equality

[01]_a(l)(vf'(k)) ) Y o)
legl{p} detr (—|Vy(E)1t) (w6D.f'<k>(Z'yp (k) @ ey @er) = =z (f7)(1)

under the canonical isomorphism
Wo, 00 (D (k)Y@ LL(Dy (k)Y (1) = ((Dy(k)*)* =g = (Dy- (1) e,

where the first isomorphism is defined in §3 and the second one is induced
by the canonical isomorphism Dyf(k)* = Dy-(1) defined by the Poincaré
duality.

Remark 4.5. Since one has
o) - 22 (f) = 722 1)
(and similarly for zgﬂ) (f*)) by Theorem 12.5 of [Ka04], the equality in the

conjecture above is equivalent to the equation

H [y~ V(R [o_1]-(w (Z(P)(f)(k))@’ev@e)—iZ(P)(f*)(l)
ZGS\{p}detL(_‘pl‘Vf(k)I’) —U 00 By y®e1) = xz.,

for each (7/,7%,+) € {(¥8*®), 4, +), (v 4 )1

We prove this conjecture for the non-trianguline case.



358 Kentaro Nakamura

Theorem 4.6. Assume that Vf\G@p is non-trianguline. Then, the conjecture
4.4 18 true.

4.3.3. Reduction of Theorem 4.2 to Theorem 4.6. Before proceeding
to the proof of Theorem 4.6, we first prove Theorem 4.2 using this Theorem.
For this purpose, it suffices to show the following proposition.

Proposition 4.7. The conjecture 4.1 for f is equivalent to the conjecture
4-4 for f.

Proof. We first explicitly describe the base change to Q(A) of the l-adic
g-isomorphism

e (Tr(k)) - 1a = A (Ty (k)

for I € S\ {p} which is defined in [Ya09] (and Remark 2.4). We first remark
that, if we set 55V7V(l)(Tf(k)) 1= eo,A(DIm(T¢ (k)| cq, ¢1), then we have

(47) ey (Tr(k)) = o) (@ (VN eime Vs (R) ) o (T (K))
since one has

(48) o5 (Vi(E)(O)lag,, 1Y) = 8(oy)~ (@ Vi +dimu Vet o (T (k)

for any continuous homomorphism ¢ : I' — @; by (5.5.1) and (8.12.1) of

[De73]. Since HY, (Q;, T¢(k)) is a torsion A-module for any i by Proposition
A.2.3 of [Pe95], we have

Agl,(l) (Tf(k))Q = 1Q(A)-

Then, the base change to Q(A) of the isomorphism 1, = AY, 0 (T (k))
defined in Remark 2.4 is explicitly defined by

(49) 1o = A8 o)(Tr(K)e = 1om) :
deta(1 — ¢ ' IDEm(Ty (k)" detr(—o; VF'(R) LO(Ty(k))
deta(1 — @[ DEmM(TF(1)1) — [o)dimeVs® g0 (1))

Since we have
(A) g, Dtm(1)) = (O)ay(1) ®0 A

for any O-representation T' of Gg,, (47) and (49) imply that the base change
to Q(A) of eg"(l)(Tf(k‘)) can be explicitly defined by
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(50) Loy = AS oy (T(k))g = Aoa,n (Ti (k) o Q(A) :
o]V ®) LTy (k))
detr(— V' (k) L{(Ty- (1))

w

L= go,y(Ty (k) ®

Using this explicit expression, we next remark that Conjecture 4.1 is
equivalent to the commutativity of the following diagram.

(51)
Dfm(T¢(k))(=1)¢ ®qea) (DIm(Ty- (1)) (=1)§)" % (detaDIm(T(k)))o

orne(©: ()™ | T(o)

H'(Ty (k)@ ®q) (H'(Ty-(1))5)" o detq(a)Hiy, (Qp, Ty (k) -

Here the arrows (a), (b) and (c) in the diagram above is defined as follows.
First, the isomorphism (a) is the base change to Q(A) of the canonical
isomorphism

(52) Dfm(Vy(k))(—1)" @4, (r) (Dfm(Vy-(1))"(-1)")"
— (dety, (ryDfm(Vy(k))) : (\f e ley A7y B ey )
@A () A (1)) = (A = AAD) - E
for A € A* (i = 1,2) (remark that we have (y;)Y = y*&"Fey, ()Y =
,ysgn(kfl)ek)'

The isomorphism (b) is the isomorphism naturally induced by the short
exact sequence

(53) 0= HY(Ty(k)) — Hiy(Qp, Tt (k))q — (H'(T3-(1)))g — 0,

which is obtained by the base change to Q(A) of the Poitou-Tate exact

sequence for the pair (A, Dfm(7T(k))) (and the A-torsionness of H_(Z[1/5],

Ty, (r)) for fo = f, f*, r € Z, and that of H, (Q;, Ty(k)) for I € S\ {p}).
Finally, the isomorphism (c)

(detaHi, (Qp, Ty(k)))q = (detaDfm(Ty(k)))q

is defined by sending (z A y) ® A for z,y € Hi, (Qp, Vi(k)) = Ds(k)¥=1,
A€ Q(A) to

o) Lig(Ty (k)
Y

Mlo-1] - (w0 (@) @€ @),y ] ,
e 15y dete (=l Vi (k) L (T (1))
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(remark that here we use the definition of 5gv(p) (T¢(k)) given in §3 and the
explicit description (50) of sg"(l) (T¢(k)) for € S\ {p}).

By definition of these maps, the commutativity of the diagram (51) is
equivalent to the equalities

o] 2" (Vs (K)

iesiipy dete (Vs (k)

—_—~—

x (o] - (ws,, o, (@2 (F)(k) @ €f @ er), (2 (F)(1)V }rw = £1

for each (7/,7%,+) € {(v*&®) v, +), (&1 4, —)}, where we denote
by y € H} (Qp, Tf(k))q an arbitrary lift of y € (Hl(Tf*(l))LQ)V by the sur-

jection in (53). This equality (for arbitrary lifts (z(ﬂ)( f*)(1))V) is equivalent
to Conjecture 4.4 by Remark 4.5. U

4.3.4. Proof of Theorem 4.6. From now on untile the end, we assume
that Vf’GQP is non-trianguline. Finally, we prove Theorem 4.6.

Proof. (of Theorem 4.6) In this proof, we freely use the notations which
are used in §3.3. To simplify the notation, we set D := D(k). We identify
D* 5 Dy.(1) by the canonical isomorphism induced the Poincaré duality.
For 2 € D¥=',y € (D*)¥=! and a continuous character 6 : I' — L™, we
define z5 € H _(D(0)),ys-+ € H}, (D*(671)) to be the images of 2 and y
by the canonical specialization maps D¥=! — H;W(D(é)) and (D*)¥=! =
H. _(D*(671)).
By Théoreme A [Be05], it suffices to show the equality

(o)~ W) o y
v (G () @ e @ ey

(54) H detL
leS\{p}

— —exp (2P (%) (1))51)

in DYy (D*(671)) for all the characters 6 : I' — @; with finite images.
Take any character § as above. We first remark that we have

* — — ™ * 1
Dir(D*(671) = Dgr(Vy-(1)(671)) C Qpocf* @ Te1®es
and also have

D{r(D(9)) = Dgr(Vy(k)(8)) € Qoo f ® ek ® e5.
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By the interpolation property (46) of zy ( f*), if we set
* (p) ( £ . * 1 e\ * 1
oxp” (25 (f")(1)s1) = asf* ® cer@est € Qpoof” @ T€1 @ €51,

then we have a5 € Q. and

—1 ]_ n -1 n -1
pery.’ (asf* @ Se1 @es) = LS8, k)0 ) = a0

(remark that one has Ly (f,0,s) = L(f,d, s) when V¢|g, is non-trianguline).
By (46) for zgp)(f), if we set

eXP*((ng)(ka))) ) =bsf ®, ek ®es € Qoo ®, ek ® e,
then we have bs € Q,, and
per{ ¥ (bsf @ —ek © e5) = (2mi)" T L(f7, 07 1)y = gyyen(io o),

By Proposition 3.14, if we set
(55)
* 1
exp*((ws, (2P (f)(k)) @ ) @ e1)s-1) =: csf @ t"e) @ FErT Okl @ €5

(s = 1 1
€DGr(D*(67)) C Qpuo(f @ wor) @ theY @ Je1@es,

then we have
6(—1)

(k—1)!

C§ =

er,(p)(V(k)(6))bs =: dsbs

(remark that we have

(ws, (2 (f) (k) @€Y @er)s-1 = 6(=1)([o-1]- (w5, (2 (f) (k) @€y ©er))5-1)-

Therefore, it suffices to show the equality

5(0—1)—a“’(Vf(k))
et (—@i|Vy(k)t)

_ 0,6
dsBsy*E ey @ e = — oy B 00T,

Remark that y%"Fe, @ £/ (resp. yerk—le, £7) is sent to —v,~ (resp.
v7) under the canonical isomorphism



362 Kentaro Nakamura

Tt.0. (k) ®o, (deto, (Tt,0,(k)))" = Homo, (Tt,0, (k). Or) = Ty o,
where the first isomorphism is defined by
r@f =y £ (y Ao,

and the second isomorphism is defined by the Poincaré duality.
Hence, we obtain

,)/sgn(k:—l,cS)(::]€ ® eiy/ — 6(_1)561,)/;@1(0,5—1).

Therefore, the equality (56) is equivalent to the equality

5(Jl)—a“>(vf(k))

—1
erd = —qy.
e A0 R

(57) o1 T g

lesS\{r}

Since we have

§(oy) 2 (Vs (k)
detr, (=i Vi (k)1

(5(01)_(a<z>(Vf(k))+divaf (k)™1)
detL(—<,01|Vf(k;)(5)Il)

Te(k)(0
B detio((—l);,ﬁ/(f()/j)()g))h) =er,0)(V(k)(9)),

the left hand side of (57) is equal to

o,y (T (k) = eo,)(Tr(k))

(58) ﬁ TT e (Ve (k) (6) (2 L(f*, 671, 1),
les

Since we have

(k—1)
(2m)*

!L(f7 o, k) = i Hgl(fv J, k)%L(f*a(sil, 1)
les

by evaluating at s = k of the functional equation (40) of L(f,d,s) and
the e-and L-constants for Vy correspond to those for w¢ by the global-local
compatibility ([Ca86] for [ # p, and [Sa97] for | = p), the value (58) is equal
to

L
% (z’kHHal(f, g, k)%L(f*,51,1)>

leS
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2m)F [ (k—1)! 1
= L(f,0,k)) = <L(f,d,k
= _L(fv 5) k) = —ay,
which shows the equality (57), hence finishes to prove the theorem. O
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List of notations

. 288: GQ“WQ“Il,I'eCQl,FI‘l,C,F,X,H@p,O’b,E+.

. 289: E,A,B",B,Bgr, t, Dpat(R), Pig(R), PV, Pr, K.

. 290: Detgr(—),X,15.

.291: R,L,R(0),es,T(8),Co (G, T), H(Q;, T), T(r), T

. 292: ARJ(T),RQ,al<T),AR72(T),AR(T).

. 293: WQza'(Z}Cae(pad)vdl‘)aE(paC)'

. 294: (M, ), Wo,, W(V), Lo, e (W(V)), Dyst (V) Desis (V), Dar(V),
D (V). tv,0.(V).

. 295: F(V)79dR,L(V)7hVa5%R(V)'

. 297: 607L(V),€0’R(T).

. 298: Ag, Dfm(T), A, (T), Hi, (Q;,T), f5,¢.

299: eragRaD*aD(T)aXC7w7A77'

. 300: C’;’W(D), CJ),V(D)’ prﬂ(D), H%W(D).

- 301: (=, —)Tates Ar+(D), Lr(D).

. 302: Dfm(D), AR (D), sps, C(D).

. 303: 5.

. 304: 75, {—, }w-

. 305: gs.

. 306: 7075R(F)a {_7_}0,Iw~

. 306: MZ;,/\Z;.

. 310: V(D).

. 311: e$R(D).

. 3120 mg, wy, ws.

. 313: 4p,d, [—, —|1w-

. 314: nr(D).

joliclc oo loRko)

Tttt T T T T T oY T T T
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. 317: (D).

. 318: C(D).

. 319: eg(D).

.320: R, Ry, M, Dyyg, DV, €}, C2 (M), O3 (M), Ap.(M).
321: RL(0), L (M), R (), R ('), Dfm(M).

322: AW (M), Fy, Foo, Daxis (M), 1, DS (M), Dar (M), Dy (M).
323: tar, eSR(M).

- 329: Dar(D), W(D), f1, f2,tp,tp-, hp.

. 330: eD,Q,fD,Oz,F(D).

331: [, ~lar. -

332: G,B,P,P",Z,DKs, P!, Resz,, DK Q,.

333 Df, D DRy, PLID),[C)), D+, D, Df,.

. 334: 10,k LP(Q), D%/ Dgo)T, 62

- 3350 Nip . (Drig), X5, LP(Qy, X20)b, LPo(Qy, X )Y, TI(D)™e.
. 3361 LPc(Q), Loo)', Sym* L2 @ det®, 1.

L3337 X;H, X T K Qp, gps LZH,Lf, (—,—).

. 338: [—, —]ait, resy, resg, [—, —]p1, II(D)V.

. 339: 7, Gym.

342: w, Yuy,.

. 344: 1, m (D), W(D), mp(D),wr (D)-

345: m,(g).

. 346: & m, a(W(D)).

. 347: II(g).

348: Loo,Lp,L,C(l),GQS,C,Mi,M(k).

. 349: HY(Z[1/S),T), A (T), er, A, (T).

3500 f(7), (1), a, L(f,3,5), Ly (£, 6, 5).

351wy, mre, Le(s),e(f,0,9),e00(f50,8),e1(f,0,8), F,L,O,8,Ty,, Vy,, A.
. 352: Q(A),MQ,zng(Tfo(r)),agf(l)(Tf(k)).

. 353: HI(T),H'(V), 2% (#), AL.

2354 LO(Ty(r)), ©,(F), A

- 355: Ty0,, Vir, S(f),perg,sgn(r,0), pergek_r’é).

2356 vE, 7, £y, %e, 75 €0,0) (T (K)).

. 35T: ao,ew,a(l)(V),L(l)(V),aL’(l)(V).

- 358t ¢y (T(f) (k).

e -BE B R S B R SR ~ B B - B B B - SR - B - R "B B - - SR - B B SR B B T B I
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