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representations of Gal(Qp/Qp) and a functional

equation of Kato’s Euler system
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In this article, we prove many parts of the rank two case of the
Kato’s local ε-conjecture using the Colmez’s p-adic local Langlands
correspondence for GL2(Qp). We show that a Colmez’s pairing de-
fined in his study of locally algebraic vectors gives us the conjec-
tural ε-isomorphisms for (almost) all the families of p-adic repre-
sentations of Gal(Qp/Qp) of rank two, which satisfy the desired
interpolation property for the de Rham and trianguline case. For
the de Rham and non-trianguline case, we also show this interpola-
tion property for the “critical” range of Hodge-Tate weights using
the Emerton’s theorem on the compatibility of classical and p-adic
local Langlands correspondence. As an application, we prove that
the Kato’s Euler system associated to any Hecke eigen new form
which is supercuspidal at p satisfies a functional equation which
has the same form as predicted by the Kato’s global ε-conjecture.
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1. Introduction

1.0.1. Background. By the ground breaking work of Colmez [Co10b]
and many other important works by Berger, Breuil, Dospinescu, Kisin and

Paskunas, the p-adic local Langlands correspondence for GL2(Qp) is now
a theorem ([Pa13], [CDP14b]). This gives us a correspondence between ab-
solutely irreducible two dimensional p-adic representations of Gal(Qp/Qp)
and absolutely irreducible unitary Banach admissible non-ordinary repre-

sentations of GL2(Qp) via the so called the Montreal functor. An important
feature of this functor is that it also gives us a correspondence between
representations with torsion coefficients. From this property, the Colmez’s
theory is expected to have many applications to problems in number theory
concerning the relationship between the p-adic variations of the Galois side

and those of the automorphic side. For example, Emerton [Em] and Kisin
[Ki09] independently applied his theory to the Fontaine-Mazur conjecture
on the modularity of two dimensional geometric p-adic representation of
Gal(Q/Q).

In the present article, we give another application to the rank two case of
a series of Kato’s conjectures in [Ka93a], [Ka93b] on the p-adic interpolations
of special values of L-functions and local (L-and ε-) constants. There are two
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main theorems in the article, the first one concerns with the p-adic local ε-
conjecture, where the Colmez’s theory crucially enters in, and the second
concerns with the global ε-conjecture, which we roughly explain now (see
§2.1, §3.1, §4.1 for more details).

In this introduction, we assume p �= 2 (for simplicity), fix an isomorphism
ι∞,p : C

∼→ Qp, and set ζ(l) := (ι∞,p(exp(
2πi
ln ))n�1 ∈ Zl(1) := Γ(Qp,Zl(1))

for each prime l. Set Γ := Gal(Q(ζp∞)/Q)
∼→ Gal(Qp(ζp∞)/Qp).

1.0.2. The p-adic local ε-conjecture. Fix a prime l. Let R be a com-
mutative noetherian semi-local Zp-algebra such that R/Jac(R) is a finite ring
with a p-power order, or a finite extension of Qp. To any R-representation T
of GQl

, one can functorially attach a (graded) invertible R-module ΔR(T )
using the determinant of the perfect complex C•

cont(GQl
, T ) of continuous

cochains of GQl
with values in T . For a pair (R, T ) = (L, V ) such that L is a

finite extension of Qp and V is arbitrary (resp. de Rham) L-representation
of GQl

when l �= p (resp. l = p), one can define a representation W (V ) of
the Weil-Deligne group ′WQl

of Ql by the Grothendieck local monodromy
theorem (resp. the p-adic monodromy theorem) when l �= p (resp. l = p).
Using the local (L-and ε-) constants associated to W (V ) (and the Bloch-
Kato fundamental exact sequence when l = p), one can define a canonical
L-linear isomorphism which we call the de Rham ε-isomorphism

εdRL (V )(= εdRL,ζ(l)(V )) : 1L
∼→ ΔL(V )

depending on the choice of ζ(l), where, for any R, 1R := (R, 0) is the trivial
graded invertible R-module of degree zero. The l-adic local ε-conjecture
[Ka93b] predicts the existence of a canonical isomorphism

εR(T )(= εR,ζ(l)(T )) : 1R
∼→ ΔR(T )

(also depending on the choice of ζ(l)) for any pair (R, T ) as above which
interpolates the de Rham ε-isomorphisms (see Conjecture 2.1 for the precise
formulation). The l �= p case of this conjecture has been already proved by
Yasuda [Ya09]. The first main theorem of the present article concerns with
the rank two case of the p-adic local ε-conjecture (see Theorem 3.1 for more
details).

Theorem 1.1. Assume l = p. For (almost) all the pairs (R, T ) as above
such that T are of rank one or two, one can canonically define R-linear
isomorphisms

εR(T ) : 1R
∼→ ΔR(T )
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which are compatible with arbitrary base changes, and satisfy the following:
for any pair (L, V ) such that V is de Rham of rank one or two satisfying at
least one of the following two conditions (i) and (ii),

(i) V is trianguline,
(ii) the set of the Hodge-Tate weights of V is {k1, k2} such that k1 � 0,

k2 � 1,

then we have

εL(V ) = εdRL (V ).

Remark 1.2. For l = p, this conjecture is much more difficult than that
for l �= p, and has been proved only in some special cases before the present
article. For the rank one case, it is proved by Kato [Ka93b] (see also [Ve13]).
For the cyclotomic deformation, or more general abelian twists of crystalline
representations, it is proved by Benois-Berger [BB08] and Loeffler-Venjakob-
Zerbes [LVZ13]. For the trianguline case, it is proved by the author [Na14b].
More precisely, in [Na14b], we generalized the p-adic local ε-conjecture for
rigid analytic families of (ϕ,Γ)-modules over the Robba ring, and proved
this generalized version of the conjecture for all the trianguline families of
(ϕ,Γ)-modules. Since the rigid analytic family of (ϕ,Γ)-modules associated
to any abelian twist of any crystalline representation is a trianguline family,
the result in [Na14b] seems to be the most general one on the p-adic local ε-
conjecture before the present article. In the theorem above, in particular, in
the condition (ii), we don’t need to assume that V is trianguline. Therefore,
the theorem in the case of the condition (ii) seems to be an essentially new
result in the literatures on the p-adic local ε-conjecture.

1.0.3. The global ε-conjecture. We next explain the second main result
of the article. Let S be a finite set of primes containing p. Let QS be the
maximal Galois extension of Q which is unramified outside S∪{∞}, and set
GQ,S := Gal(QS/Q). For anR-representation T ofGQ,S , one can also define a
graded invertible R-module ΔR,S(T ) using C•

cont(GQ,S , T ). Set ΔR,(l)(T ) :=
ΔR(T |GQl

) for each l ∈ S.
The generalized Iwasawa main conjecture [Ka93a] predicts the existence

of the canonical isomorphism

zR,S(T ) : 1R
∼→ ΔR,S(T )

for any pair (R, T ) as above which interpolates the special values of the L-
functions of the motives over Q with good reduction outside S (see [Ka93a]
for the precise formulation).
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Ser T ∗ := HomR(T,R)(1) be the Tate dual of T . By the Poitou-Tate
duality, one has a canonical isomorphism

ΔR,S(T
∗)

∼→
(
�l∈SΔR,(l)(T )

)
� ΔR,S(T ).

Then, the global ε-conjecture [Ka93b] asserts that one has the equality

zR,S(T
∗) =
(
�l∈SεR,(l)(T )

)
� zR,S(T ),

where εR,(l)(T ) := εR(T |GQl
) : 1R

∼→ ΔR,(l)(T ) is the local ε-isomorphism
defined by [Ya09] for l �= p and the conjectural local ε-isomorphism for l = p.

To state the second main theorem, we need to recall the notion of cy-
clotomic deformations. Set ΛR := R[[Γ]], and define a ΛR-representation
Dfm(T ) := T ⊗R ΛR on which GQ,S acts by g(x⊗ λ) := g(x)⊗ [ḡ]−1λ. We
set

ΔIw
R,∗(T ) := ΔΛR,∗(Dfm(T ))

for ∗ = S, (l), and set (conjecturally)

zIwR,S(T ) := zΛR,S(Dfm(T )), εIwR,(l)(T ) := εΛR,(l)(Dfm(T )).

Define an involution ι : ΛR
∼→ ΛR : [γ] 	→ [γ]−1, and denote M ι for the base

change by ι for any ΛR-module M . Then, one has a canonical isomorphism

ΔIw
R,S(T

∗)ι
∼→ ΔΛR,S((Dfm(T ))∗).

The second main theorem of the present article concerns with the global
ε-conjecture for Dfm(Tf ) for Hecke eigen new forms f (see §4.2 for the
precise statement). Let

f(τ) :=
∑
n�1

an(f)q
n ∈ Sk+1(Γ1(N))new

be a normalized Hecke eigen new form of level N and of weight k + 1 for
some N, k ∈ Z�1. Set

f∗(τ) :=
∑
n�1

an(f)q
n,

where (−) is the complex conjugation, then f∗(τ) is also a Hecke eigen
new form in Sk+1(Γ1(N))new by the theory of new form. Set S := {l|N} ∪
{p}, L := Qp({ι∞,p(an(f))}n�1) ⊆ Qp, and O := OL the ring of integers
in L. For f0 = f, f∗, let Tf0 be the O-representation of GQ,S of rank two
associated to f0 defined by Deligne [De69]. In [Ka04], Kato defined an Euler
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system associated to f0 which interpolates the critical values of the twisted
L-functions associated to f∗

0 . Denote by Q(Λ) for the total fraction ring of
Λ := ΛO. As a consequence of Kato’s theorem proved in §12 of [Ka04], we
define in §4.2 a canonical Q(Λ)-linear isomorphism

z̃IwO,S(Tf0(r)) : 1Q(Λ)
∼→ ΔIw

O,S(Tf0(r))⊗Λ Q(Λ)

for any r ∈ Z, which should be the base change to Q(Λ) of the conjectural
zeta isomorphism

zIwO,S(Tf0(r)) : 1Λ
∼→ ΔIw

O,S(Tf0(r)).

We remark that one has a canonical isomorphism Tf∗(1)[1/p]
∼→ (Tf (k))

∗[1/p]
and one has a canonical isomorphism

ΔIw
O,S(Tf∗(1))ι

∼→ ΔΛ,S((Dfm(Tf (k)))
∗).

The second main theorem is the following.

Theorem 1.3. Assume that V := Tf [1/p]|GQp
is non-trianguline. Then one

has the following equality

z̃IwO,S(Tf∗(1))ι =
(
�l∈S(ε

Iw
O,(l)(Tf (k))⊗ idQ(Λ))

)
� z̃IwO,S(Tf (k))

under the base change to Q(Λ) of the canonical isomorphism

ΔIw
O,S(Tf∗(1))ι

∼→
(
�l∈SΔ

Iw
O,(l)(Tf (k))

)
� ΔIw

O,S(Tf (k))

defined by the Poitou-Tate duality, where the isomorphism

εIwO,(l)(Tf (k)) : 1Λ
∼→ ΔIw

O,(l)(Tf (k))

in the above equality is the local ε-isomorphism for the pair (Λ,
Dfm(Tf (k))|GQl

) defined by [Ya09] when l �= p, by Theorem 1.1 when l = p.

Remark 1.4. In many cases where V is trianguline, we can obtain the same
result by almost the same proof. However, when V is ordinary, or is in the
exceptional zero case (special cases of the trianguline case), we need some
additional arguments. Since this additional arguments makes article a little
bit long, we will treat the trianguline case in our next article.

The following conjecture is a part of the generalized Iwasawa main con-
jecture for the pair (Λ,Dfm(Tf0(r)).
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Conjecture 1.5. For any r ∈ Z, the isomorphism z̃IwO,S(Tf0(r)) comes, by
extension of scalar, from a Λ-linear isomorphism

zIwO,S(Tf0(r)) : 1Λ
∼→ ΔIw

O,S(Tf0(r)),

i.e. one has z̃IwO,S(Tf0(r)) = zIwO,S(Tf0(r))⊗ idQ(Λ).

We remark that such zIwO,S(Tf0(r)) is unique if it exists since the natural
map Λ → Q(Λ) is injective, and, if the conjecture is true for one r ∈ Z, then
it is true for all r ∈ Z.

As an immediate corollary of the theorem, we obtain the following.

Corollary 1.6. Assume that V := Tf [1/p]|GQp
is non-trianguline. Then,

the conjecture 1.5 is true for f if and only if it is true for f∗.

1.0.4. Contents of the article. Now, we briefly describe the contents
of different sections.

In §2, §3, we study the p-adic local ε-conjecture. We first remark that
many results in these sections heavily depend on many deep results in the
theory of the p-adic local Langlands correspondence for GL2(Qp) ([Co10a],
[Co10b], [Do11], [Em]). In particular, our local ε-isomorphism defined in
Theorem 1.1 is nothing else but the Colmez’s pairing defined in VI.6 of
[Co10b]. Our contributions are to find the relation between the Colmez’s
pairing and the local ε-isomorphism, and to show that this pairing satisfies
the interpolation property (i.e. the condition (i), (ii) in the theorem).

Section 2 is mainly for preliminaries. In §2.1, we first recall the l-adic and
the p-adic local ε-conjecture. In §2.2, we recall the theory of (ϕ,Γ)-modules
and re-state the p-adic local ε-conjecture in terms of (ϕ,Γ)-modules. In §2.3,
we propose a conjecture (Conjecture 2.11) on a conjectural definition of the
local ε-isomorphism for any (ϕ,Γ)-modules of any rank using the Colmez’s
multiplicative convolution defined in [Co10a].

Section 3 is devoted to the proof of Theorem 1.1, in particular, we prove
Conjecture 2.11 for the rank two case. In §3.1, we state the main theorem.
In §3.2, we define our local ε-isomorphism using the Colmez’s pairing de-
fined in VI.6 of [Co10b], and prove Conjecture 2.11 for the rank two case,
which is essentially a consequence of the GL2(Qp)-compatibility (a notion
defined in §III of [CD14]) of the (ϕ,Γ)-modules of rank two. The subsec-
tions §3.3 and §3.4 are the technical hearts of this article, where we show
that our ε-isomorphisms satisfy the conditions (i) and (ii) in Conjecture
1.1. In §3.3, we show the interpolation property for the trianguline case
(i.e. the condition (i) in the theorem) by comparing the local ε-isomorphism
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defined in §3.2 with that defined in our previous work [Na14b], where we
use a result of Dospinescu [Do11] on the explicit description of the action

of w :=

(
0 1
1 0

)
∈ GL2(Qp) on the locally analytic vectors (see Theorem

3.9). In §3.4, we show the interpolation property for the non-trianguline case
(i.e. the condition (ii) in the theorem). For a (ϕ,Γ)-module D of rank two
such that V (D) is de Rham and non-trianguline with distinct Hodge-Tate
weights {k1, k2} (k1 � 0, k2 � 1), using the Colmez’s theory of Kirillov model
of locally algebraic vectors in VI of [Co10b], we prove two explicit formulas
(Proposition 3.16, Proposition 3.18) which respectively (essentially) describe
εL(V ) and εdRL (V ). Finally, using the Emerton’s theorem [Em] on the com-
patibility of the p-adic and the classical local Langlands correspondence and
the classical explicit formula of the action of w on the (classical) Kirillov
model, we prove the condition (ii) in Theorem 1.1 for the non-trianguline
case.

The final section §4 is devoted to the proof of Theorem 1.3. In §4.1, we
recall the definition of the global fundamental lines and give a general set up.
In §4.2, we (re-)state our second main theorem (Theorem 4.2) and define our
(candidate of) zeta isomorphism z̃IwO,S(Tf (r)) using the (p-th layer of) Kato’s
Euler system [Ka04] associated to f . In the final subsection §4.3, we prove
Theorem 1.3 (Theorem 4.2), where we reduce the theorem to the classical
functional equation of the (twisted) L-function of f using the Kato’s explicit
reciprocity law and Theorem 1.1.

Notation 1.7. Let p be a prime number. For a field F , set GF :=
Gal(F sep/F ) the absolute Galois group of F . For each prime l, letWQl

⊆ GQl

be the Weil group of Ql, Il ⊆ WQl
be the inertia subgroup. Let recQl

: Q×
l

∼→
W ab

Ql
be the reciprocity map of the local class field theory normalized so that

recQl
(l) is a lift of the geometric Frobenius Frl ∈ GFl

. Throughout the ar-
ticle, we fix a Zl-basis ζ = (ζln)n�0 ∈ Γ(Qp,Zl(1)). Here, we remark that
many objects defined in the main body of the article depend on this choice
of ζ. We will usually omit the notation ζ, but we will sometimes add the
notation ζ when we consider the dependence of ζ.

Set Γ := Gal(Q(μp∞)/Q)
∼→ Gal(Qp(μp∞)/Qp), and let χ : Γ

∼→ Z×
p be

the p-adic cyclotomic character which we also see as a character of GQ or
GQl

for any l. For l = p, set HQp
:= Ker(χ) ⊆ GQp

. For each b ∈ Z×
p , define

σb ∈ Γ such that χ(σb) = b. For a perfect field k of characteristic p, we
denote W (k) for the ring of Witt vectors, on which the lift ϕ of the p-th
power Frobenius on k acts. Let [−] : k → W (k) be the Teichmüller lift. Set
Ẽ+ := lim←−n�0

OCp
/p where the projective limit with respect to p-th power
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map, Ẽ := Frac(Ẽ+), Ã+ := W (Ẽ+), Ã := W (Ẽ), B̃+ := Ã+[1/p] and B̃ :=
Ã[1/p]. Let θ : Ã+ → OCp

be the continuous Zp-algebra homomorphism

defined by θ([(x̄n)n�0]) := limn→∞xp
n

n for any (x̄n)n�0 ∈ Ẽ+, where xn ∈
OCp

is a lift of x̄n ∈ OCp
/p. Set B+

dR := lim←−n�1
Ã+[1/p]/Ker(θ)n[1/p]. Using

the fixed Zp-basis ζ = (ζpn)n�0 ∈ Γ(Qp,Zp(1)) for l = p, define t(:= tζ) :=

log([(ζ̄pn)n�0]) ∈ B+
dR, which is a uniformizer of B+

dR. Set BdR := B+
dR[1/t].

For a commutative ring R, we denote by D−(R) the derived category of
bounded below complex of R-modules, by Dperf(R) the full subcategory of
perfect complexes of R-modules. We denote by Pfg(R) the category of finite
projective R-modules. For any P ∈ Pfg(R), we denote by rP its R-rank,
by P∨ := HomR(P,R) its dual. For P1, P2 ∈ Pfg(R) and 〈, 〉 : P1 × P2 →
R a perfect pairing of R-modules, we always identify P2 with P∨

1 by the
isomorphism P2

∼→ P∨
1 : x 	→ [y 	→ 〈y, x〉].

2. Preliminaries and conjectures

In this section, we first recall the l-adic and the p-adic local ε-conjectures.
Then, after reviewing the theory of Iwasawa cohomology of (ϕ,Γ)-modules,
we formulate a conjecture on a conjectural definition of the p-adic local
ε-isomorphism using a multivariable version of the Colmez’s multiplicative
convolution.

2.1. Review of the local ε-conjecture

In this subsection, we quickly recall the local ε-conjecture. See the origi-
nal articles [Ka93b], [FK06] (the latter one includes the non-commutative
version) or [Na14b] for more details.

2.1.1. Knudsen-Mumford’s determinant functor. The local ε-con-
jecture is formulated using the theory of the determinant functor, for which
we use the Knudsen-Mumford’s one [KM76], which we briefly recall here
(see also §3.1 of [Na14b]).

Let R be a commutative ring. We define a category PR, whose objects
are the pairs (L, r) where L is an invertible R-module and r : Spec(R) → Z
is a locally constant function, whose morphisms are defined by MorPR

((L, r),
(M, s)) := IsomR(L,M) if r = s, or empty otherwise. We call the objects
of this category graded invertible R-modules. For (L, r), (M, s), define its
product by (L, r)� (M, s) := (L⊗R M, r+ s) with the natural associativity
constraint and the commutativity constraint (L, r) � (M, s)

∼→ (M, s) �
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(L, r) : l⊗m 	→ (−1)rsm⊗ l. We always identify (L, r) � (M, s) = (M, s) �
(L, r) by this constraint isomorphism. The unit object for the product is
1R := (R, 0). For each (L, r), we set (L, r)−1 := (L∨,−r), which is the inverse
of (L, r) by the isomorphism i(L,r) : (L, r) � (L∨,−r)

∼→ 1R induced by the

evaluation map L ⊗R L∨ ∼→ R : x ⊗ f 	→ f(x). For a ring homomorphism
f : R → R′, one has a base change functor (−)⊗RR′ : PR → PR′ defined by
(L, r) 	→ (L, r)⊗R R′ := (L⊗R R′, r ◦ f∗) where f∗ : Spec(R′) → Spec(R).

For a category C, denote by (C, is) the category such that the objects
are the same as C and the morphisms are all the isomorphisms in C. Define
a functor

DetR : (Pfg(R), is) → PR : P 	→ (detRP, rP )

where we set detRP := ∧rP
R P . Note that DetR(0) = 1R is the unit object.

For a short exact sequence 0 → P1 → P2 → P3 → 0 in Pfg(R), we always
identify DetR(P1) � DetR(P3) with DetR(P2) by the following functorial
isomorphism (put ri := rPi

)

(1) DetR(P1) � DetR(P3)
∼→ DetR(P2)

induced by

(x1 ∧ · · · ∧ xr1)⊗ (xr1+1 ∧ · · · ∧ xr2) 	→ x1 ∧ · · · ∧ xr1 ∧ xr1+1 ∧ · · · ∧ xr2

where x1, . . . , xr1 (resp. xr1+1, . . . , xr2) are local sections of P1 (resp. P3) and
xi ∈ P2 (i = r1 + 1, . . . , r2) is a lift of xi ∈ P3. For a bounded complex P •

in Pfg(R), define DetR(P
•) ∈ PR by

DetR(P
•) := �i∈ZDetR(P

i)(−1)i .

By the result of [KM76], DetR naturally extends to a functor

DetR : (Dperf(R), is) → PR

such that the isomorphism (1) extends to the following situation: for any
exact sequence 0 → P •

1 → P •
2 → P •

3 → 0 of bounded below complexes
of R-modules such that each P •

i is a perfect complex, then there exists a
canonical isomorphism

DetR(P
•
1 ) � DetR(P

•
3 )

∼→ DetR(P
•
2 ).

If P • ∈ Dperf(R) satisfies that Hi(P •) are finite projective for all i, there
exists a canonical isomorphism

DetR(P
•)

∼→ �i∈ZDetR(H
i(P •))(−1)i .
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For (L, r) ∈ PR, define (L, r)∨ := (L∨, r) ∈ PR, which induces an anti-
equivalence (−)∨ : PR

∼→ PR. For P ∈ Pfg(R) and an R-basis {e1, . . . , erP },
we denote by {e∨1 , . . . , e∨rP } its dual basis of P∨. Then one has a canonical

isomorphism DetR(P
∨)

∼→ DetR(P )∨ defined by the isomorphism

detR(P
∨)

∼→ (detRP )∨ : e∨1 ∧ · · · ∧ e∨rP 	→ (e1 ∧ · · · ∧ erP )
∨.

This isomorphism naturally extends to (Dperf(R), is), i.e. for any P • ∈
Dperf(R), there exists a canonical isomorphism

(2) DetR(RHomR(P
•, R))

∼→ DetR(P
•)∨.

2.1.2. The local fundamental line. Now, we start to recall the local
ε-conjecture. Fix a prime p. From now on until the end of the article, we use
the notation R to represent a commutative topological Zp-algebra satisfying
one of the following conditions (i) or (ii).

(i) R is a Jac(R)-adically complete noetherian semi-local ring such that
R/Jac(R) is a finite ring (equipped with the Jac(R)-adic topology),
where Jac(R) is the Jacobson radical of R,

(ii) R is a finite extension of Qp (equipped with the topology defined by
the p-adic valuation).

We note that a ring R satisfying (i) or (ii) satisfies (i) if and only if p �∈ R×.
We use the notation L instead of R if we consider only the case (ii).

In this article, we mainly treat representations (of GQp
or GL2(Qp), etc.)

defined over such a ring R. Let G be a topological group. We say that T is an
R-representation of G if T is a finite projective R-module with a continuous
R-linear G-action. For a continuous homomorphism δ : G → R×, we set
R(δ) := Reδ the R-representation of rank one with a fixed basis eδ on which
G acts by g(eδ) := δ(g)eδ. We always identify R(δ−1) with the R-dual R(δ)∨

by R(δ−1)
∼→ R(δ)∨ : eδ−1 	→ e∨δ , and identify R(δ1) ⊗R R(δ2)

∼→ R(δ1δ2)

by eδ1 ⊗ eδ2
∼→ eδ1δ2 for any δ1, δ2 : G → R×. We set T (δ) := T ⊗R R(δ).

For an R-representation T of G, we set T (δ) := T ⊗R R(δ) and denote by
C•
cont(G,T ) the complex of continuous cochains of G with values in T , i.e.

defined by Ci
cont(G,T ) := {c : G×i → T : continuous maps } for each i � 0

with the usual boundary map. We also regard C•
cont(G,T ) as an object of

D−(R).
Now, we fix another prime l (we don’t assume l �= p). Let T be an

R-representation of GQl
. We set Hi(Ql, T ) := Hi(C•

cont(GQl
, T )). For each

r ∈ Z, we set T (r) := T ⊗Zp
Γ(Ql,Zp(1))

⊗r. We denote by T ∗ := T∨(1)
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the Tate dual of T . By the classical theory of the Galois cohomology of
local fields, it is known that one has C•

cont(GQl
, T ) ∈ Dperf(R). Using the

determinant functor, we define the following graded invertible R-module

ΔR,1(T ) := DetR(C
•
cont(GQl

, T )),

which is of degree −rT (resp. of degree 0) when l = p (resp. when l �= p) by
the Euler-Poincaré formula.

For a ∈ R× (a ∈ O× if R = L), we set

Ra := {x ∈ W (Fp)⊗̂Zp
R|(ϕ⊗ idR)(x) = (1⊗ a)x},

which is an invertible R-module. For T as above, we freely regard detRT as
a continuous homomorphism detRT : Gab

Ql
→ R×. Define a constant

al(T ) := detRT (recQl
(p)) ∈ R×,

and define another graded invertible R-module

ΔR,2(T ) :=

{
(Ral(T ), 0) (l �= p)

(detRT ⊗R Rap(T ), rT ) (l = p).

Finally, we set

ΔR(T ) := ΔR,1(T ) � ΔR,2(T )

which we call the local fundamental line.
The local fundamental line is compatible with the functorial operations,

i.e. for any R → R′, one has a canonical isomorphism

ΔR(T )⊗R R′ ∼→ ΔR′(T ⊗R R′),

for any exact sequence 0 → T1 → T2 → T3 → 0 of R-representations of GQl
,

one has a canonical isomorphism

ΔR(T2)
∼→ ΔR(T1) � ΔR(T3),

and one has the following canonical isomorphism

ΔR(T )
∼→
{
ΔR(T

∗)∨ (l �= p)

ΔR(T
∗)∨ � (L(rT ), 0) (l = p)

defined as the product of the following two isomorphisms

ΔR,1(T )
∼→ ΔR,1(T

∗)∨,
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which is induced by the Tate duality C•
cont(GQl

, T )
∼→RHomR(C

•
cont(GQl

,
T ∗), R), and

ΔR,2(T )
∼→
{
ΔR,2(T

∗)∨ (l �= p)

ΔR,2(T
∗)∨ � (L(rT ), 0) (l = p)

which is defined by x 	→ [y 	→ x ⊗ y] for x ∈ Ral(T ), y ∈ Ral(T ∗) when
l �= p, by x ⊗ y 	→ [z ⊗ w 	→ y ⊗ w] ⊗ z(x) for x ∈ detRT, y ∈ Rap(T ), z ∈
detR(T

∗) = (detRT )
∨(rT ), w ∈ Rap(T ∗) when l = p (remark that one has

Ral(T ) ⊗R Ral(T ∗) = R since one has al(T )al(T
∗) = 1 for any l).

2.1.3. The de Rham ε-isomorphism. The local ε-conjecture concerns
with the existence of a compatible family of trivializations εR(T )(= εR,ζ(T )) :

1R
∼→ ΔR(T ), (depending on the fixed choice ζ ∈ Γ(Qp,Zl(1))) which we call

the local ε-isomorphisms, for all the pairs (R, T ) as above which interpolate
the trivializations εdRL (V )(= εdRL,ζ(V )) : 1L

∼→ ΔL(V ), which we call the de
Rham ε-isomorphisms, for all the pairs (L, V ) = (R, T ) such that V is de
Rham (resp. arbitrary) if l = p (resp. if l �= p), whose definition we briefly
recall now.

We first recall the ε-constants defined for the representations of the Weil-
Deligne group ′WQl

of Ql. Let K be a field of characteristic zero which
contains all the l-power roots of unity. For a Zl-basis ζ = {ζln}n�0 ∈
Γ(K,Zl(1)) := lim←−n�0

μln(K), define an additive character

ψζ : Ql → K× by ψζ(
1

ln
) = ζln

for any n � 0. By the theory of local constants [De73], one can attach a
constant

ε(ρ, ψ, dx) ∈ K×

to any smooth K-representation ρ = (M,ρ) of WQl
(i.e. M is a finite di-

mensional K-vector space with a K-linear smooth action ρ of WQl
), which

depends on the choices of an additive character ψ : Q×
l → K× and a (K-

valued) Haar measure dx on Ql. In this article, we consider this constant
only for the pair (ψζ , dx) such that

∫
Zl
dx = 1, which we denote by

ε(ρ, ζ) := ε(ρ, ψζ , dx)

for simplicity. For a K-representation M = (M,ρ,N) of the Weil-Deligne
group ′WQl

(i.e. ρ := (M,ρ) is a smooth K-representation of WQl
with a

K-linear endomorphism N : M → M such that F̃rl ◦ N = l−1N ◦ F̃rl for
any lift F̃rl ∈ WQl

of the geometric Frobenius Frl ∈ GFl
), its ε-constant is
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defined by

ε(M, ζ) := ε(ρ, ζ)detK(−Frl|M Il/(MN=0)Il).

Now we recall the definition of de Rham ε-isomorphism εdRL (V ) : 1L
∼→

ΔL(V ) for arbitrary (resp. de Rham) L-representation V of GQl
when l �=

p (resp. l = p). By the Grothendieck’s local monodromy theorem (resp.
the p-adic local monodromy theorem [Be02] and the Fontaine’s functor
Dpst(−) [FP94]) when l �= p (resp. l = p), one can functorially define an
L-representation

W (V ) = (W (V ), ρ,N)

of ′WQl
. Set L∞ := L⊗Qp

Qp(μl∞), and decompose it L∞ =
∏

τ Lτ into the
product of fields Lτ . Then, we define a constant

εL(W (V )) ∈ L×
∞

(depending on the choice of the fixed ζ ∈ Γ(Qp,Zl(1))) as the product of the
ε-constants ε(W (V )τ , ζτ ) ∈ L×

τ of W (V )τ := W (V ) ⊗L Lτ for all τ , where
ζτ ∈ Γ(Lτ ,Zl(1)) is the natural image of the fixed ζ ∈ Γ(Qp(μl∞),Zl(1)).

We set

Dst(V ) := W (V )Il , Dcris(V ) := Dst(V )N=0

on which the Frobenius ϕl := Frl naturally acts. Remark that one has

Dcris(V ) = V Il

if l �= p. Set

DdR(V ) := (BdR ⊗Qp
V )GQp , Di

dR(V ) := (tiB+
dR ⊗Qp

V )GQp

and

tV := DdR(V )/D0
dR(V )

(resp. DdR(V ) = Di
dR(V ) = tV := 0) when l = p (resp. l �= p).

Using these preliminaries, we first define an isomorphism

θL(V ) : 1L
∼→ ΔL,1(V ) � DetL(DdR(V ))

which is naturally induced by the following exact sequence of L-vector spaces

0 → H0(Ql, V ) → Dcris(V )
(a)−−→ Dcris(V )⊕ tV

(b)−→ H1(Ql, V )(3)

(c)−→ Dcris(V
∗)∨ ⊕D0

dR(V )
(d)−−→ Dcris(V

∗)∨ → H2(Ql, V ) → 0,
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where the map (a) is the sum of 1 − ϕl : Dcris(V ) → Dcris(V ) and the
canonical map Dcris(V ) → tV , and the maps (b) and (c) are defined by
using the Bloch-Kato’s exponential and its dual when l = p, and the map
(d) is the dual of (a) for V ∗ (see [Ka93b], [FK06] and [Na14b] for the precise
definition).

Define a constant Γ(V ) ∈ Q× by

Γ(V ) :=

{
1 (l �= p)∏

r∈Z Γ
∗(r)−dimLgr−rDdR(V ) (l = p),

where we set

Γ∗(r) :=

{
(r − 1)! (r � 1)
(−1)r

(−r)! (r � 0).

We next define an isomorphism

θdR,L(V ) : DetL(DdR(V ))
∼→ ΔL,2(V )

which is induced by the isomorphism

detLDdR(V ) = L
∼→ Lal(V ) : x 	→ εL(W (V ))x

when l �= p (remark that one has εL(W (V )) ∈ Lal(V ) when l �= p), by the
inverse of the isomorphism

Lap(T ) ⊗L detLV
∼→ detLDdR(V )(⊆ BdR ⊗Qp

detLV ) : x 	→ 1

εL(W (V ))thV
x

when l = p (Lemma 3.4 [Na14b]), where we set hV :=
∑

r∈Z r ·
dimLgr

−rDdR(V ).
Finally, we define the de Rham ε-isomorphism

εdRL (V ) : 1L
∼→ ΔL(V )

as the following composites

εdRL (V ) : 1L
Γ(V )θL(V )−−−−−−−→ ΔL,1(V ) � DetL(DdR(V ))

id�θdR,L(V )−−−−−−−−→ ΔL,1(V ) � ΔL,2(V ) = ΔL(V ).

As we remarked above, the isomorphism εdRL (V ) depends on the choice
of ζ. If we’d like to consider this dependence, we use the notation εdRL,ζ(V ) :=

εdRL (V ).
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2.1.4. The local ε-conjecture. The local ε-conjecture (Conjecture 1.8
[Ka93b], Conjecture 3.4.3 [FK06], and Conjecture 3.8 [Na14b]) is the follow-
ing, which is now a theorem when l �= p by [Ya09].

Conjecture 2.1. Fix a prime l. Then, there exists a unique compatible
family of isomorphisms

εR(T )(= εR,ζ(T )) : 1R
∼→ ΔR(T )

for all the pairs (R, T ) such that T is an R-representation of GQl
, which

satisfies the following properties.

(1) For any continuous Zp-algebra homomorphism R → R′, one has

εR(T )⊗ idR′ = εR′(T ⊗R R′)

under the canonical isomorphism

ΔR(T )⊗R R′ ∼→ ΔR′(T ⊗R R′).

(2) For any exact sequence 0 → T1 → T2 → T3 → 0 of R-representations
of GQl

, one has

εR(T2) = εR(T1) � εR(T3)

under the canonical isomorphism

ΔR(T2)
∼→ ΔR(T1) � ΔR(T3).

(3) (dependence on ζ) For any a ∈ Z×
l , one has

εR,aζ(T ) = detRT (recQl
(a))εR,ζ(T ).

(4) One has the following commutative diagrams

ΔR(T )
can−−−−→ ΔR(T

∗)∨

εR,ζ(T )

�⏐⏐ ⏐⏐�εR,ζ(T ∗)∨

1R
detRT (recQl

(−1))·id
−−−−−−−−−−−−→ 1R

when l �= p, and

ΔR(T )
can−−−−→ ΔR(T

∗)∨ � (R(rT ), 0)

εR,−ζ(T )

�⏐⏐ ⏐⏐�εR,ζ(T ∗)∨�[erT

→1]

1R
detRT (recQl

(−1))·can
−−−−−−−−−−−−−→ 1R � 1R
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when l = p.
(5) For any pair (L, V ) such that V is arbitrary (resp. de Rham) if l �= p

(resp. if l = p), one has

εL(V ) = εdRL (V ).

Remark 2.2. In the conjecture, the conditions (2), (3) and (4) should follow
from the other conditions (1) and (5). In fact, it is known that εdRL (V )
satisfies the similar conditions (2), (3), (4) (e.g. Remark 3.5, Lemma 3.7
[Na14b]). Hence, assuming the density of de Rham representations in the
universal deformation, which is known in many cases, the conditions (1) and
(5) induce the conditions (2), (3) and (4).

Remark 2.3. There exists a non-commutative version of this conjecture,
but we only consider the commutative case in this article. See [FK06] for
the non-commutative version.

Remark 2.4. When l �= p, this conjecture has been already proved by
Yasuda [Ya09]. More precisely, he proved that the correspondence

(L, V ) 	→ ε0,L(V ) := detL(−ϕl|V Il)εL(W (V )) ∈ Lal(V )

defined for all the pairs (L, V ) as in the condition (5) (for l �= p) in Conjecture
2.1 uniquely extends to a correspondence

(R, T ) 	→ ε0,R(T ) ∈ Ral(T )

for all the pairs (R, T ) as in the conjecture, which satisfies the similar prop-
erties (1)-(5) in the conjecture. Then, the isomorphism εR(T ) : 1R

∼→ ΔR(T )
is defined as the product of the isomorphism 1R

∼→ ΔR,2(T ) induced by the
isomorphism

R
∼→ Ral(T ) : x 	→ ε0,R(T )x

with the isomorphism 1R
∼→ ΔR,1(T ) defined by

1R
∼→ DetR(C

•
cont(Il, T )) � DetR(C

•
cont(Il, T ))

−1 ∼→ DetR(C
•
cont(GQl

, T )),

where the first isomorphism is the canonical one and the second isomorphism
is induced by the canonical quasi-isomorphism

C•
cont(GQl

, T )
∼→ [C•

cont(Il, T )
1−ϕ−1

l−−−−→ C•
cont(Il, T )].
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2.1.5. The cyclotomic deformation. Before proceeding to the next
subsection, we recall here the notion of the cyclotomic deformations of R-
representations, which will play an important role in this article.

For any R such that p �∈ R×, we set ΛR := R[[Γ]] the Iwasawa algebra
of Γ with coefficients in R, and set ΛL := ΛOL

[1/p] for any L. For an R-
representation T of GQl

, we define a ΛR-representation Dfm(T ) which we
call the cyclotomic deformation of T by

Dfm(T ) := T ⊗R ΛR

on which GQl
acts by

g(x⊗ λ) := g(x)⊗ [ḡ]−1λ

for g ∈ GQl
, x ∈ T , λ ∈ ΛR, where ḡ ∈ Γ is the image of g by the natural

restriction map GQl
→ Γ. We set

ΔIw
R,∗(T ) := ΔΛR,∗(Dfm(T )) and Hi

Iw(Ql, T ) := Hi(Ql,Dfm(T ))

for ∗ = 1, 2, or ∗ = φ (the empty set).
For a continuous homomorphism δ : Γ → R×, define a continuous R-

algebra homomorphism

fδ : ΛR → R : [γ] 	→ δ(γ)−1

for any γ ∈ Γ. Then, one has a canonical isomorphism of R-representations
of GQl

Dfm(T )⊗ΛR,fδ R
∼→ T (δ) : (x⊗ λ)⊗ a 	→ afδ(λ)x⊗ eδ

for x ∈ T, λ ∈ ΛR, a ∈ R. By the compatibility with base changes, this
isomorphism induces a canonical isomorphism

ΔIw
R (T )⊗ΛR,fδ R

∼→ ΔR(T (δ)).

Let ι : ΛR
∼→ ΛR be the involution of the topological R-algebra defined

by ι([γ]) = [γ]−1 for any γ ∈ Γ. For any ΛR-module M , we set M ι :=
M ⊗ΛR,ιΛR, i.e. M

ι = M as R-module on which ΛR acts by λ ·ι x := ι(λ) ·x
for λ ∈ ΛR, x ∈ M , where ·ι is the action on M ι and · is the usual action on
M . One has a canonical isomorphism of ΛR-representations of GQl

Dfm(T ∗)ι
∼→ Dfm(T )∗ : x⊗ λ 	→ [y ⊗ λ′ 	→ ι(λ)λ′ ⊗ x(y)]
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for x ∈ T ∗, y ∈ T , λ, λ′ ∈ ΛR, which naturally induces a canonical isomor-
phism

(4) ΔIw
R,∗(T

∗)ι
∼→ ΔΛR,∗(Dfm(T )∗)

for ∗ = 1, 2, or ∗ = φ.

2.2. Review of the theory of étale (ϕ,Γ)-modules

From now on until the end of §3, we concentrate on the case where l = p.
We set e1 := ζ ∈ Zp(1) := Γ(Qp,Zp(1)) and er := e⊗r

1 ∈ Zp(r) for r ∈ Z.

2.2.1. Étale (ϕ,Γ)-modules. For R as in §2.1 such that p �∈ R×, we set
ER := lim←−n�1

(R/Jac(R)n[[X]][1/X]), and set EL := EO[1/p] for R = L, on

which ϕ and Γ acts as continuous R-algebra homomorphism by ϕ(X) :=
(1 +X)p − 1, γ(X) := (1 +X)χ(γ) − 1 for γ ∈ Γ.

For R such that p �∈ R×, we say that D is an étale (ϕ,Γ)-module over
ER if D is a finite projective ER-module equipped with a Frobenius structure
ϕ : ϕ∗D := D⊗ER,ϕER ∼→ D and a commuting continuous semi-linear action
Γ × D → D : (γ, x) 	→ γ(x). For R = L, we say that D is an étale (ϕ,Γ)-
module over EL if D is the base change to EL of an étale (ϕ,Γ)-module over
EO. We denote by D∨ := HomER

(D, ER) the dual (ϕ,Γ)-module of D, by
D(r) := D ⊗Zp

Zp(r) the r-th Tate twist of D (for r ∈ Z), by D∗ := D∨(1)
the Tate dual of D.

One has the Fontaine’s equivalence T 	→ D(T ) between the category of
R-representations of GQp

and that of étale (ϕ,Γ)-modules over ER. In the
construction of this equivalence, we need to embed the ring EZp

(ER for R =

Zp) into the Fontaine ring Ã+(:= W (Ẽ+)) by X 	→ Xζ := [(ζ̄pn)n�0] − 1 ∈
Ã+, which depends on the choice of the fixed basis ζ = (ζpn)n�0 ∈ Zp(1).

We remark that, for a different choice aζ of a basis for a ∈ Z×
p , one has

Xaζ = (Xζ + 1)a − 1.
Define a left inverse ψ : D → D of ϕ by

ψ : D =

p−1∑
i=1

(1 +X)iϕ(D) → D :

p−1∑
i=0

(1 +X)iϕ(xi) 	→ x0.

2.2.2. Cohomology of étale (ϕ,Γ)-modules. We next recall the coho-
mology theory of (ϕ,Γ)-modules. Let Γtor ⊆ Γ denote the torsion subgroup
of Γ. Define a finite subgroup Δ ⊆ Γtor by Δ := {1} when p > 2 and
Δ := Γtor when p = 2. Then Γ/Δ has a topological generator γ̄, which we
fix. We also fix a lift γ ∈ Γ of γ̄.
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Remark 2.5. When p = 2 and p �∈ R×, the cohomology theory of (ϕ,Γ)-
modules over ER is a little more subtle than that in other cases since one
has |Γtor| = p in this case. To avoid this subtlety, we treat (ϕ,Γ)-modules
over the rings of the form R = R0[1/p], where R0 is a topological Zp-algebra
satisfying the condition (i) in §2.1. For such R, we set ER := ER0

[1/p], and
say that an ER-module D is an étale (ϕ,Γ)-module over ER if it is the base
change to ER of an étale (ϕ,Γ)-module over ER0

. From now on until the end
of this article, we use the notation R to represent topological Zp-algebras of
the form R0 or R0[1/p] (resp. R0[1/2]) as above when p � 3 (resp. p = 2),
and we only consider the R-representations of GQl

or GQ,S , and étale (ϕ,Γ)-
modules over ER for such R.

Definition 2.6. For any étale (ϕ,Γ)-module D over ER, define complexes
C•
ϕ,γ(D) and C•

ψ,γ(D) of R-modules concentrated in degree [0, 2], and define
a morphism ΨD between them as follows:

(5)

C•
ϕ,γ(D)= [DΔ (γ−1,ϕ−1)−−−−−−−→ DΔ ⊕DΔ (ϕ−1)⊕(1−γ)−−−−−−−−→ DΔ]

ΨD

⏐⏐� ⏐⏐�id ⏐⏐�id⊕−ψ

⏐⏐�−ψ

C•
ψ,γ(D)= [DΔ (γ−1,ψ−1)−−−−−−−→ DΔ ⊕DΔ (ψ−1)⊕(1−γ)−−−−−−−−→ DΔ].

For i ∈ Z�0, we denote by Hi
ϕ,γ(D) (resp. Hi

ψ,γ(D)) the i-th cohomology
of C•

ϕ,γ(D) (resp.C•
ψ,γ(D)). It is known that the map ΨD : C•

ϕ,γ(D) →
C•
ψ,γ(D) is quasi-isomorphism by (for example) Proposition I.5.1 and Lemme

I.5.2 of [CC99]. In this article, we freely identify C•
ϕ,γ(D) (resp. Hi

ϕ,γ(D))

with C•
ψ,γ(D) in D−(R) (resp. Hi

ψ,γ(D)) via the quasi-isomorphism ΨD.
For étale (ϕ,Γ)-modules D1, D2 over ER, one has an R-bilinear cup prod-

uct pairing

C•
ϕ,γ(D1)× C•

ϕ,γ(D2) → C•
ϕ,γ(D1 ⊗D2),

which induces the cup product pairing

∪ : Hi
ϕ,γ(D1)×Hj

ϕ,γ(D2) → Hi+j
ϕ,γ (D1 ⊗D2).

For example, this pairing is explicitly defined by the formulae

x ∪ [y] := [x⊗ y] for i = 0, j = 2,

[x1, y1] ∪ [x2, y2] := [x1 ⊗ γ(y2)− y1 ⊗ ϕ(x2)] for i = j = 1.

Definition 2.7. Using the cup product, the evaluation map ev : D∗ ⊗
D → ER(1) : f ⊗ x 	→ f(x), the comparison isomorphism H2(Qp, R(1))

∼→
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H2
ϕ,γ(ER(1)) (see below), and the Tate’s trace map H2(Qp, R(1))

∼→ R, one
gets the Tate duality pairings

C•
ϕ,γ(D

∗)× C•
ϕ,γ(D) → R[−2]

and

〈−,−〉Tate : Hi
ϕ,γ(D

∗)×H2−i
ϕ,γ (D) → R.

Let T be an R-representation of GQp
. By the result of [He98], one has a

canonical functorial isomorphism

C•
cont(GQp

, T )
∼→ C•

ϕ,γ(D(T ))

in D−(R) and a canonical functorial R-linear isomorphism

Hi(Qp, T )
∼→ Hi

ϕ,γ(D(T )).

In particular, we obtain a canonical isomorphism

ΔR,1(T )
∼→ DetR(C

•
ϕ,γ(D(T ))) =: ΔR,1(D(T )).

For an étale (ϕ,Γ)-module D. We freely regard the rank one (ϕ,Γ)-
module detER

D as a character detER
D : Gab

Qp
→ R× by the Fontaine’s equiva-

lence. Then, the (ϕ,Γ)-module detER
D has a basis e on which ϕ and Γ act by

ϕ(e) = detER
D(recQp

(p))e, γ′(e) = detER
D(γ′)e

for γ′ ∈ Γ, where we regard Γ as a subgroup of Gab
Qp

by the canonical iso-

morphism Gal(Qab
p /Qur

p )
∼→ Γ. Using the character detER

D, we set

LR(D) := Re,

which is a free R-module of rank one, and define the following graded in-
vertible R-modules

ΔR,2(D) := (LR(D), rD) and ΔR(D) := ΔR,1(D) � ΔR,2(D).

By (the proof of) Lemma 3.1 of [Na14b], there exists a canonical isomor-
phism

ΔR,2(T )
∼→ ΔR,2(D(T ))

for any R-representation T of GQp
. Therefore, we obtain a canonical isomor-

phism

ΔR(T )
∼→ ΔR(D(T )),

by which we identify the both sides.
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2.2.3. Iwasawa cohomology of étale (ϕ,Γ)-modules. We next recall
the theory of the Iwasawa cohomology of étale (ϕ,Γ)-modules. For an étale
(ϕ,Γ)-module D over ER, we define the cyclotomic deformation Dfm(D)
which is an étale (ϕ,Γ)-module over EΛR

by

Dfm(D) := D ⊗ER
EΛR

as EΛR
-module on which ϕ and Γ act by

ϕ(x⊗ y) := ϕ(x)⊗ ϕ(y), γ′(x⊗ y) := γ′(x)⊗ [γ′]−1γ′(y)

for x ∈ D, y ∈ EΛR
, γ′ ∈ Γ. Then, one has a canonical isomorphism

D(Dfm(T ))
∼→ Dfm(D(T )).

Hence, if we set

Hi
Iw,ϕ,γ(D) := Hi

ϕ,γ(Dfm(D)) and ΔIw
R (D) := ΔΛR

(Dfm(D)), etc.,

then we obtain the following canonical isomorphisms

Hi
Iw(Qp, T )

∼→ Hi
Iw,ϕ,γ(D(T )) and ΔIw

R (T )
∼→ ΔIw

R (D(T )), etc.

for any R-representation T of GQp
. For any continuous homomorphism δ :

Γ → R×, the base change with respect to fδ : ΛR → R : [γ′] 	→ δ(γ′)−1

induces canonical isomorphisms

Dfm(D)⊗ΛR,fδ R
∼→ D(δ) : (x⊗ y)⊗ 1 	→ fδ(y)x⊗ eδ

and

ΔIw
R (D)⊗ΛR,fδ R

∼→ ΔR(D(δ)),

and induces a canonical specialization map

spδ : H
i
Iw,ϕ,γ(D) → Hi

ϕ,γ(D(δ)).

We remark that the continuous action of Γ on D uniquely extends to
a ΛR-module structure on D. We define a complex C•

ψ(D) of ΛR-modules
which concentrated in degree [1, 2] by

C•
ψ(D) : [D

ψ−1−−−→ D].

By the result of [CC99], there exists a canonical isomorphism

C•
ψ(D)

∼→ C•
ψ,γ(Dfm(D))
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in D−(ΛR). In particular, there exists a canonical isomorphism

can : Dψ=1 ∼→ H1
Iw,ψ,γ(D)

of ΛR-modules which is explicitly defined by

x 	→
[(

p− 1

p
log(χ(γ))pΔ · (x⊗ 1), 0

)]
,

where pΔ := 1
|Δ|
∑

σ∈Δ[σ] ∈ Z[1/2][Δ] (remark that we have
p−1
p log(χ(γ))pΔ ∈ Zp[Δ] for any p). Hence, if we define a specialization

map

ιδ : D
ψ=1 → H1

ψ,γ(D(δ)) : x 	→ xδ :=

[(
p− 1

p
log(χ(γ))pΔ · (x⊗ eδ), 0

)]
for any continuous homomorphism δ : Γ → R×, then it makes the diagram

(6)

Dψ=1 can−−−−→ H1
Iw,ψ,γ(D)

ιδ

⏐⏐� ⏐⏐�spδ

H1
ψ,γ(D(δ))

id−−−−→ H1
ψ,γ(D(δ))

commutative.

2.2.4. The Iwasawa pairing. We next consider the Tate dual of
Dfm(D). For this, we first remark that the involution ι : ΛR

∼→ ΛR : [γ′] 	→
[γ′]−1 naturally induces an ER-linear involution ι : EΛR

∼→ EΛR
. For an étale

(ϕ,Γ)-module D over ER, define an étale (ϕ,Γ)-module D⊗ER
ẼΛR

over EΛR

by

D ⊗ER
ẼΛR

= D ⊗ER
EΛR

as EΛR
-module on which ϕ and Γ act by

ϕ(x⊗ y) = ϕ(x)⊗ ϕ(y) and γ′(x⊗ y) = γ′(x)⊗ [γ′]γ′(y)

for x ∈ D, y ∈ EΛR
, γ′ ∈ Γ. Then, the isomorphism

D ⊗ER
EΛR

∼→ D ⊗ER
EΛR

: x⊗ y 	→ x⊗ ι(y)

induces an isomorphism

D ⊗ER
ẼΛR

∼→ Dfm(D)ι
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of (ϕ,Γ)-modules over EΛR
. Since one has a canonical isomorphism

(D ⊗ER
ẼΛR

)⊗ΛR,fδ R
∼→ D(δ−1) : (x⊗ y)⊗ 1 	→ fδ(y)x⊗ eδ−1

for any δ : Γ → R×, we obtain a canonical specialization map

ι̃δ : D
ψ=1,ι ∼→ H1

ψ,γ(Dfm(D)ι)
∼→ H1

ψ,γ(D ⊗ER
ẼΛR

) → H1
ψ,γ(D(δ−1))

which is explicitly defined by

x 	→
[(

p− 1

p
log(χ(γ))pΔ · (x⊗ eδ−1), 0

)]
.

We apply this to the Tate dual D∗ of D. Since one has a canonical
isomorphism

Dfm(D∗)ι
∼→ D∗ ⊗ER

ẼΛR

∼→ Dfm(D)∗,

we obtain canonical isomorphisms

ΔIw
R (D∗)ι

∼→ ΔΛR
(Dfm(D)∗)

and

can : (D∗)ψ=1,ι ∼→ H1
ψ,γ(Dfm(D∗)ι)

∼→ H1
ψ,γ(Dfm(D)∗),

which makes the diagram

(7)

(D∗)ψ=1,ι can−−−−→ H1
ψ,γ(Dfm(D)∗)

ι̃δ

⏐⏐� ⏐⏐�spδ

H1
ψ,γ(D(δ)∗)

id−−−−→ H1
ψ,γ(D(δ)∗)

for any δ : Γ → R× commutative, where the right vertical arrow is the
specialization map with respect to the base change

Dfm(D)∗ ⊗ΛR,fδ R
∼→ (Dfm(D)⊗ΛR,fδ R)∗

∼→ D(δ)∗.

Using these preliminaries, we define a ΛR-bilinear pairing

{−,−}Iw : (D∗)ψ=1,ι ×Dψ=1 → ΛR

which we call the Iwasawa pairing by the following commutative diagram
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(8)

(D∗)ψ=1,ι ×Dψ=1 can×can−−−−−→ H1
ψ,γ(Dfm(D)∗)×H1

ψ,γ(Dfm(D))

{−,−}Iw

⏐⏐� ⏐⏐�〈−,−〉Tate

ΛR
id−−−−→ ΛR.

From the arguments above, we obtain the commutative diagram

(9)

(D∗)ψ=1,ι ×Dψ=1 ι̃δ×ιδ−−−−→ H1
ψ,γ(D(δ)∗)×H1

ψ,γ(D(δ))

{−,−}Iw

⏐⏐� ⏐⏐�〈−,−〉Tate

ΛR
fδ−−−−→ R

for any δ : Γ → R×.

Remark 2.8. We remark that the pairing {−,−}Iw coincides with the
Colmez’s Iwasawa pairing which is defined in §VI.1 of [Co10a] in a different
way.

For a continuous homomorphism δ : Γ → R×, we define a continuous
R-algebra automorphism gδ : ΛR

∼→ ΛR by gδ([γ
′]) = δ(γ′)−1[γ′] for γ′ ∈ Γ.

Lemma 2.9. For any δ : Γ → R×, one has the following commutative
diagram

(10)

(D∗)ψ=1,ι ×Dψ=1 {−,−}Iw−−−−−→ ΛR

(x,y) 
→(x⊗eδ−1 ,y⊗eδ)

⏐⏐� ⏐⏐�gδ
(D(δ)∗)ψ=1,ι ×D(δ)ψ=1 {−,−}Iw−−−−−→ ΛR.

Proof. For a ΛR-module M , we define a ΛR-module gδ∗(M) := M on which
ΛR-acts by gδ. Then, we have isomorphisms Dfm(D)

∼→ gδ∗(Dfm(D(δ))) :
x ⊗ y 	→ (x ⊗ eδ) ⊗ gδ(y) and Dfm(D∗)ι

∼→ gδ∗(Dfm(D(δ)∗)ι) : x ⊗ y 	→
(x⊗ eδ−1)⊗ gδ−1(y), and these induce the following commutative diagram
(11)

H1
ψ,γ(Dfm(D)∗)×H1

ψ,γ(Dfm(D))
∼→−−−−−→ gδ∗(H1

ψ,γ(Dfm(D(δ)∗)))× gδ∗(H1
ψ,γ(Dfm(D(δ))))

〈−,−〉Tate

⏐⏐� ⏐⏐�〈−,−〉Tate

ΛR
gδ−−−−−→ gδ∗(ΛR).

By definition of {−,−}Iw, the lemma follows from this commutative dia-
gram.
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2.2.5. The local fundamental line over ER(Γ). Take an isomorphism
Γ

∼→ Γtor×Zp of topological groups. Let γ0 ∈ Γ be the element corresponding
to (e, 1) by this isomorphism, where e ∈ Γtor is the identity element. For R
such that p �∈ R×, define ER(Γ) := ΛR[

1
[γ0]−1 ]

∧ the Jac(R)-adic completion of

ΛR[
1

[γ0]−1 ], which does not depend on the choice of the decomposition Γ
∼→

Γtor × Zp. For R = R0[1/p] such that p �∈ R×
0 , define ER(Γ) := ER0

(Γ)[1/p].
Here, we recall some properties of the base changes to ER(Γ) of ΔR(D)

and {−,−}Iw, which are proved in [Co10a]. By III.4 of [Co10a], γ0−1 acts on
Dψ=0 as a topological automorphism and the induced action of ΛR[

1
[γ0]−1 ]

on Dψ=0 uniquely extends to an action of ER(Γ), which makes Dψ=0 a
finite projective ER(Γ)-module of rank rD. By VI.1 of [Co10a], the ΛR-linear

homomorphism Dψ=1 1−ϕ−−→ Dψ=0 induces an isomorphism

Dψ=1 ⊗ΛR
ER(Γ) ∼→ Dψ=0

of ER(Γ)-modules, and one has

Dϕ=1 ⊗ΛR
ER(Γ) = (D/(ψ − 1)D)⊗ΛR

ER(Γ) = 0

(since Dϕ=1 and D/(ψ−1)D are finite generated R-modules). In particular,
we obtain a canonical isomorphism

C•
ψ(D)⊗L

ΛR
ER(Γ) ∼→ Dψ=0[−1]

in D−(ER(Γ)), and this induces a canonical isomorphism

ΔIw
R,1(D)⊗ΛR

ER(Γ) ∼→ (detER(Γ)D
ψ=0, rD)

−1.

Moreover, since we have LΛR
(Dfm(D)) = LR(D) ⊗R ΛR, we obtain the

following canonical isomorphism

(12) ΔIw
R (D)⊗ΛR

ER(Γ) ∼→ (detER(Γ)D
ψ=0 ⊗R LR(D)∨, 0)−1.

Using the isomorphism ΔIw
R (D∗)ι

∼→ ΔΛR
(Dfm(D)∗), we similarly ob-

tain the following canonical isomorphism

ΔΛR
(Dfm(D)∗)⊗ΛR

ER(Γ) ∼→ (detER(Γ)(D
∗)ψ=0,ι ⊗R LR(D

∗)∨, 0)−1.

Finally, by Proposition VI.1.2 of [Co10a], the Iwasawa pairing {−,−}Iw :
(D∗)ψ=1,ι×Dψ=1 → ΛR uniquely extends to an ER(Γ)-bilinear perfect pair-
ing

{−,−}0,Iw : (D∗)ψ=0,ι ×Dψ=0 → ER(Γ)
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such that {(1 − ϕ)x, (1 − ϕ)y}0,Iw = {x, y}Iw for any x ∈ (D∗)ψ=1, y ∈
Dψ=1.

Remark 2.10. As we mentioned in Remark 1.2, Conjecture 2.1 is known
for the rank one case by [Ka93b]. Using the isomorphism (12), the base
change to ER(Γ) of the local ε-isomorphism εIwR (D(T )) := εIwR (T ) for any
R-representation T of GQp

of rank one defined in [Ka93b] is explicitly de-
scribed as follows, which will play an important role in this article. Let
δ : Q×

p → R× be a continuous homomorphism corresponding to a charac-

ter δ : Gab
Qp

→ R× by the local class field theory. Then, the (ϕ,Γ)-module
D(R(δ)) corresponding to R(δ) is isomorphic to ER(δ) := EReδ on which
(ϕ,Γ) acts by ϕ(eδ) = δ(p)eδ, γ

′(eδ) = δ(γ′)eδ (γ′ ∈ Γ). For ER(δ), one has
an ER(Γ)-linear isomorphism

ER(Γ) ∼→ ER(δ)ψ=0 : λ 	→ λ · ((1 +X)−1eδ),

and, under the isomorphism (12) for D = ER(δ), the base change to ER(Γ)
of the local ε-isomorphism εIwR (ER(δ)) : 1ΛR

∼→ ΔIw
R (ER(δ)) which is defined

in [Ka93b] is the natural one induced by the isomorphism

ER(Γ) ∼→ ER(δ)ψ=0 ⊗R (Reδ)
∨ : λ 	→ λ · ((1 +X)−1eδ)⊗ e∨δ .

This fact easily follows from the another definition of εIwR (ER(δ)) given in
§4.1 (and Remark 4.9 and Lemma 4.10) of [Na14b].

2.3. A conjectural definition of the local ε-isomorphism

In this subsection, we first recall the definition of (a multivariable version of)
the Colmez’s multiplicative convolution. After that, we propose a conjectural
definition of the local ε-isomorphism using the multiplicative convolution.

2.3.1. Colmez’s multiplicative convolution. Let D1, . . . , Dn+1 be
étale (ϕ,Γ)-modules over ER, and let

M : D1 ×D2 × · · · ×Dn → Dn+1

be an ER-multilinear pairing compatible with ϕ and Γ, i.e. we have

M(ϕ(x1), . . . , ϕ(xn)) = ϕ(M(x1, . . . , xn))

and

M(γ′(x1), . . . , γ
′(xn)) = γ′(M(x1, . . . , xn))
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for any xi ∈ Di and γ′ ∈ Γ. For such a data, we define a map (depending on
the choice of ζ)

MZ
×
p
(:= M

(ζ)

Z
×
p
) : Dψ=0

1 × · · · ×Dψ=0
n → Dψ=0

n+1 : (x1, . . . , xn)

	→ MZ
×
p
(x1, . . . , xn) =: (∗)

by the formula

(∗) := lim
n→∞

∑
i1,...,in∈Z×

p mod pn

(1 +X)i1···inϕn

× (M(σj1(ψ
n((1 +X)−i1x1)), . . . , σjn(ψ

n((1 +X)−inxn)))),

where we set jk :=
∏

k′ �=k ik′ . This is a multivariable version of the Colmez’s
multiplicative convolution defined V.4 of [Co10a], whose well-definedness can
be proved in the same way as in Proposition V.4.1 of [Co10a]. We remark

that this pairing M
(ζ)

Z
×
p

depends on the choice of the parameter X = Xζ , i.e.

the choice of ζ ∈ Zp(1). We can easily check that this dependence can be
written by the formula

M
(aζ)

Z
×
p

= [σa]
−(n−1)M

(ζ)

Z
×
p

for any a ∈ Z×
p . Moreover, we have

MZ
×
p
(x1, . . . , γ

′(xi), . . . , xn) = γ′(MZ
×
p
(x1, . . . , xi, . . . , xn))

for any i and γ′ ∈ Γ, in particular, MZ
×
p
is ER(Γ)-multilinear.

2.3.2. A conjectural definition of the local ε-isomorphisms. We
next formulate a conjecture on a conjectural definition of the local ε-isomor-
phisms using the multiplicative convolution. LetD be an étale (ϕ,Γ)-module
over ER. Applying the multiplicative convolution to the highest wedge prod-
uct

∧ : D×rD → detER
D : (x1, . . . , xrD) 	→ x1 ∧ · · · ∧ xrD ,

we obtain an ER(Γ)-multilinear pairing

∧Z
×
p
(= ∧(ζ)

Z
×
p
) : (Dψ=0)×rD → (detER

D)ψ=0.

It is easy to see that this map is alternating. Hence this induces an ER(Γ)-
linear morphism

∧Z
×
p
: detER(Γ)D

ψ=0 → (detER
D)ψ=0.
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Concerning the relationship between this map with the local ε-isomor-
phism, we propose the following conjecture, which grew out from discussions
with S. Yasuda. Recall that we have canonical isomorphisms

ΔIw
R (D)⊗ΛR

ER(Γ) ∼→ (detER(Γ)D
ψ=0 ⊗R LR(D)∨, rD)

−1

and LR(D) = LR(detER
D).

Conjecture 2.11. (1) For any D, the map ∧Z
×
p

: detER(Γ)D
ψ=0 →

(detER
D)ψ=0 is isomorphism.

(2) If (1) holds for D, then the isomorphism

∧Z
×
p
: ΔIw

R (D)⊗ΛR
ER(Γ) ∼→ ΔIw

R (detER
D)⊗ΛR

ER(Γ)

induced by the isomorphism

detER(Γ)D
ψ=0 ⊗R LR(D)∨

∼→ (detER
D)ψ=0 ⊗R LR(detER

D)∨

defined by

(x1 ∧ · · · ∧ xrD)⊗ y 	→ ∧Z
×
p
(x1 ∧ · · · ∧ xrD)⊗ y

uniquely descends to a ΛR-linear isomorphism

∧Z
×
p
: ΔIw

R (D)
∼→ ΔIw

R (detER
D).

(3) If (2) holds for D, then the conjectural ε-isomorphism

εIwR (D) : 1ΛR

∼→ ΔIw
R (D)

satisfies the commutative diagram

ΔIw
R (D)

∧
Z
×
p−−−−→ ΔIw

R (detER
D)

εIwR (D)

�⏐⏐ �⏐⏐εIwR (detER
D)

1ΛR
−−−−→

id
1ΛR

,

where the isomorphism εIwR (detER
D) is the ε-isomorphism defined by

Kato [Ka93b] (or Remark 2.10).

Remark 2.12. The condition (3) in the conjecture above says that, if (2)
is true for D, then the composite (∧Z

×
p
)−1 ◦ εIwR (detER

D) : 1ΛR

∼→ ΔIw
R (D)

satisfies all the conditions (1), . . . , (5) in Conjecture 2.1. For example, since
one has
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∧(aζ)

Z
×
p

= [σa]
rD−1∧(ζ)

Z
×
p
: ΔIw

R (D)
∼→ ΔIw

R (detER
D)

(which follows from ∧(aζ)

Z
×
p

= [σa]
−(rD−1)∧(ζ)

Z
×
p
: detER(Γ)(D

ψ=0)→ (detER
D)ψ=0)

and

εIwR,aζ(detER
D) = (detEΛR

Dfm(detER
D)(a))εIwR,ζ(detER

D)

= detER
D(a)[σa]

−1εIwR,ζ(detER
D)

for any a ∈ Z×
p , we obtain

(∧(aζ)

Z
×
p
)−1 ◦ εIwR,aζ(detER

D)

= [σa]
−rD+1(detER

D(a)[σa]
−1)(∧(ζ)

Z
×
p
)−1 ◦ εIwR,ζ(detER

D)

= detEΛR
Dfm(D)(a)(∧(ζ)

Z
×
p
)−1 ◦ εIwR,ζ(detER

D),

i.e. the isomorphism (∧Z
×
p
)−1 ◦ εIwR (detER

D) satisfies the condition (3) in
Conjecture 2.1.

Remark 2.13. In the next section, we prove almost all the parts of the
conjecture above for the rank two case. In fact, we can prove many parts of
the conjecture even for the higher rank case. However, we do not pursue this
problem in the present article since the main theme of this article is to pursue
the connection between the local ε-conjecture with the p-adic local Lang-
lands correspondence for GL2(Qp). In the next article [Na], we will prove
(1), (almost all the parts of) (2) for the higher rank case, and prove that the
isomorphism (∧Z

×
p
)−1 ◦ εIwR (detER

D) : 1ΛR

∼→ ΔIw
R (D) (obtained by (2)) sat-

isfies the conditions (1), . . . , (4) in Conjecture 2.1. Moreover, we will prove
that this isomorphism satisfies the condition (5) for the crystabelline case.

3. Local ε-isomorphisms for rank two p-adic representations
of Gal(Qp/Qp)

In this section, using the p-adic local Langlands correspondence for GL2(Qp),
we prove many parts of Conjecture 2.1 and Conjecture 2.11 for the rank two
case.

3.1. Statement of the main theorem on the local ε-conjecture

We start this section by stating our main result concerning the local ε-
conjecture for the rank two case. We say that an étale (ϕ,Γ)-module D
over EL is de Rham, trianguline, etc. if the corresponding V (D) := T (D)
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is so. If D is de Rham, we set εdRL (D) := εdRL (V (D)), which we regard

as an isomorphism 1L
∼→ ΔL(D) by the canonical isomorphism ΔL(D)

∼→
ΔL(V (D)).

Theorem 3.1. (1) Conjecture 2.11 (1) is true for all the (ϕ,Γ)-modules
of rank two.

(2) Conjecture 2.11 (2) is true for “almost all” the (ϕ,Γ)-modules of rank
two.

(3) For D as in (2) (then we can define an isomorphism

εIwR (D) := (∧−1
Z

×
p
◦ εIwR (detER

D) : 1ΛR

∼→ ΔIw
R (D)),

we define

εR(D) : 1R
∼→ ΔR(D)

to be the base change of εIwR (D) by f1 : ΛR → R : [γ′] 	→ 1 (γ′ ∈
Γ). Then the set of isomorphisms {εR(D)}(R,D), where D run through
all the D of rank one or rank two as in (2), satisfies the conditions
(1), . . . , (4) in Conjecture 2.1 and satisfies the following:
For any pair (L,D) such that D is de Rham of rank one or two satis-
fying at least one of the following conditions (i) and (ii),

(i) D is trianguline,

(ii) the set of the Hodge-Tate weights of D is {k1, k2} such that k1 �
0, k2 � 1,

then we have

εL(D) = εdRL (D).

We will prove this theorem in the next subsections:(1) is proved in Propo-
sition 3.2, (2) is proved in Proposition 3.4 (see this proposition and Remark
3.5 for the precise meaning of “almost all” in the theorem above), (3) for (i)
is proved in §3.3, (3) for (ii) is proved in §3.4.

3.2. Definition of the ε-isomorphisms

In [Co10b], Colmez constructed a correspondence D 	→ Π(D) from (almost
all) étale (ϕ,Γ)-modules of rank two to representations of GL2(Qp). In the

construction of Π(D), he introduced a mysterious involution wδD : Dψ=0 ∼→
Dψ=0 (whose definition we recall below) which is intimately related with

the action of

(
0 1
1 0

)
∈ GL2(Qp) on Π(D). Moreover, he proved a formula

describing the multiplicative convolution ∧Z
×
p
using the involution wδD and

the Iwasawa pairing {−,−}0,Iw : (D∗)ψ=0,ι × Dψ=0 → ER(Γ), which we
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also recall below. Since the ε-constant of an irreducible smooth admissible

representation of GL2(Qp) can be described using the action of

(
0 1
1 0

)
by the classical theory of Kirillov model, this formula is crucial for our
application to the local ε-conjecture.

3.2.1. Analytic operations on Dψ=0. We start this subsection by re-
calling the definitions of some of analytic operations on Dψ=0 defined in
[Co10a], [Co10b]. We remark that these operations also depend on the choice
of the parameter X = Xζ ∈ ER, i.e., the choice of e1 := ζ ∈ Zp(1), which we
have fixed.

For a continuous homomorphism δ : Γ → R×, Colmez defined in V of
[Co10a] the following map

mδ : D
ψ=0 → Dψ=0 : x 	→ lim

n→∞

∑
i∈Z×

p modpn

δ(i)(1 +X)iϕnψn((1 +X)−ix).

We remark that this map satisfiesm1 = idDψ=0 for the trivial homomorphism
1 : Γ → R×, mδ1 ◦mδ2 = mδ1δ2 for any δ1, δ2, and σa ◦mδ = δ(a)−1mδ ◦ σa
for a ∈ Z×

p . In particular, the map

mδ ⊗ eδ : D
ψ=0 ∼→ D(δ)ψ=0 : x 	→ mδ(x)⊗ eδ

is an isomorphism of ER(Γ)-modules. In V of [Co10a], he also defined an
involution

w∗ : D
ψ=0 ∼→ Dψ=0

by the formula

w∗(x) := lim
n→+∞

∑
i∈Z×

p mod pn

(1 +X)1/iσ−1/i2(ϕ
nψn((1 +X)−ix))

and also defined in II of [Co10b] an involution

wδ := mδ−1 ◦ w∗ : D
ψ=0 ∼→ Dψ=0

for any δ : Γ → R×. By definition, the latter satisfies the equalities
wδ(σa(x)) = δ(a)σa−1(wδ(x)) for any a ∈ Z×

p . In particular, this induces
an ER(Γ)-linear isomorphism

wδ ⊗ eδ−1 : Dψ=0 ∼→ D(δ−1)ψ=0,ι : x 	→ wδ(x)⊗ eδ−1 .

3.2.2. The definition of the local ε-isomorphism over ER(Γ). Now
we assume that D is of rank two. Set
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δD := χ−1detER
D : Q×

p → R×.

Using the canonical isomorphism ER ⊗R LR(D)
∼→ detER

D : f ⊗x 	→ fx, we
obtain a canonical isomorphism

detER
D ⊗R LR(D)∨

∼→ ER ⊗R LR(D)⊗R LR(D)∨
∼→ ER.

Using this isomorphism, we define the following canonical isomorphism of
(ϕ,Γ)-modules

D ⊗R LR(D)∨
∼→ D∨ : x⊗ z∨ 	→ [y 	→ (y ∧ x)⊗ z∨]

for x, y ∈ D, z ∈ LR(D)× (and recall that z∨ ∈ LR(D)∨ is the dual base of
z), by which we identify both sides. By these isomorphisms, we also obtain
the following canonical isomorphism

Dψ=0 ⊗R LR(D)∨
∼→ (D∗)ψ=0,ι : x⊗ z∨ 	→ wδD(x)⊗ z∨ ⊗ e1

of ER(Γ)-modules.
Using these preliminaries, we define the following ER(Γ)-bilinear perfect

pairing

[−,−]Iw : Dψ=0 ⊗ LR(D)∨ ×Dψ=0 → ER(Γ) : (x⊗ z∨, y)

	→ {wδD(x)⊗ z∨ ⊗ e1, y}0,Iw

which is a modified version of the Colmez’s pairing defined in Corollaire
VI.6.2 of [Co10b]. This pairing is related with the multiplicative convolution
∧Z

×
p
: Dψ=0 ×Dψ=0 → (detER

D)ψ=0 as follows. Let us consider the R-linear

map d : ER → ER(1) : f(X) 	→ (1 +X)df(X)
dX ⊗ e1. It is easy to see that this

does not depend on the choice of ζ ∈ Zp(1), and satisfies σa ◦ d = d ◦ σa
(a ∈ Z×

p ) and ϕ ◦ d = pd ◦ ϕ, and induces an ER(Γ)-linear isomorphism

d : Eψ=0
R

∼→ ER(1)ψ=0. We note that one has d|Eψ=0
R

= mχ ⊗ e1 since both

are ER(Γ)-linear and one has d(1 +X) = (1 +X)⊗ e1 = mχ(1 +X)⊗ e1.
As a consequence of Colmez’s generalized reciprocity law (see Théorème

VI.2.1 of [Co10a]), he proved, in the proof of Corollaire VI.6.2 [Co10b], that
[−,−]Iw satisfies the following equality

(13) d([x⊗ z∨, y]Iw · (1 +X)) = −δD(−1)mδ−1
D
(∧Z

×
p
(x, y))⊗ z∨ ⊗ e1

in ER(1)ψ=0 ∼→ (detER
D)ψ=0 ⊗R LR(D)∨(1).

Since ∧Z
×
p
is anti-symmetric, this formula implies that the perfect pairing

[−,−]Iw is also anti-symmetric, i.e. we have [x ⊗ z∨, y]Iw = −[y ⊗ z∨, x]Iw
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for any x, y ∈ Dψ=0 and z ∈ LR(D). Therefore, this induces an ER(Γ)-linear
isomorphism

detER(Γ)D
ψ=0 ⊗R LR(D)∨

∼→ ER(Γ) : (x ∧ y)⊗ z∨ 	→ [σ−1][x⊗ z∨, y]Iw.

The last isomorphism, together with (12), naturally induces an ER(Γ)-linear
isomorphism (which we denote by)

ηR(D) : 1ER(Γ)
∼→ ΔIw

R (D)⊗ΛR
ER(Γ).

3.2.3. Proof of (1) of Conjecture 2.11. We first prove the follow-
ing proposition concerning the alternative description of our conjectural ε-
isomorphism, in particular, which proves Conjecture 2.11 (1) for the rank
two case.

Proposition 3.2. The map ∧Z
×
p

: detER(Γ)D
ψ=0 → (detER

D)ψ=0 is iso-
morphism, and the isomorphism ηR(D) fits into the following commutative
diagram:

ΔIw
R (D)⊗ΛR

ER(Γ)
∧

Z
×
p−−−−→ ΔIw

R (detER
D)⊗ΛR

ER(Γ)

ηR(D)

�⏐⏐ �⏐⏐εIwR (detER
D)⊗idER(Γ)

1ER(Γ) −−−−→
id

1ER(Γ).

Proof. By Remark 2.10, it suffices to show the equality

(14) [σ−1][x⊗ z∨, y]Iw · ((1 +X)−1z) = ∧Z
×
p
(x, y)

for any x, y ∈ Dψ=0, z ∈ LR(D)× = LR(detER
D)×.

We prove this equality as follows. We first remark that, since one has
d = mχ ⊗ e1, the equality (13) is equivalent to the equality

(15) mχ([x⊗ z∨, y]Iw · (1+X))⊗ e1 = −δD(−1)mδ−1
D
(∧Z

×
p
(x, y))⊗ z∨⊗ e1.

Applying the ER(Γ)-linear isomorphism mδD ⊗ z ⊗ e−1 : ER(1)ψ=0 ∼→
(detER

D)ψ=0 to this equality, the right hand side is equal to

− δD(−1)mδD(mδ−1
D
(∧Z

×
p
(x, y))⊗ z∨ ⊗ e1)⊗ z ⊗ e−1

= −δD(−1)mδD(mδ−1
D
(∧Z

×
p
(x, y)))⊗z∨⊗e1⊗z⊗e−1 = −δD(−1)∧Z

×
p
(x, y)

since one has mδ(x⊗ eδ′) = mδ(x)⊗ eδ′ and mδ ◦mδ′ = mδδ′ for any D and
δ, δ′, and the left hand side is equal to (set δ0 := detER

D|Z×
p
)
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mδD(mχ([x⊗ z∨, y]Iw · (1 +X))⊗ e1)⊗ z ⊗ e−1

= mδD(mχ([x⊗ z∨, y]Iw · (1 +X)))⊗ e1 ⊗ z ⊗ e−1

= mδ0([x⊗ z∨, y]Iw · (1 +X))⊗ z = [x⊗ z∨, y]Iw · (mδ0(1 +X)⊗ z)

= [x⊗ z∨, y]Iw · ((1 +X)z) = −δD(−1)[σ−1][x⊗ z∨, y]Iw · ((1 +X)−1z),

where the third equality follows from the ER(Γ)-linearity of mδ0 ⊗ z, and
the fourth follows from mδ0(1 +X) = 1 +X, from which the equality (14)
follows.

3.2.4. Proof of (4) of Conjecture 2.11. Before proving (2) of Conjec-
ture 2.11, we show the isomorphism ηR(D) satisfies the condition similar to
(4) in Conjecture 2.1 (over the ring ER(Γ)).
Lemma 3.3. Let D be an étale (ϕ,Γ)-module over ER of rank two. Then the
isomorphisms ηR(D) and ηR(D

∗) fit into the following commutative diagram:

ΔIw
R (D)⊗ΛR

ER(Γ) −−−−→ (ΔIw
R (D∗)ι ⊗ΛR

ER(Γ))
∨ � (ER(Γ)(rT ), 0)

ηR(D)

�⏐⏐ ⏐⏐�(ηR(D∗)ι)∨�[erT
�→1]

1ER(Γ)

detER
D(σ−1)·can−−−−−−−−−−→ 1ER(Γ) � 1ER(Γ).

Here the upper horizontal arrow is the base change to ER(Γ) of the isomor-
phism ΔIw

R (D)
∼→ (ΔIw

R (D∗)ι)∨ � (ΛR(rT ), 0) defined by the Tate duality.

Before starting the proof, let us introduce the following notation. In the
proof we will use the pairings [−,−]Iw and {−,−}Iw,0 for D and those for
D∗ simultaneously. In order to distinguish the pairings for D with those for
D∗, we will denote, for any étale (ϕ,Γ)-module D1 of rank two, the pairings
[−,−]Iw and {−,−}Iw,0 for D1 by [−,−]Iw,D1

and {−,−}D1

Iw,0, respectively.

Proof. Fix z ∈ LR(D)×. Then we have z∨ ⊗ e2 ∈ LR(D
∗)×. By definition,

it suffices to show that the following diagram is commutative:

detER(Γ)D
ψ=0 (a)−−−−→ (detER(Γ)(D

∗)ψ=0,ι)∨

(b)

⏐⏐� �⏐⏐(c)�[e2 
→1]

ER(Γ)⊗R LR(D)
(d)−−−−→ (ER(Γ)⊗R LR(D

∗))∨ ⊗R R(2),

where the horizontal arrows are the natural one defined by the Tate duality,
and (b) is defined by x∧ y 	→ detER

D(σ−1)[σ−1][x⊗ z∨, y]Iw,D ⊗ z for x, y ∈
Dψ=0 and (c) is the dual of the map x′∧y′ 	→ ι([σ−1][x

′⊗(z⊗e−2), y
′]Iw,D∗)⊗

(z∨ ⊗ e2) for x
′, y′ ∈ (D∗)ψ=0. We prove this commutativity as follows.
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Take a basis {x, y} ofDψ=0. Since we have an isomorphism wδD⊗z∨⊗e1 :
Dψ=0 ∼→ (D∗)ψ=0,ι, then {wδD(x)⊗ z∨ ⊗ e1, wδD(y)⊗ z∨ ⊗ e1} is a basis of
(D∗)ψ=0,ι. Then, (a) sends x ∧ y to f ∈ (detER(Γ)(D

∗)ψ=0,ι)∨ defined by

f((wδD(x)⊗ z∨ ⊗ e1) ∧ (wδD(y)⊗ z∨ ⊗ e1))

= [x⊗ z∨, x]Iw,D[y ⊗ z∨, y]Iw,D − [x⊗ z∨, y]Iw,D[y ⊗ z∨, x]Iw,D

= ([x⊗ z∨, y]Iw,D)
2,

where the first equality is by definition and the second follows since [ , ]Iw
is anti-symmetric. By definition, the composite ((c) � [e1 	→ 1]) ◦ (d) ◦ (b)
sends x ∧ y to f ′ ∈ (detER(Γ)(D

∗)ψ=0,ι)∨ defined by

f ′((wδD(x)⊗ z∨ ⊗ e1) ∧ (wδD(y)⊗ z∨ ⊗ e1))

= detER
D(σ−1)[x⊗ z∨, y]Iw,D

· ι([(wδD(x)⊗ z∨ ⊗ e1)⊗ (z ⊗ e−2), wδD(y)⊗ z∨ ⊗ e1)]Iw,D∗).

Therefore, it suffices to show the equality

[x⊗ z∨, y]Iw,D

(16)

= detER
D(σ−1)ι([(wδD(x)⊗ z∨⊗ e1)⊗ (z⊗ e−2), wδD(y)⊗ z∨⊗ e1)]Iw,D∗).

To show this equality, we first remark that one has

wδD∗ (wδD(x)⊗ z∨ ⊗ e1)

= wδ−1
D
(wδD(x)⊗ z∨ ⊗ e1)

= mδD ◦ w∗(mδ−1
D

◦ w∗(x)⊗ z∨ ⊗ e1)

= δD(−1)(mδD ◦mδ−2
D

◦ w∗ ◦mδ−1
D

◦ w∗(x))⊗ z∨ ⊗ e1

= δD(−1)(mδD ◦mδ−2
D

◦mδD ◦ w∗ ◦ w∗(x))⊗ z∨ ⊗ e1

= δD(−1)x⊗ z∨ ⊗ e1,

where the third equality follows from w∗(x ⊗ eδ) = δ(−1)mδ2 ◦ w∗(x) ⊗ eδ
(Corollaire V.5.2. of [Co10a]) and the fourth follows frommδ−1◦w∗ = w∗◦mδ

(Proposition V.2.4 of [Co10a]) for any δ. Hence, the right hand side of (16)
is equal to

detER
D(σ−1)δD(−1)ι({(x⊗ z∨⊗ e1)⊗ (z⊗ e−2)⊗ e1, wδD(y)⊗ z∨⊗ e1}D

∗

Iw,0)

= −detER
D(σ−1)δD(−1)ι({x,wδD(y)⊗ z∨ ⊗ e1}D

∗

Iw,0)

Mobile User
ま
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= ι({x,wδD(y)⊗ z∨ ⊗ e1}D
∗

Iw,0)

= −{wδD(y)⊗ z∨ ⊗ e1, x}DIw,0

= −[y ⊗ z∨, x]Iw,D

= [x⊗ z∨, y]Iw,D,

where the first equality follows from the fact that the composite of the
canonical isomorphisms (D⊗RLR(D)∨)⊗RLR(D

∨)∨
∼→ D∨⊗RLD(D

∨)∨
∼→

(D∨)∨ is given by x ⊗ z∨ ⊗ z 	→ [f 	→ −f(x)] for any z ∈ LR(D)×, which
shows the equality (16), hence finishes to prove the lemma.

3.2.5. Proof of (2) of Conjecture 2.11. We next prove (2) of Con-
jecture 2.11 under the following assumption. Let V be an F-representation
of GQp

of over a finite field F of characteristic p. We denote by RV the
universal deformation ring of V (resp. a versal deformation ring or the uni-
versal framed deformation ring) if it exists (resp. the universal deformation
ring does not exist), and denote by V univ the universal deformation (resp. a
versal deformation or the underlying representation of the universal framed
deformation) of V over RV .

Let R0 be a topological Zp-algebra satisfying the condition (i) in §2.1.
Let R be either R0 or R0[1/p] (resp. R = R0[1/p]) when p � 3 (resp. p = 2).
Let V be an R-representation of GQp

. Set V0 := V (resp. V0 a GQp
-stable

R0-lattice of V ) if R = R0 (resp. R = R0[1/p]). Since R0 is a finite product of
local rings, we may assume that R0 is local and denote by mR0

the maximal
ideal of R0. If we set V := V0⊗R0

R0/mR0
, then there exists a homomorphism

RV → R such that V univ ⊗RV
R

∼→ V . Set X := Spec(RV [1/p]), and denote
by X0 the subset of all the closed points in X .

Proposition 3.4. Let D be an étale (ϕ,Γ)-module over ER of rank two. Set
V := V (D) and V := V0⊗R0

R0/mR0
for an R0-lattice V0 of V . Assume one

of the following conditions (1) and (2):

(1) p � 3.
(2) p = 2 and, for an RV as above,

Xcris := {x ∈ X0|Vx := x∗(V univ) is absolutely irreducible

and crystalline}

is Zariski dense in X ,

then the isomorphism ηR(D) descends to ΛR, which we denote by

εIwR (D) : 1ΛR

∼→ ΔIw
R (D).
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Proof. We first remark that, when p = 3, the second condition in (2) (i.e.
density of Xcris) always holds for the universal (or a versal) deformation ring
RV and it is known to be an integral domain (in particular p-torsion free)
by the results of [Co08], [Ki10], [Bo10] and [BJ14].

By the compatibility with the base change, it suffices to show the propo-
sition for V univ (for V univ[1/p] if p = 2). Set R := RV and V := V univ for
simplicity. The p-torsion freeness of R when p � 3 implies that we have
ΛR = ER(Γ) ∩ ΛR[1/p](Γ). Therefore, it suffices to show the theorem for
R[1/p] (for any p). Moreover, since we have ΛR[1/p](Γ) = Ker(ER[1/p](Γ) →∏

x∈Xcris
ELx

(Γ)/ΛLx
(Γ)) (here, Lx is the residue field at x) by the assump-

tion on the density, it suffices to show the proposition for Vx := x∗(V ) for
any x ∈ Xcris.

Let V be an absolutely irreducible L-representation for a finite extension
L of Qp corresponding to a point in X . Set D := D(V ). Then, one has

Dϕ=1 = D/(ψ − 1)D = 0 and Dψ=1 ∼→ (1 − ϕ)Dψ=1 =: C(D) is a free
ΛL(Γ)-module of rank two by §II, §VI of [Co10a], and the same results hold
for D∗. Hence, as in the case of ΔIw

R (D) ⊗ΛR
ER(Γ), we obtain a canonical

isomorphism

ΔIw
L (D)

∼→ (detΛL(Γ)C(D)⊗L LL(D)∨, 0)−1.

Moreover, the Iwasawa pairing {−,−}0,Iw : C(D∗)ι × C(D) → ΛL(Γ) is
perfect by Proposition VI.1.2 of [Co10a], and, if we fix z ∈ LL(D)×, one has
an isomorphism

C(D)
∼→ C(D∗) : x 	→ wδD(x)⊗ z∨ ⊗ e1

by Proposition V.2.1 of [Co10b]. Therefore, we obtain an isomorphism

detΛL(Γ)C(D)⊗LLL(D)∨
∼→ ΛL(Γ) : (x∧y)⊗z∨ 	→ {wδD(x)⊗z∨⊗e1, y}0,Iw,

which proves the proposition for D by definition of ηR(D).

Remark 3.5. Even when p = 2, the assumption in the proposition holds
for almost all the cases (the author does not know any example which does
not satisfies the assumption). For example, for any L-representation V for a
finite extension L of Qp, there exists an O-lattice V0 of V such that its RV
satisfies the assumption (see [CDP14a]).

3.2.6. The definition of the local ε-isomorphisms. From now on,
we only treat the (ϕ,Γ)-modules of rank two which satisfy the assumption
in Proposition 3.4 without any comment, which gives no restriction to the
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results proved in the next sections since any L-representations of GQp
of

rank two satisfies the assumption by Remark 3.5.
Specializing the ε-isomorphism above, we define the ε-isomorphism

εR(D) as follows.

Definition 3.6. Let D be an étale (ϕ,Γ)-module over ER of rank two. We
define the isomorphism εR(D) to be the base change

εR(D) := εIwR (D)⊗ΛR,f1 idR : 1R
∼→ ΔIw

R (D)⊗ΛR,f1 R
∼→ ΔR(D)

by the morphism f1 : ΛR → R defined by f1([γ
′]) := 1 for arbitrary γ′ ∈ Γ.

Corollary 3.7. Our local ε-isomorphism εR(D) defined in Definition 3.6
satisfies the conditions (1), (3), (4) of Conjecture 2.1.

Proof. That εR(D) satisfies the condition (1) is trivial by definition. To show
that εR(D) satisfies the conditions (3) and (4), it suffices to show that εIwR (D)
satisfies (3) and (4). Since the canonical map ΛR → ER(Γ) is injective, this
claim follows from Remark 2.12 and Lemma 3.3.

Remark 3.8. By definition and Lemma 2.9, we also have

εR(D(δ)) = εIwR (D)⊗ΛR,fδ R

for any δ : Γ → R× under the canonical isomorphism

ΔR(D(δ))
∼→ ΔIw

R (D)⊗ΛR,fδ R.

3.3. The verification of the de Rham condition: the trianguline
case

This and the next subsections are the technical hearts of this article, where
we prove that our ε-isomorphism defined in Definition 3.6 satisfies the con-
dition (5) in Conjecture 2.1, which we call the de Rham condition. In this
subsection, we verify this condition in the trianguline case by comparing
the local ε-isomorphism defined in Definition 3.6 with that defined in the
previous article [Na14b].

3.3.1. Recall of the local ε-conjecture for (ϕ,Γ)-modules over the
Robba ring. In [Na14b], we generalized the p-adic local ε-conjecture for
rigid analytic families of (ϕ,Γ)-modules over the Robba ring, and proved this
generalized version of conjecture for families of trianguline (ϕ,Γ)-modules,
(a special case of) which we briefly recall now. For details, see [KPX14]
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for the general results on the cohomology theory of (ϕ,Γ)-modules over the
Robba ring, and [Na14b] for the generalized version of the local ε-conjecture.

We denote by | − | : Q×
p → Q>0 the absolute value normalized by |p| :=

1/p. Define topological L-algebras R(n)
L (n � 1) and RL by

R(n)
L :=

{ ∑
m∈Z

amXm

∣∣∣∣∣ am ∈ L,
∑
m∈Z

amXm

is convergent on |ζpn − 1| � |X| < 1

}

and RL :=
⋃

n�1R
(n)
L on which ϕ and Γ act by ϕ(X) = (1 + X)p − 1

and γ′(X) = (1 + X)χ(γ
′) − 1 (γ′ ∈ Γ). For n � 1, we say that M (n) is a

(ϕ,Γ)-module over R(n)
L if M (n) is a finite free R(n)

L -module with a Frobenius
structure

ϕ∗M (n) := M (n) ⊗R(n)
L ,ϕ R(n+1)

L
∼→ M (n+1) := M (n) ⊗R(n)

L
R(n+1)

L

and a continuous semi-linear action of Γ which commutes with the Frobenius
structure. We say that an RL-module M is a (ϕ,Γ)-module over RL if it is

the base change of a (ϕ,Γ)-moduleM (n) overR(n)
L for some n � 1. We denote

by n(M) � 1 the smallest such n, and set M (n) := M (n(M)) ⊗R(n(M))
L

R(n)
L .

By the theorems of Cherbonnier-Colmez [CC98] and Kedlaya [Ke04],
one has an exact fully faithful functor

D 	→ Drig := D† ⊗E†
L
RL

from the category of étale (ϕ,Γ)-modules over EL to that of (ϕ,Γ)-modules
over RL, where D† is the largest étale (ϕ,Γ)-submodule of D defined over
the following ring

E†
L := {f(X) ∈ EL|f(X) is convergent on r � |X| < 1 for some r < 1}.

For any (ϕ,Γ)-module M over RL, we can similarly define C•
ϕ,γ(M),

ΔL(M), Dfm(M) and ΔIw
L (M), etc. as follows. First, we define

C•
ϕ,γ(M), C•

ψ,γ(M) and ΔL,1(M)

in the same way as in the étale (ϕ,Γ)-case. To define ΔL,2(D), we first
recall that the rank one (ϕ,Γ)-modules over RL are classified by continuous
homomorphisms δ : Q×

p → L×, i.e. the rank one (ϕ,Γ)-module corresponding
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to δ is defined by

RL(δ) := RLeδ

on which ϕ and Γ act by

ϕ(eδ) = δ(p)eδ and γ′(eδ) = δ(χ(γ′))eδ for γ′ ∈ Γ.

For any (ϕ,Γ)-module M over RL, we also regard detRL
M as continuous

homomorphisms detRL
M : Q×

p → L× or detRL
M : W ab

Qp
→ L× by this

correspondence and the local class field theory. Using the homomorphism
detRL

M , we define

LL(M), ΔL,2(M) and ΔL(M)

in the same way as in the étale case. To define Dfm(M) and ΔIw
L (M), we

first define ΛL(Γ)-algebrasR+
L (Γ) andRL(Γ) as follows. Fix a decomposition

Γ
∼→ Γtor×Zp and set γ0 ∈ Γ corresponding to (e, 1) on the right hand side.

Then, we set

R+
L (Γ) := Zp[Γtor]⊗Zp

R+
L ([γ0]− 1) and

RL(Γ) := Zp[Γtor]⊗Zp
RL([γ0]− 1),

where we set

RL([γ0]− 1) :=

{∑
m∈Z

am([γ0]− 1)m

∣∣∣∣∣ ∑
m∈Z

amXm ∈ RL

}

and

R+
L ([γ0]− 1) :=

⎧⎨⎩∑
m�0

am([γ0]− 1)m ∈ RL([γ0]− 1)

⎫⎬⎭ .

We define a (ϕ,Γ)-module Dfm(M) over RL⊗̂LR+
L (Γ) (which is the relative

Robba ring with coefficients in R+
L (Γ)) to be

Dfm(M) := M⊗̂LR+
L (Γ)

as an RL⊗̂LR+
L (Γ)-module on which ϕ and Γ act by

ϕ(x⊗̂y) := ϕ(x)⊗̂y and γ′(x⊗̂y) := γ′(x)⊗̂[γ′]−1y

for x ∈ M,y ∈ R+
L (Γ) and γ′ ∈ Γ. By [KPX14], one similarly has the

following canonical quasi-isomorphisms
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C•
ϕ,γ(Dfm(M))

∼→ C•
ψ,γ(Dfm(M))

∼→ C•
ψ(M)

of complexes of R+
L (Γ)-modules, and it is known that these are perfect com-

plexes of R+
L (Γ)-modules. One also has the (extended) Iwasawa pairing

{−,−}0,Iw : (M∗)ψ=0,ι ×Mψ=0 → RL(Γ)

by §4.2 of [KPX14]. Therefore, we can similarly define the following graded
invertible R+

L (Γ)-modules

ΔIw
L,1(M) := DetR+

L(Γ)
(C•

ϕ,γ(Dfm(M)))

and

ΔIw
L (M) := ΔIw

L,1(M) �R+
L(Γ)

(ΔL,2(M)⊗L R+
L (Γ))

(remark that we have ΔR+
L(Γ),2(Dfm(M))

∼→ ΔL,2(M) ⊗L R+
L (Γ)), and we

can similarly obtain a canonical isomorphism

ΔIw
L (M)⊗R+

L(Γ) RL(Γ)
∼→ (detRL(Γ)M

ψ=0 ⊗L LL(M)∨, 0)−1

using Proposition 4.3.8 (3) [KPX14] (precisely, this proposition is proved
under the assumption that M/(ψ− 1) = M∗/(ψ− 1) = 0, but we can easily
prove the statement (3) of this proposition for general M in a similar way).

One can also generalize the p-adic Hodge theory for (ϕ,Γ)-modules over
RL. For a field F of characteristic zero and n ∈ Z�1, we set Fn := F ⊗Q

Q(μpn) and F∞ :=
⋃

n�1 Fn. Set t := log(1 + X) ∈ RL. Set Dcris(M) :=

M [1/t]Γ. For n � 1, one has the following Γ-equivariant injection

ιn : R(n)
L ↪→ Ln[[t]] : f(X) 	→ f(ζpnexp(t/pn)− 1).

Using this map, we set, for n � n(M),

D+
dif,n(M) := M (n) ⊗R(n)

L ,ιn
Ln[[t]], Ddif,n(M) := D+

dif,n(M)[1/t]

and

D∗
dif,∞(M) := lim−→

n�n(M)

D∗
dif,n(M)

for ∗ = + or ∗ = φ (the empty set), where the transition maps are defined
by D+

dif,n(M) → D+
dif,n+1(M) : x⊗ y 	→ ϕ(x)⊗ y. Using these, we set

DdR(M) := Ddif,∞(M)Γ, Di
dR(M) := (tiD+

dif,∞(M))Γ
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and

tM := DdR(M)/D0
dR(M)

for i ∈ Z. Using these (and those for M ⊗RL
RL(K), where RL(K) is the

Robba ring of a finite extension K of Qp), one can define the notions of
a crystalline (ϕ,Γ)-module, a de Rham (ϕ,Γ)-module, etc. over the Robba
ring. In particular, for any de RhamM (which is also known to be potentially
semi-stable), one can define Dpst(M) and its associated L-representation
W (M) of ′WQp

, as we usually do for de Rham representations of GQp
. By

§2 of [Na14b], one can also generalize the Bloch-Kato’s fundamental exact
sequence

(17) 0 → H0
ϕ,γ(M) → Dcris(M)

(a)−−→ Dcris(M)⊕ tM
(b)−→ H1

ϕ,γ(M)

(c)−→ Dcris(M
∗)∨ ⊕D0

dR(M)
(d)−−→ Dcris(M

∗)∨ → H2
ϕ,γ(M) → 0,

as in the exact sequence (3) in §2.1 for any de Rham M . Using this, one can
define the de Rham ε-isomorphism

εdRL (M) : 1L
∼→ ΔL(M)

for any de Rham M (see §3.3 of [Na14b] for the precise definition) in the
same way as that for de Rham V .

Let D be an étale (ϕ,Γ)-module over EL. Then, one has the following
canonical comparison isomorphisms

ΔL(D)
∼→ ΔL(Drig)

and

ΔIw
L (D)⊗ΛL(Γ) R+

L (Γ)
∼→ ΔIw

L (Drig)

by Proposition 2.7 [Li08] and Theorem 1.9 of [Po13] respectively. For any
de Rham L-representation V of GQp

, one has canonical isomorphisms

DdR(V )
∼→ DdR(D(V )rig), Dcris(V )

∼→ Dcris(D(V )rig)

and

W (V )
∼→ W (D(V )rig).

Moreover, under these identifications, one also has

(18) εdRL (V ) = εdRL (D(V )rig)
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under the isomorphism ΔL(V )
∼→ ΔL(D(V ))

∼→ ΔL(D(V )rig) (see [Na14b]),
by which we freely identify the both sides of (18) with each other.

3.3.2. The comparison of our local ε-isomorphism with that de-
fined in [Na14b]. Now, let us go back to our situation. Let D be an étale
(ϕ,Γ)-module over EL of rank two. We assume that D is trianguline, which
means that there exist a finite extension L′ of L and continuous homomor-
phisms δ1, δ2 : Q×

p → (L′)× such that Drig ⊗L L′ sits in an exact sequence of
the following form

(19) 0 → RL′(δ1) → Drig ⊗L L′ → RL′(δ2) → 0.

Since scalar extensions do not affect our results, we assume that L′ = L
from now on. In our previous article [Na14b], we defined an ε-isomorphism

εIwL (RL(δ)) : 1R+
L(Γ)

∼→ ΔIw
L (RL(δ))

for any continuous homomorphism δ : Q×
p → L×, and showed that this

satisfies the same conditions (1), (3), (4) and (5) in Conjecture 2.1. The
main result of this subsection is the following theorem.

Theorem 3.9. Under the situation above, one has an equality

εIwL (D)⊗ idR+
L(Γ) = εIwL (RL(δ1)) � εIwL (RL(δ2))

under the canonical isomorphisms

ΔIw
L (D)⊗ΛL(Γ) R+

L (Γ)
∼→ ΔIw

L (Drig)
∼→ ΔIw

L (RL(δ1)) � ΔIw
L (RL(δ2)),

where the latter is induced by the short exact sequence (19).

Before proving this theorem, we first show the equality εL(D) = εdRL (D)
for trianguline and de Rham D as a corollary of this theorem.

Corollary 3.10. Let D be an étale (ϕ,Γ)-module over EL of rank two which
is de Rham and trianguline, then we have

εL(D) = εdRL (D).

Proof. Specializing the equality εIwL (D)⊗idR+
L(Γ)= εIwL (RL(δ1))�εIwL (RL(δ2))

in the above theorem by the continuous L-algebra morphism f1 : R+
L (Γ) →

L : [γ′] 	→ 1 (∀γ′ ∈ Γ), we obtain an equality

εL(D) = εL(RL(δ1)) � εL(RL(δ2)).
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Then, the corollary follows from the equalities

εL(RL(δi)) = εdRL (RL(δi))

for i = 1, 2 (Theorem 3.13 of [Na14b]) and

εdRL (D) = εdRL (Drig) = εdRL (RL(δ1)) � εdRL (RL(δ2))

(Lemma 3.9 of [Na14b]).

To show the theorem above, we first prove a lemma concerning the ex-
plicit description of the extended Iwasawa pairing

{−,−}0,Iw : (RL(δ)
∗)ψ=0,ι ×RL(δ)

ψ=0 → RL(Γ)

for M = RL(δ). We identify RL(δ
−1) with RL(δ)

∨ via the isomorphism

RL(δ
−1)

∼→ RL(δ)
∨ : feδ−1 	→ [geδ 	→ fg].

Lemma 3.11. The extended Iwasawa pairing

{−,−}0,Iw : (RL(δ)
∗)ψ=0,ι ×RL(δ)

ψ=0 → RL(Γ)

satisfies the equality

{λ1 ·ι ((1 +X)−1eδ−1 ⊗ e1), λ2 · ((1 +X)eδ)}0,Iw = λ1λ2

for any λ1, λ2 ∈ RL(Γ).

Proof. We first remark that the isomorphism

εIwL (RL(δ))⊗ idRL(Γ) : 1RL(Γ)
∼→ ΔIw

L (RL(δ))⊗R+
L(Γ) RL(Γ)

is equal to the one induced by the isomorphism

θ(RL(δ)) : RL(Γ)⊗L L(δ)
∼→ RL(δ)

ψ=0 : λ⊗ eδ 	→ λ · ((1 +X)−1eδ)

and the isomorphism ΔIw
L (RL(δ))

∼→ (RL(δ)
ψ=0⊗LL(δ)

∨, 0)−1. This follows
easily from the definition of εIwL (RL(δ)) given in §4.1 of [Na14b].

Since one has

εIwL (RL(δ)
∗)ι = εR+

L(Γ)
(Dfm(RL(δ))

∗)

under the canonical isomorphism

ΔIw
L (RL(δ)

∗)ι
∼→ ΔR+

L(Γ)(Dfm(RL(δ))
∗),
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the isomorphism εR+
L(Γ)(Dfm(RL(δ))

∗)⊗ idRL(Γ) is equal to the one induced
by the isomorphism

θ(RL(δ)
∗)ι : RL(Γ)⊗L L(δ−1)(1)

∼→ (RL(δ)
∗)ψ=0,ι : λ⊗ (eδ−1 ⊗ e1)

	→ λ ·ι ((1 +X)−1eδ−1 ⊗ e1).

Under the canonical isomorphism

ΔIw
L (RL(δ))

∼→ (ΔIw
L (RL(δ)

∗)ι)∨ � (R+
L (Γ)⊗L L(1), 0)

defined by the Tate duality (see §3.2 of [Na14b]), one has

δ(−1)[σ−1]ε
Iw
L (RL(δ))

−1 = (εIwL (RL(δ)
∗)ι)∨ � [e1 	→ 1]

by the condition (4) of Conjecture 2.1 for Dfm(RL(δ)) (which is proved in
Theorem 3.13 of [Na14b]). Using the isomorphisms θ(RA(δ)) and θ(RA(δ)

∗)ι,
we obtain from this equality the following commutative diagram of RL(Γ)-
bilinear pairings:

RL(Γ)⊗L L(δ−1)(1)×RL(Γ)⊗L L(δ)
θ(RL(δ)∗)ι×θ(RL(δ))−−−−−−−−−−−−−−→ (RL(δ)

∗)ψ=0,ι ×RL(δ)
ψ=0⏐⏐�(1⊗e

δ−1⊗e1,1⊗eδ) �→1⊗e1

⏐⏐�{−,−}0,Iw

RL(Γ)⊗L L(1)
e1 �→δ(−1)[σ−1]−−−−−−−−−−→ RL(Γ).

The lemma follows from the commutativity of this diagram.

Using this lemma, we prove the theorem as follows. As we show in the
proof, a result of Dospinescu [Do11] on the explicit description of the action

of wδD on Dψ=0
rig , which is intimately related with the action of w =

(
0 1
1 0

)
on the locally analytic vectors, is crucial for the proof.

Proof. (of Theorem 3.9) We first show the theorem when D is absolutely
irreducible. Since the canonical map R+

L (Γ) → RL(Γ) is injective, it suffices
to show the equality after the base change to RL(Γ).

By the results in V.2 of [Co10b], the involution wδD : Dψ=0 ∼→ Dψ=0

(first descends to wδD : D†,ψ=0 ∼→ D†,ψ=0, and then) uniquely extends to

wδD : Dψ=0
rig

∼→ Dψ=0
rig , and the isomorphism

εIwL (D)⊗ idRL(Γ) : 1RL(Γ)

∼→ ΔIw
L (D)⊗ΛL(Γ) RL(Γ)(

∼→ (detRL(Γ)D
ψ=0
rig ⊗L LL(D)∨, 0)−1)
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is the one which is naturally induced by the isomorphism

θ(Drig) : detRL(Γ)D
ψ=0
rig

∼→ RL(Γ)⊗L LL(Drig) :

(x ∧ y) 	→ [σ−1] · {wδD(x)⊗ z∨ ⊗ e1, y}0,Iw ⊗ z

for any z ∈ LL(Drig)
×. By the explicit descriptions of εIwL (RL(δi))⊗ idRL(Γ)

and εIwL (D)⊗ idRL(Γ), it suffices to show that the following diagram is com-
mutative:

RL(δ1)
ψ=0 ⊗RL(Γ) RL(δ2)

ψ=0 x⊗y �→x∧ỹ−−−−−−−→ detRL(Γ)D
ψ=0
rig

θ(RL(δ1))
−1⊗θ(RL(δ2))

−1

⏐⏐� ⏐⏐�θ(Drig)

(RL(Γ)⊗L L(δ1))⊗RL(Γ) (RL(Γ)⊗L L(δ2))
eδ1

⊗eδ2
�→eδ1

∧ẽδ2−−−−−−−−−−−−−→ RL(Γ)⊗L LL(Drig).

Here ỹ ∈ Dψ=0
rig (resp. ẽδ2 ∈ Drig) is a lift of y ∈ RL(δ2)

ψ=0 (resp. eδ2 ∈
RL(δ2)).

By definitions of θ(RL(δi)) and θ(Drig), and the RL(Γ)-bilinearity of the
pairings in the diagram above, it suffices to show the equality
(20)
[σ−1]·{wδD((1+X)−1eδ1)⊗(eδ1∧ẽδ2)∨⊗e1, δ2(p)

−1(1+X)−1ϕ(ẽδ2)}0,Iw = 1.

Since one has an equality

wδD((1 +X)eδ1) = δ1(−1)(1 +X)eδ1

by (the proof of) Proposition 3.2 of [Do11], one also has

wδD((1 +X)−1eδ1) = δ1(−1)wδD(σ−1((1 +X)eδ1))(21)

= δD(−1)δ1(−1)σ−1(wδD((1 +X)eδ1))

= δD(−1)δ1(−1)σ−1(δ1(−1)(1 +X)eδ1)

= δD(−1)δ1(−1)(1 +X)−1eδ1

since one has wδD ◦ σa = δD(a)σ
−1
a ◦ wδD (a ∈ Z×

p ). Using this equality and

the equality eδ1 ⊗ (eδ1 ∧ ẽδ2)
∨ = −eδ−1

2
in RL(δ

−1
2 ) ⊆ D∨

rig, the left hand side
of (20) is equal to

− δD(−1)δ1(−1)[σ−1] · {(1 +X)−1eδ−1
2

⊗ e1, δ2(p)
−1(1 +X)−1ϕ(ẽδ2)}0,Iw

= −δD(−1)δ1(−1)[σ−1] · {(1 +X)−1eδ−1
2

⊗ e1, (1 +X)−1eδ2}0,Iw
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= −δD(−1)δ1(−1)δ2(−1)[σ−1] · {(1+X)−1eδ−1
2

⊗e1, [σ−1] · ((1+X)eδ2)}0,Iw
= {(1 +X)−1eδ−1

2
⊗ e1, (1 +X)eδ2}0,Iw = 1,

where the last equality follows from the equality −δD(−1)δ1(−1)δ2(−1) = 1
and Lemma 3.11.

When D is not absolutely irreducible, then (after extending scalars L),
we have an exact sequence

0 → EL(δ1) → D → EL(δ2) → 0

for some continuous homomorphisms δ1, δ2 : Q×
p → O×. Then, the involution

wδD acts on EL(δ1)ψ=0 (in fact, it acts on any étale (ϕ,Γ)-modules), and one
can directly check that one has wδD((1+X)eδ1)) = δ1(−1)(1+X)eδ1 . Then,
the theorem follows by the same argument as in the absolutely irreducible
case.

Remark 3.12. In the last paragraph of the proof above, for any exact
sequence 0 → ER(δ1) → D → ER(δ2) → 0 of étale (ϕ,Γ)-modules over ER,
we show the equality

εIwR (D) = εIwR (ER(δ1)) � εIwR (ER(δ2))

under the canonical isomorphism ΔIw
R (D)

∼→ ΔIw
R (ER(δ1)) � ΔIw

R (ER(δ2)),
which shows that our ε-isomorphism satisfies the condition (2) in Conjecture
2.1.

3.4. The verification of the de Rham condition: the
non-trianguline case

By the results in previous subsection, it remains to show the case (ii) of
Theorem 3.1 (3) for non-trianguline ones. Precisely, it suffices to show the
following theorem, whose proof will be given in the last part of this section.

Theorem 3.13. Let D be an étale (ϕ,Γ)-module over EL of rank two which
is de Rham and non-trianguline. Assume that the Hodge-Tate weights of D
are {k1, k2} such that k1 � 0 and k2 � 1. Then, we have

εL(D) = εdRL (D).

We first reduce the proof of this theorem to Proposition 3.14 below by
explicitly describing the both sides of the equality in the theorem, then,
in the last part of this subsection, we prove this key proposition using the
Colmez’s theory of Kirillov model of locally algebraic vectors Π(D)alg of
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Π(D) and the Emerton’s theorem on the compatibility of the p-adic and the
classical local Langlands correspondence.

Hence, we first explicitly describe the ε-isomorphism and the de Rham
ε-isomorphism under the assumption in the theorem above.

3.4.1. Explicit description of εdRL (D). From now on, let D be an étale
(ϕ,Γ)-module over EL of rank two which is de Rham and non-trianguline
with the Hodge-Tate weights {k1, k2} such that k1 � 0 and k2 � 1. We set

DdR(D) := DdR(V (D)), W (D) := W (V (D)), etc.

We remark that, under the assumption that D is non-trianguline, D is ab-
solutely irreducible. One has

dimLD
i
dR(D) = 1 if and only if − (k2 − 1) � i � −k1.

In particular, one has dimLD
0
dR(D) = 1. We fix a basis {f1, f2} of DdR(D)

over L such that f1 ∈ D0
dR(D). Then, we have

tD := DdR(D)/D0
dR(D) = Lf2

where f2 ∈ tD is the image of f2. Since D is absolutely irreducible, we have

H0
ϕ,γ(D) = H2

ϕ,γ(D) = 0, dimLH
1
ϕ,γ(D) = 2

and the canonical specialization maps

ιD : Dψ=1 → H1
ϕ,γ(D)

and

ιD∗ : (D∗)ψ=1 → H1
ϕ,γ(D

∗)

are surjective since the cokernel is contained in D/(ψ − 1) which is zero by
the absolutely irreducibility. Hence, we obtain a canonical isomorphism

ΔL,1(D)
∼→ (detLH

1
ϕ,γ(D), 2)−1,

and the Bloch-Kato’s exact sequence for D is just the following short exact
sequence

0 → tD
exp−−→ H1

ϕ,γ(D)
exp∗

−−−→ D0
dR(D) → 0.

Hence, the determinant detLH
1
ϕ,γ(D) has a basis of the form y ∧ exp(f2)

such that exp∗(y) �= 0.
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We also fix a base eD of LL(D), and set hD := k1 + k2. Since we have

detLDdR(D) = DdR(detRL
D) = (L∞t−hDeD)

Γ,

there exists a unique Ω ∈ L×
∞ such that

f1 ∧ f2 =
1

ΩthD
eD =: fD.

If we define a map

(22) α : Dψ=1 ιD−→ H1
ϕ,γ(D) → L

by the formula

exp∗(ιD(x)) := α(x)f1

for x ∈ Dψ=1, the de Rham ε-isomorphism εdRL (D) is defined as the com-
posite of the following isomorphisms

εdRL (D) : 1L
θ1(D)−−−→ ΔL,1(D) � DetL(DdR(D))

id�θ2(D)−−−−−−→ ΔL,1(D) � ΔL,2(D) = ΔL(D)

where the isomorphisms θ1(D) and θ2(D) are respectively induced by the
isomorphisms defined by, for x ∈ Dψ=1 such that α(x) �= 0,

θ1(D) : detLH
1
ϕ,γ(D)

∼→ detLDdR(D) : ιD(x) ∧ exp(f2)

	→ Γ(D)exp∗(ιD(x)) ∧ f2 = Γ(D)α(x)f1 ∧ f2

and

θ2(D)−1 : LL(D)
∼→ detLDdR(D) : eD 	→ 1

εL(W (D))thD
eD.

Here, we remark that we have Γ(D) = (−1)k1

(−k1)!
(k2 − 1)!. Hence, using α and

Ω, the isomorphism

η(D) := θ2(D) ◦ θ1(D) : detLH
1
ϕ,γ(D)

∼→ LL(D)

is explicitly described as follows:

(23) η(D)(ιD(x) ∧ exp(f2)) = Γ(D)εL(W (D))Ω−1α(x)eD.

3.4.2. Explicit description of εL(D). We next consider the isomor-
phism εL(D). Let
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[−,−]dR : DdR(D
∗)×DdR(D) → L

be the canonical dual pairing. We remarked in the proof of Proposition 3.4
that, under the assumption that D is absolutely irreducible, the natural
map 1 − ϕ : Dψ=1 → Dψ=0 is injective, by which we identify Dψ=1 with
C(D) (and similarly for D∗), and one has ωδD(C(D)) ⊗L LL(D)∨ = C(D∨)
under the canonical isomorphism D⊗LLL(D)∨

∼→ D∨. By this fact and the
definition of εL(D), εL(D) is the isomorphism which is naturally induced by
the isomorphism

η′(D) : detLH
1
ϕ,γ(D)

∼→ LL(D) = ((LeD)
∨)∨

defined by the following formula, for x ∈ Dψ=1 such that α(x) �= 0,

(24)
η′(D)(ιD(x)∧exp(f2))((eD)∨) = 〈ιD∗(σ−1(ωδD(x)⊗e∨D⊗e1)), exp(f2)〉Tate

= −[exp∗(ιD∗(σ−1(ωδD(x)⊗ e∨D ⊗ e1))), f2]dR =: (∗),

where the second equality follows from Proposition 2.16 of [Na14a]. Using
the canonical isomorphism (identification)

D0
dR(D

∗) = Lf1 ⊗ f∨
D ⊗ t−1e1

induced by the canonical isomorphism D ⊗L LL(D)∨
∼→ D∨ (remark that

we have ΩthDe∨D = f∨
D), we define a map

(25) β : DδD(p)ψ=1 y 
→ιD∗(σ−1(y⊗e∨
D⊗e1))−−−−−−−−−−−−−−−→ H1

ϕ,γ(D
∗) → L

by the formula

exp∗(ιD∗(σ−1(y ⊗ e∨D ⊗ e1))) := β(y)f1 ⊗ f∨
D ⊗ t−1e1

for y ∈ DδD(p)ψ=1. Using this β, the last term (∗) in the equalities (24) is
equal to

(26) (∗) = −[β(ωδD(x))f1 ⊗ f∨
D ⊗ t−1e1, f2]dR = β(wδD(x)).

We see from the formulae (24) and (26) that the isomorphism

η′(D) : detLH
1
ϕ,γ(D)

∼→ LL(D)

is explicitly described as follows:

(27) η′(D)(ιD(x) ∧ exp(f2)) = β(wδD(x))eD.
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The formulae (23) and (27) show that the equality εL(D) = εdRL (D)
follows from the following key proposition. Thus the proof of Theorem 3.13
is reduced to this proposition.

Proposition 3.14. For any x ∈ Dψ=1, we have

β(wδD(x)) = Γ(D)εL(W (D))Ω−1α(x).

In the rest of this subsection, we prove this key proposition. The proof
will be given in the last part of this subsection. Our proof heavily depends
on the Colmez’s theory of Kirillov model of locally algebraic vectors Π(D)alg

of Π(D) [Co10b], which we recall in details below.

3.4.3. Recall of the p-adic local Langlands correspondence for

GL2(Qp). Set G := GL2(Qp), B :=

{(
∗ ∗
0 ∗

)
∈G

}
, P :=

(
Q×

p Qp

0 1

)
,

P+ :=

(
Zp \ {0} Zp

0 1

)
and Z :=

{(
a 0
0 a

)∣∣∣∣ a ∈ Q×
p

}
. We identify Z with

Q×
p via the isomorphism Q×

p
∼→ Z : a 	→

(
a 0
0 a

)
.

Let us briefly recall the construction of the representation Π(D) of G

for our D. Let the monoid P+ act on D by the rule

(
pna b
0 1

)
· x := (1 +

X)bϕn(σa(x)) for n � 0, a ∈ Z×
p , b ∈ Zp and x ∈ D. Using the involution

wδD : Dψ=0 ∼→ Dψ=0, we define a topological L-vector space

D �δD P1 := {(z1, z2) ∈ D ×D | wδD((1− ϕψ)z1) = (1− ϕψ)z2}

and an L-linear map

ResZp
: D �δD P1 → D : (z1, z2) 	→ z1.

By the recipe in [Co10b] II, one can define a continuous action of G on

D�δD P1 with the central character δD such that

(
0 1
1 0

)
· (z1, z2) = (z2, z1)

and the map ResZp
is P+-equivariant. We denote by D�Qp the topological

L-vector space consisting of the sequences (zn)n�0 such that ψ(zn+1) = zn
for all n � 0. One can define a continuous action of P on D � Qp by(

a 0
0 1

)
· (zn)n�0 := (σa(xn))n�0,

(
p 0
0 1

)
· (xn)n�0 := (xn+1)n�0
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and (
1 b/pm

0 1

)
· (zn)n�0 := (ψm((1 +X)p

nbzn+m))n�0

for a ∈ Z×
p , b ∈ Zp and m � 0.

Take an étale (ϕ,Γ)-submodule D0 ⊆ D over EO such that D0[1/p] = D.
By [Co10a], there exists the smallest ψ-stable compact O[[X]]-submodules of

D0, which we denote by D�
0 ⊆ D0. One also has the largest ψ-stable compact

O[[X]]-submodule D�
0 ⊆ D0 on which ψ is surjective. We set D� := D�

0[1/p]

and D� := D�
0[1/p], which are independent of the choice of D0. We note that

one has D� = D� under our assumption that D is absolutely irreducible
(Corollaire II.5.21 of [Co10a]). One also has (D�)ψ=1 = (D�)ψ=1 = Dψ=1,
where the second equality follows from Proposition II.5.6 of [Co10a]. Define
a sub L[B]-module D� �δD P1 of D �δD P1 by

D� �δD P1 :=

{
z ∈ D �δD P1

∣∣∣∣ ResZp

((
pn 0
0 1

)
· z
)

∈ D� for all n � 0

}
.

One of the deepest results in the theory of the p-adic local Langlands cor-
respondence for GL2(Qp) is that the pair (D, δD) is G-compatible, which
means that D� �δD P1 is stable under the action of G (Théorème II.3.1 of
[Co10b], Proposition 10.1 of [CDP14a]). Finally, one defines

Π(D) := D �δD P1/D� �δD P1

which is a topologically irreducible unitary L-Banach admissible represen-
tation of G.

3.4.4. Recall of the Kirillov model of the locally algebraic vectors.
We next recall in details the Colmez’s theory of the Kirillov model of the
locally algebraic vectors Π(D)alg of Π(D). We set L∞[[t]] :=

⋃
n�1 Ln[[t]].

For the fixed ζ = {ζpn}n�1 ∈ Zp(1), we define a homomorphism

[ζ
(−)

] : Qp → ((B̃+)×)HQp : a 	→ [ζ
a
].

For V := V (D), we set

D̃+ := (V ⊗Qp
B̃+)HQp , D̃ := (V ⊗Qp

B̃)HQp and D̃+
dif := (V ⊗Qp

B+
dR)

HQp .

One has a canonical isomorphism

D̃+
dif

∼→ D+
dif,∞(Drig)⊗Qp,∞[[t]] (B

+
dR)

HQp .
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The natural inclusion ι0 : B̃+ ↪→ B+
dR induces a canonical Γ-equivariant

inclusion

ι0 : D̃
+ ↪→ D̃+

dif .

The group B acts on D̃+, D̃ and D̃/D̃+ by the rule, for z ∈ D̃+, D̃, D̃/D̃+,(
a 0
0 a

)
· z :=δD(a)z,

(
pnb 0
0 1

)
· z := ϕn(σb(z)),

(
1 c
0 1

)
· z := [ζ

c
]z

for a ∈ Q×
p , b ∈ Z×

p , n ∈ Z and c ∈ Qp.

We set k := k2 − k1 � 1. We denote by

LP

(
Q×

p ,
1

tk
D̃+

dif/D̃
+
dif

)Γ

the L-vector space consisting of functions φ : Q×
p → 1

tk D̃
+
dif/D̃

+
dif such that

the support is compact in Qp (i.e. φ( 1
pnZ×

p ) = 0 for any sufficiently large n)

and σa(φ(x)) = φ(ax) for any a ∈ Z×
p and x ∈ Q×

p . We equip this space with
an action of B by((

a 0
0 a

)
· φ
)
(x) := δD(a)φ(x),

((
a 0
0 1

)
· φ
)
(x) := φ(ax),((

1 b
0 1

)
· φ
)
(x) := ι0([ζ

bx
])φ(x)

for a ∈ Q×
p and b ∈ Qp. Remark that, for a = b

pn ∈ Q×
p such that b ∈ Zp,

n � 0, one has ι0([ζ
a
]) = ζbpnexp(at) ∈ L∞[[t]]×.

For z ∈
⋃

n�0
1

ϕn(X)k D̃
+/D̃+ (this is a B-stable subspace of D̃/D̃+),

define a function φz ∈ LP
(
Q×

p ,
1
tk D̃

+
dif/D̃

+
dif

)Γ
by

φz(x) := ι0

((
x 0
0 1

)
· z
)

for x ∈ Q×
p . By Lemme VI.5.4 (i) of [Co10b], this correspondence induces a

B-equivariant inclusion

⋃
n�0

1

ϕn(X)k
D̃+/D̃+ ↪→ LP

(
Q×

p ,
1

tk
D̃+

dif/D̃
+
dif

)Γ

: z 	→ φz.
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Let us write

N+
dif,∗(Drig) := DdR(Drig)⊗L L∗[[t]]

for ∗ = n � n(Drig) or ∗ = ∞. We set

X−
∞ := (tk1N+

dif,∞(D))/D+
dif,∞(D).

Since we have D+
dif,∞(Drig) = L∞[[t]](tk1f1)⊕ L∞[[t]](tk2f2), one has

X−
∞ = (L∞[[t]]/tkL∞[[t]])⊗L L(tk1f2) ⊆

1

tk
D̃+

dif/D̃
+
dif .

We denote by

LP(Q×
p , X

−
∞)Γ

the B-stable L-subspace of LP
(
Q×

p ,
1
tk D̃

+
dif/D̃

+
dif

)Γ
consisting of functions φ

with values in X−
∞, in other words, consisting of functions

φ : Q×
p → X−

∞ : x 	→
k−1∑
i=0

φi(x)(xt)
i+k1 ⊗ f2

such that, for any 0 � i � k − 1, the function φi : Q×
p → L∞ is locally

constant with compact support in Qp and φi(ax) = σa(φi(x)) for any a ∈ Z×
p

and x ∈ Q×
p . We denote by

LPc(Q
×
p , X

−
∞)Γ

the B-stable L-subspace of LP(Q×
p , X

−
∞)Γ consisting of functions φ with

compact support in Q×
p , i.e. φi(p

±nZ×
p ) = 0 for sufficiently large n.

By Corollaire II.2.9 (ii) of [Co10b], one has a canonical B-equivariant
topological isomorphism

D̃/D̃+ ∼→ Π(D)

(under the assumption that D is absolutely irreducible), by which we iden-
tify the both sides with each other. We denote by Π(D)alg the G-stable
L-subspace of Π(D) consisting of locally algebraic vectors, which is non zero
due to Théorème VI.6.18 of [Co10b]. By Lemme VI.5.3, Corollaire VI.5.9,
and Théorème VI.6.30 of [Co10b], one has

Π(D)alg ⊆
⋃
n�0

1

ϕn(X)k
D̃+/D̃+,
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and the map z 	→ φz defined above induces a B-equivariant isomorphism

(28) Π(D)alg
∼→ LPc(Q

×
p , X

−
∞)Γ

under our assumption that D is non-trianguline.
We denote by

LCc(Q
×
p , L∞)Γ

the L-vector space consisting of locally constant functions φ : Q×
p → L∞

such that the support of φ is compact in Q×
p and that σa(φ(x)) = φ(ax) for

any a ∈ Z×
p and x ∈ Q×

p . We similarly define an action of B on this space
by the rule((

a 0
0 a

)
· φ
)
(x) :=

δD(a)

ak−1
φ(x),

((
a 0
0 1

)
· φ
)
(x) := φ(ax),((

1 b
0 1

)
· φ
)
(x) := ψζ(bx)φ(x)

for a ∈ Q∗
p and b ∈ Qp, where ψζ : Qp → L×

∞ is the additive character

associated to ζ (i.e. we define ψζ(a) := ζbpn ∈ L×
∞ for a = b

pn ∈ Qp with

b ∈ Zp and n � 0). Let Symk−1L2 be the (k− 1)-th symmetric power of the
standard representation L2 of G. Set Symk−1L2 ⊗ detk1 := ⊕k−1

i=0 Le
i
1e

k−1−i
2

on which G acts by(
a b
c d

)
· ei1ek−1−i

2 := (ad− bc)k1(ae1 + ce2)
i(be1 + de2)

k−1−i.

Then, one has a canonical (up to the choice of f2) B-equivariant isomorphism

(29) LCc(Q
×
p , L∞)Γ ⊗L Symk−1L2 ⊗ detk1

∼→ LPc(Q
×
p , X

−
∞)Γ :

k−1∑
i=0

φi ⊗ ei1e
k−1−i
2 	→

[
x 	→

k−1∑
i=0

(k − 1− i)!φi(x)(xt)
i+k1 ⊗ f2

]
.

Therefore, as the composite of isomorphism (28) and the inverse of (29),
one obtains a B-equivariant isomorphism

(30) Π(D)alg
∼→ LCc(Q

×
p , L∞)Γ ⊗L Symk−1L2 ⊗ detk1 .

Using the map z 	→ φz, we define a Γ
∼→
(
Z×
p 0

0 1

)
-equivariant map

ι−i : Π(D)alg → X−
∞ : z 	→ φz(p

−i)(= ι0(ϕ
−i(z)))

for each i ∈ Z.
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Set

X+
n := D+

dif,n(Drig)/t
k2N+

dif,n(Drig)
∼→ (Ln[[t]]/t

kLn[[t]])⊗L L(tk1f1)

for each n � n(Drig), and set

X+ � Qp := lim←−
n

X+
n

where the transition maps are the maps induced by

1

p
TrLn+1/Ln

: Ln+1((t))fi

→ Ln((t))fi :
∑
m∈Z

amtmfi 	→
∑
m∈Z

1

p
TrLn+1/Ln

(am)tmfi

for i = 1, 2. Set gp :=

(
p 0
0 1

)
. For each i ∈ Z and n � n(Drig), define a

Γ
∼→
(
Z×
p 0

0 1

)
-equivariant map

ι+i,n : D� �δD P1 → X+
n : z 	→ ιn(ResZp

(gn−i
p · z)) ∈ X+

n ,

where ιn : D
(n)
rig ↪→ D+

dif,n(Drig) is the canonical map (remark that we have

D� ⊆ Drig by Corollaire II.7.2 of [Co10a]), which also induces a Γ-equivariant
map

ι+i : D� � P1 → X+
∞ : z 	→ (ι+i,n(z))n�n(Drig).

Let

〈−,−〉 : D∗ ×D → EL(1)
be the canonical EL-bilinear pairing. Since we haveD+

dif,n(RL(1)) = Ln[[t]]e1,
this pairing also induces an Ln((t))-bilinear pairing

〈−,−〉 : Ddif,n(D
∗
rig)×Ddif,n(Drig) → Ln((t))e1,

by which we identify D+
dif,n(D

∗
rig) with HomLn[[t]](D

+
dif,n(Drig), Ln[[t]]e1).

Then, using the canonical isomorphism D+
dif,n(detRL

Drig)
∼→ LL(D) ⊗L

Ln[[t]], we define a canonical isomorphism
(31)
D+

dif,n(Drig)⊗LLL(D)∨⊗LL(1)
∼→ D+

dif,n(D
∗
rig) : x⊗z⊗e1 	→ [y 	→ z(y∧x)e1].
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Using this isomorphism and the fixed basis eD ∈ LL(D), we define a pairing

[−,−]dif : Ddif,n(Drig)×Ddif,n(Drig) : (x, y) 	→ resL(〈σ−1(x⊗ e∨D ⊗ e1), y〉),

where resL is the map

resL : Ln((t))e1 → L :
∑
m∈Z

amtme1 	→
1

[Qp(ζpn) : Qp]
TrLn/L(a−1).

We remark that one has

[σa(x), σa(y)]dif = δD(a)[x, y]dif

for any a ∈ Z×
p . This pairing also induces a pairing

[−,−]dif : X
+
n ×X−

n → L,

and, by taking limits, one also obtains a pairing

[−,−]dif : X
+ � Qp ×X−

∞ → L.

Similarly, using the canonical isomorphism D⊗LLL(D)∨⊗LL(1)
∼→ D∗,

we define a pairing

[−,−] : D ×D → L : (x, y) 	→ res0(〈σ−1(x⊗ e∨D ⊗ e1), y〉)

using the residue map

res0 : EL(1) → L : f(X)e1 	→ ResX=0

(
f(X)

1 +X

)
.

This pairing also induces a pairing

[−,−]P1 : D �δD P1 ×D �δD P1

→ L : ((z1, z2), (z
′
1, z

′
2)) 	→ [z1, z

′
1] + [ϕψ(z2), ϕψ(z

′
2)],

which satisfies

[g · x, g · y]P1 = δD(det(g))[x, y]P1

for any x, y ∈ D �δD P1 and g ∈ G by Théorème II.1.13 of [Co10b]. By
Théorème II.3.1 of [Co10b], this pairing [−,−]P1 satisfies that [x, y]P1 = 0 for
any x, y ∈ D� �δD P1 and induces a G-equivariant topological isomorphism

(32) D� �δD P1 ∼→ Π(D)∨ ⊗L (δD ◦ det) : x 	→ [y ∈ Π(D) 	→ [x, y]P1 ],
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where we set Π(D)∨ := Homcont
L (Π(D), L). The following proposition is

crucial for the proof of the key proposition

Proposition 3.15. (PropositionVI.5.12.(ii) of [Co10b]) For any x ∈ D��δD

P1 and y ∈ Π(D)alg, one has

[x, y]P1 =
∑
i∈Z

δD(p
i)[ι+i (x), ι

−
i (y)]dif .

3.4.5. Explicit formulae of the maps α and β. Using these prelimi-
naries, we prove two propositions below (Proposition 3.16 and Proposition
3.18) which explicitly describe the maps α and β introduced in (22) and
(25) in terms of the pairing [−,−]P1 .

Since D is absolutely irreducible, one has D� = D�, and then one has a
natural P -equivariant isomorphism

D� �wδD
P1 ∼→ D� � Qp : z 	→

(
ResZp

(gnp · z)
)
n�0

.

This isomorphism and the inverse of the natural isomorphism

Dψ=1 = (D�)ψ=1 = (D�)ψ=1 ∼→ (D� � Qp)
gp=1 : z 	→ (zn)n�0,

where zn := z for any n, induce an isomorphism

(D� �wδD
P1)gp=1 ∼→ Dψ=1 : z 	→ ResZp

(z).

For x ∈ Dψ=1, we denote by x̃ ∈ (D� �wδD
P1)gp=1 the element which

corresponds to x via the last isomorphism.
For each m ∈ Z, define a function

φm ∈ LPc(Q
×
p , X

−
∞)Γ

by

φm(pna) :=

{
σa(Ωt

hD−1)f2 if n = m

0 if n �= m

for n ∈ Z and a ∈ Z×
p . Since we have 1

ΩthD
eD = f1 ∧ f2 ∈ DdR(detEL

D), we

have σa(Ω) =
detD(σa)

ahD
Ω = detW (D)(σa)Ω for any a ∈ Z×

p . Hence, we have

σa

(
ΩthD−1

)
f2 = detW (D)(σa)Ω(at)

hD−1f2.
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Proposition 3.16. For any x ∈ Dψ=1 and m ∈ Z, we have

α(x) = −p− 1

p
δD(−pm)[x̃, φm]P1 .

Proof. Since x̃ is fixed by gp, for any i ∈ Z and n � n(Drig), we have

ι+i,n(x̃) = ιn
(
ResZp

(gn−i
p · x̃)

)
= ιn(ResZp

(x̃)) = ιn(x).

Hence, we have

ι+i (x̃) = (ι+i,n(x̃))n�n(Drig) = (ιn(x))n�n(Drig) ∈ X+ � Qp.

Then, by Proposition 3.15, we have

[x̃, φm]P1 =
∑
i∈Z

δD(p
i)[(ιn(x))n�n(Drig), φm(p−i)]dif

= δD(p
−m)[(ιn(x))n�n(Drig),Ωt

hD−1f2]dif = δD(p
−m)[ιn(x),Ωt

hD−1f2]dif

for any n � n(Drig).
For an L[Γ]-module N , we set H1

γ(N) := NΔ/(γ− 1)NΔ using the fixed
Δ ⊆ Γtor and γ ∈ Γ in §2.2.

By Proposition 2.16 of [Na14a], one has a commutative diagram

H1
ϕ,γ(D) −−−−→ H1

γ(Ddif,∞(D))

id

⏐⏐� �⏐⏐x 
→log(χ(γ))[x]

H1
ϕ,γ(D)

exp∗

−−−−→ DdR(D),

where the upper horizontal arrow is the map defined by [(x, y)] 	→ [ιn(x)] for
any sufficiently large n � n(Drig) (which is independent of n). We remark
that the right vertical arrow is isomorphism since D is de Rham. Hence, we
have

[ιn(ιD(x))] = [log(χ(γ))α(x)f1] ∈ H1
γ(Ddif,∞(D))

for any n � n(Drig) by definition of α. Since we have

ιn(ιD(x)) =
p− 1

p
log(χ(γ))pΔ · ιn(x),

we have

[ιn(x),Ωt
hD−1f2]dif =

p

p− 1
[α(x)f1,Ωt

hD−1f2]dif
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=
p

p− 1
ResL(〈σ−1(α(x)f1 ⊗ e∨D ⊗ e1),Ωt

hD−1f2〉)

=
p

p− 1
δD(−1)α(x)ResL(〈f1 ⊗ e∨D ⊗ e1,Ωt

hD−1f2〉)

= − p

p− 1
δD(−1)α(x),

where the first equality follows form Lemma 3.17 below. Hence, we obtain
the equality

α(x) = −p− 1

p
δD(−pm)[x̃, φm]P1 .

Recall that we put pΔ := 1
|Δ|
∑

σ∈Δ[σ] ∈ L[Δ].

Lemma 3.17. The following hold.

(i) For y ∈ Ddif,n(D), we have

[y,ΩthD−1f2]dif = [pΔ · y,ΩthD−1f2]dif .

(ii) For y ∈ Ddif,n(D), we have

[(γ − 1) · y,ΩthD−1f2]dif = 0.

Proof. We first remark that, for any x, y ∈ Ddif,n(Drig) and a ∈ Z×
p , we have

[σa(x), y]dif = δD(a)[x, σ
−1
a (y)]dif .

Using these, for y and y1 as in (i), we have

[pΔ · y,ΩthD−1f2]dif = [y, pδDΔ ·
(
ΩthD−1

)
f2]dif = [y,ΩthD−1f2]dif ,

where we set pδDΔ := 1
|Δ|
∑

σ∈Δ δD(χ(σ))[σ]
−1 ∈ L[Δ], and the third equality

follows from the fact that σa(Ωt
hD−1) = δD(a)Ωt

hD−1 for any a ∈ Z×
p .

Similarly, we have

[(γ − 1) · y,ΩthD−1f2]dif = [y, (δD(χ(γ))γ
−1 − 1) · (ΩthD−1)f2]dif = 0.

We next consider the map β : DδD(p)ψ=1 → L. We first recall that,
under the canonical inclusions 1 − ϕ : Dψ=1 ↪→ Dψ=0 and 1 − δD(p)

−1ϕ :
DδD(p)ψ=1 ↪→ Dψ=0, one has wδD(D

ψ=1) = DδD(p)ψ=1 by Proposition V.2.1
of [Co10b].

Similarly, for the case Dψ=1, one has the following isomorphism

(D� �wδD
P1)gp=δD(p) ∼→ DδD(p)ψ=1 : z 	→ ResZp

(z),
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which induces the commutative diagram (set gp=

(
p 0
0 1

)
, w=

(
0 1
1 0

)
∈G)

(D� �wδD
P1)gp=1

z 
→ResZp (z)−−−−−−−→ Dψ=1

z 
→w·z
⏐⏐� ⏐⏐�z 
→wδD

(z)

(D� �wδD
P1)gp=δD(p)

z 
→ResZp (z)−−−−−−−→ DδD(p)ψ=1

in which all the arrows are isomorphism. For x ∈ DδD(p)ψ=1, we denote by
x̃ ∈ (D� �wδD

P1)gp=δD(p) the element such that ResZp
(x̃) = x.

For each m ∈ Z, define a function

ψm ∈ LPc(Q
×
p , X

−
∞)Γ

by

ψm(pma) :=

{
f2 if n = m

0 if n �= 0

and for n ∈ Z and a ∈ Z×
p .

Proposition 3.18. For any x ∈ DδD(p)ψ=1, m ∈ Z, we have

β(x) = −p− 1

p
[x̃, ψm]P1 .

Proof. By Proposition 3.15, we have

[x̃, ψm]P1 =
∑
i∈Z

δD(p
i)[ι+i (x̃), ψm(pi)]dif = δD(p)

m[ι+m(x̃), f2]dif .

Since we have

ι+m,n(x̃) = ιn
(
ResZp

(gn−m
p · x̃)

)
= δD(p)

n−mιn(x)

for any n � n(Drig), we have

[x̃, ψm]P1 = δD(p)
n[ιn(x), f2]dif .

On the other hand, since we have

exp∗(ιD∗(σ−1(x⊗ e∨D ⊗ e1))) = β(x)f1 ⊗ f∨
D ⊗ t−1e1

by definition of β, we obtain
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[ιn(ιD∗(σ−1(x⊗ e∨D ⊗ e1)))]

= log(χ(γ))β(x)[f1 ⊗ f∨
D ⊗ t−1e1] ∈ H1

γ(Ddif,∞(D∗))

by Proposition 2.16 of [Na14a]. Since we have

ιn(ιD∗(σ−1(x⊗ e∨D ⊗ e1))) =
p− 1

p
log(χ(γ))pΔ · (ιn(σ−1(x⊗ e∨D ⊗ e1)))

=
p− 1

p
log(χ(γ))δD(p)

npΔ · (ιn(x)⊗ e∨D ⊗ e1),

we obtain

[ιn(x), f2]dif = δD(p)
−n p

p− 1
β(x)[ΩthD−1f1, f2]dif

= δD(p)
−n p

p− 1
β(x)ResL(〈σ−1(f1 ⊗ f∨

D ⊗ t−1e1), f2〉)

= δD(p)
−n p

p− 1
β(x)ResL(〈f1 ⊗ f∨

D ⊗ t−1e1, f2〉) = −δD(p)
−n p

p− 1
β(x),

where the first equality follows from Lemma 3.19 below. By this equality,
we obtain

[x̃, ψm]P1 = − p

p− 1
β(x),

which proves the proposition.

Lemma 3.19. The following hold.

(i) For y ⊗ e∨D ⊗ e1 ∈ Ddif,n(D
∗), set

pΔ · (y ⊗ e∨D ⊗ e1) = y1 ⊗ e∨D ⊗ e1,

then we have

[y, f2]dif = [y1, f2]dif .

(ii) For y ⊗ e∨D ⊗ e1 ∈ Ddif,n(D
∗), set

(γ − 1) · (y ⊗ e∨D ⊗ e1) = y2 ⊗ e∨D ⊗ e1,

then we have

[y2, f2]dif = 0.

Proof. We first remark that we have

[x⊗ e∨D ⊗ e1, y ⊗ e∨D ⊗ e1]dif = δD(−1)[x, y]dif
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and

σa(f2 ⊗ e∨D ⊗ e1) = δD∗(a)f2 ⊗ e∨D ⊗ e1

for any a ∈ Z×
p

For y, y1 as in (i), then we have

[y1, f2]dif = δD(−1)[y1 ⊗ e∨D ⊗ e1, f2 ⊗ e∨D ⊗ e1]dif

= δD(−1)[pΔ · (y ⊗ e∨D ⊗ e1), f2 ⊗ e∨D ⊗ e1]dif

= δD(−1)[y ⊗ e∨D ⊗ e1, p
δD∗
Δ · (f2 ⊗ e∨D ⊗ e1)]dif

= δD(−1)[y ⊗ e∨D ⊗ e1, f2 ⊗ e∨D ⊗ e1]dif

= [y, f2]dif .

We can also prove (ii) in the same way, hence we omit the proof.

3.4.6. The compatibility of the p-adic and the classical local Lang-
lands correspondence. We next recall the theorem of Emerton on the
compatibility of the p-adic and the classical local Langlands correspondence
for the non-trianguline D. Fix an isomorphism ι : L

∼→ C.
Let π′

p(D) be the irreducible smooth admissible representation of G
defined over C corresponding to the absolutely irreducible representation
W (D) ⊗L,ι C of WQp

over C of rank two via the unitary normalized local
Langlands correspondence. We remark that, under this normalization, the
local L- and ε-factors attached toW (D)⊗L,ιC coincide with those for π′

p(D),
and the central character of π′

p(D) is equal to

ι ◦ detLW (D) : Z(
∼→ Q×

p ) → C×,

where we regard detLW (D) as a character detLW (D) : Q×
p → L× via local

class field theory.
For our purpose, we need another normalization called Tate’s normal-

ization, which we define by

πp(D)L := (π′
p(D)⊗ |det|−1/2

p )⊗C,ι−1 L.

Then, it is known that πp(D)L does not depend on the choice of ι, and is
defined over L. Then, we denote πp(D) for the model of πp(D)L defined over
L. Let ωπp(D) : Q

×
p → L× be the central character of πp(D). Since we have

detLW (D) = detEL
D · x−hD , then one has an equality

(33) ωπp(D) = detLW (D) · | − |−1
p = δD · x−(hD−1),

where we set xi : Q×
p → L× : y 	→ yi for i ∈ Z.
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Theorem 3.20. Under the situation above, there exists a G-equivariant
isomorphism

(34) Π(D)alg
∼→ πp(D)⊗L Symk−1L2 ⊗ (det)k1 .

Proof. Theorem 3.3.22 of [Em] (for the non-trianguline case).

Remark 3.21. The proof of Theorem 3.3.22 of [Em] is done by a global
method using the complete cohomology of modular curves. No purely local
proof of this theorem has been known (at least to the author) until now. As

we can easily see from the proof below, this theorem is in fact equivalent
to Proposition 3.14. Hence, our proof of Proposition 3.14 given below also
depends on the global method.

3.4.7. The Kirillov model of supercuspidal representations. We

next recall a formula of the action of w :=

(
0 1
1 0

)
∈ G on the Kirillov

model of the supercuspidal representation πp(D) of G following the book of
Bushnell-Henniart [BH].

Under our assumption that D is non-trianguline, πp(D) is a supercuspi-
dal representation of G. By the classical theory of Kirillov model, then there
exists a B-equivariant isomorphism

πp(D)
∼→ LCc(Qp, L∞)Γ

which is unique up to L× (see, for example, VI.4 of [Co10b]). Using this
isomorphism, we can uniquely extend the action of B on LCc(Qp, L∞)Γ to
that of G such that this isomorphism is G-equivariant, which we denote by

πp(g) · f for g ∈ G and f ∈ LCc(Q×
p , L∞)Γ.

We now recall a formula on the action of πp(w)

(
w =

(
0 1
1 0

))
on

LCc(Qp, L∞)Γ using the ε-factor associated to πp(D). Decompose L∞ =∏
τ Lτ into a finite product of fields Lτ . For each τ , fix an isomorphism

ιτ : Lτ
∼→ C. Let

ε(πp(D)⊗L,ιτ C, s, ιτ ◦ ψζ) (s ∈ C)

be the ε-factor associated to πp(D) ⊗L,ιτ C with respect to the additive
character ιτ ◦ψζ : Qp → C×. Since (πp(D)⊗L,ιτ C)⊗ |det|1/2 corresponds to
W (D)⊗L,ιτ C via the unitary local Langlands correspondence, we have
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ε(πp(D)⊗L,ιτ C,
1

2
, ιτ ◦ ψζ) = ε((πp(D)⊗L,ιτ C)⊗ |det|1/2, 0, ιτ ◦ ψζ)

= ε(W (D)⊗L,ιτ C, ιτ ◦ ψζ) = ε(W (D)⊗L Lτ , ψζ)⊗ 1 ∈ Lτ ⊗Lτ ,ιτ
C.

Hence, εL(W (D)) =
∏

τ ε(W (D)⊗L Lτ , ψζ) ∈ (L∞)× satisfies the equality

(35) εL(W (D))⊗L∞,ιτ 1 = ε(πp(D)⊗L,ιτ C,
1

2
, ιτ ◦ ψζ)

for arbitrary τ .
For m ∈ Z and a locally constant homomorphism η : Q×

p → L×, define
a locally constant function ξη,m : Q×

p → L with compact support by

ξη,m(x) :=

{
η(x) if x ∈ pmZ×

p

0 otherwise
.

We remark that we have α−1
η ξη,k ∈ LCc(Q×

p , L∞)Γ if we take a base αηeη ∈
L∞(η)Γ since we have σa(αη) = η(a)−1αη for any a ∈ Z×

p .
Under these preliminaries, we have the following formula.

Theorem 3.22. ([BH] 37.3) For any locally constant homomorphism η :
Q×

p → L× and any m ∈ Z, we have

πp(w) · (α−1
η ξη,m) = η(−1)α−1

η εL(W (D)(η−1))ξη−1wπp(D),−a(W (D)(η−1))−m,

where a(W (D)(η−1)) is the exponent of the Artin conductor of W (D)(η−1)
(see [De73] for the definition).

Proof. We first remark that the right hand side in the theorem is contained
in LCc(Q×

p , L∞)Γ since we have

σa(εL(W (D)(η−1))) = detLW (D)(a)η(a)−2εL(W (D)(η−1))

for any a ∈ Z×
p . Since we have

εL(W (D)(η−1))⊗L∞,ιτ 1 = ε((πp(D)⊗ (η−1 ◦ det))⊗L,ιτ C,
1

2
, ιτ ◦ ψζ)

for any τ , the theorem follows from Theorem 37.3 of [BH].

Remark 3.23. We will apply this theorem only in the most simple case,
i.e. when η = 1 is the trivial homomorphism (and αη = 1).

3.4.8. Proof of the key proposition. We recall that one has a canonical
B-equivariant isomorphism
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Π(D)alg
∼→ LPc(Q

×
p , X

−
∞)Γ

(under the assumption that D is non-trianguline), by which we extend the
action of B on the right hand side to that of G such that this isomorphism
becomes G-equivariant. We denote this action by Π(g) · f for g ∈ G and
f ∈ LPc(Q×

p , X
−
∞)Γ.

To show the key proposition, we need the following corollary of Theorem
3.22.

Corollary 3.24.

Π(w) · ψm = Γ(D)
εL(W (D))

(wπp(D)(p)phD−1)a(W (D))+m
Ω−1φ−a(W (D))−m

Proof. We first remark that, under the B-equivariant isomorphism

(36) LCc(Q
×
p , L∞)Γ ⊗L Symk−1L2 ⊗ (det)k1

∼→ LPc(Q
×
p , X

−
∞)Γ :

φi ⊗ ei1e
k−1−i
2 	→ [x 	→ (k − 1− i)!φi(x)(xt)

i+k1 ]f2,

ψm ∈ LPc(Q×
p , X

−
∞)Γ corresponds to

1

(k2 − 1)!
ξ1,m ⊗ e−k1

1 ek2−1
2 ∈ LCc(Q

×
p , L∞)Γ ⊗L Symk−1L2 ⊗ (det)k1

for the trivial homomorphism 1 : Q×
p → L× : a 	→ 1. Applying Theorem

3.22 to ξ1,m, then we obtain

Π(w) · ψm =
(−1)k1

(k2 − 1)!
(πp(w) · (ξ1,m)⊗ (w · (e−k1

1 ek2−1
2 ))

=
(−1)k1

(k2 − 1)!
εL(W (D))ξwπp(D),−a(W (D))−m ⊗ ek2−1

1 e−k1

2

= Γ(D)
εL(W (D))

(wπp(D)(p)phD−1)a(W (D))+m
Ω−1φ−a(W (D))−m,

where the third equality follows from the fact that φm corresponds to

(wπp(D)(p)p
hD−1)−m

(−k1)!
Ωξwπp(D),m ⊗ ek2−1

1 e−k1

2

by the isomorphism (36).



348 Kentaro Nakamura

Finally, we prove Proposition 3.14.

Proof. (of Proposition 3.14) Take x ∈ Dψ=1. Take x̃ ∈ (D� �wδD
P1)gp=1

such that ResZp
(x̃) = x. Then, w · x̃ ∈ (D� �wδD

P1)gp=δD(p) satisfies that

ResZp
(w · x̃) = wδD(x) ∈ DδD(p)ψ=1.

By Proposition 3.16 for m = −a(W (D)), Proposition 3.18 for m = 0 and
Corollary 3.24, then we have

β(wδD(x)) = −p− 1

p
[w · x̃, ψ0]P1 = −p− 1

p
δD(det(w))[x̃,Π(w) · ψ0]P1

= −(p− 1)

p
δD(−1)Γ(D)

εL(W (D))

(wπp(D)(p)p(hD−1))a(W (D))
Ω−1[x̃, φ−a(W (D))]P1

= Γ(D)
εL(W (D))

(wπp(D)(p)p(hD−1))a(W (D))
Ω−1δD(p)

a(W (D))α(x)

= Γ(D)εL(W (D))Ω−1α(x),

where the last equality follows from the equality δD = wπp(D)x
hD−1.

4. A functional equation of Kato’s Euler system

Throughout this section, we fix embeddings ι∞ : Q ↪→ C and ιp : Q ↪→
Qp, and fix an isomorphism ι : C

∼→ Qp such that ι ◦ ι∞ = ιp. Using

this isomorphism, we identify Γ(C,Zl(1))
∼→ Γ(Qp,Zl(1)) =: Zl(1), and set

ζ(l) := {ι(exp(2πiln ))}n�1 ∈ Zl(1) for each prime l. Let S be a finite set

of primes containing p. Let QS(⊆ Q) be the maximal Galois extension of
Q which is unramified outside S ∪ {∞}, and set GQ,S := Gal(QS/Q). Set
c ∈ GQ,S be the restriction by ι∞ of the complex conjugation. For each
Z[GR]-module M and k ∈ Z, we define a canonical GR-equivariant map
M(k) := M ⊗Z Z(2πi)k → MZp

(k) := (M ⊗Z Zp)⊗Zp
Zp(k) by x⊗ (2πi)k 	→

x⊗ (ζ(p))⊗k using the basis ζ(p) ∈ Zp(1). We set M± := M c=±1.

4.1. The global fundamental lines and its compatibility with the
Poitou-Tate duality

In this subsection, we recall, for global Galois representations, the definition
of the global fundamental lines and its compatibility with the Poitou-Tate
duality, which we need to formulate our second main theorem.
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4.1.1. The global fundamental lines. Let T be an R-representation of
GQ,S . We set

Hi(Z[1/S], T ) := Hi(C•
cont(GQ,S , T ))

for i � 0. For each l ∈ S and i = 1, 2, we set

ΔR,i,(l)(T ) := ΔR,i(T |GQl
) and ΔR,(l)(T ) := ΔR(T |GQl

)

which are defined in §2.1. Set cT := rankRT (−1)+ (remark that T (−1)+ is
a finite projective R-module since we have assumed that 2 ∈ R×). We set

ΔR,1,S(T ) := DetR(C
•
cont(GQ,S , T ))

−1, ΔR,2,S(T ) := (detR(T (−1)+), cT )
−1

and

ΔR,S(T ) := ΔR,1,S(T ) � ΔR,2,S(T ).

We remark that ΔR,S(T ) is a graded invertible R-module of degree zero by
the global Euler-Poincaré characteristic formula.

4.1.2. Compatibility with the Poitou-Tate duality. We next recall
the definition of the isomorphism

(37) ΔR,S(T
∗)

∼→ �l∈SΔR,(l)(T ) � ΔR,S(T )

induced by the Poitou-Tate duality.
By the Poitou-Tate duality, one has a canonical quasi-isomorphism

RHomR(C
•
cont(GQ,S , T

∗), R)[−2]
∼→ Cone(C•

cont(GQ,S , T ) → ⊕l∈SC
•
cont(GQl

, T |GQl
))[−1],

from which we obtain a canonical isomorphism

(ΔR,1,S(T
∗)−1)∨

∼→ DetR(RHomR(C
•
cont(GQ,S , T

∗), R))(38)
∼→ �l∈SΔR,1,(l)(T ) � ΔR,1,S(T ).

We next define the following isomorphism
(39)
(ΔR,2,S(T

∗)−1)∨
∼→ (detRT, rT )�ΔR,2,S(T )

∼→ �l∈SΔR,2,(l)(T )�ΔR,2,S(T ),

where the first isomorphism is naturally induced by the isomorphism

T+ ⊕ T (−1)+
∼→ T : (x, y) 	→ 2x+

1

2
y ⊗ ζ(p)
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and the canonical isomorphism

T+ ∼→ ((T∨)∨)+ = (T ∗(−1)∨)+
∼→ (T ∗(−1)+)∨

(where the last map is defined by f 	→ f |T ∗(−1)+), and the second isomor-
phism is induced by the isomorphism

(detRT, rT )
∼→ �l∈SΔR,2,(l)(T )

defined by (the inverse of) the isomorphism

⊗l∈SRal(T ) ⊗ detRT
∼→ detRT : (⊗l∈Sxl)⊗ y 	→

(∏
l∈S

xl

)
· y

for xl ∈ Ral(T ) and y ∈ detRT (remark that one has ⊗l∈SRal(T ) = R since
one has

∏
l∈S al(T ) = 1 by the global class field theory).

Finally, the isomorphism (37) is defined as the product of the isomor-
phisms (38) and (39) (remark that one has (ΔR,S(T

∗)−1)∨ = ΔR,S(T
∗) since

ΔR,S(T
∗) is of degree zero).

4.2. Statement of the main theorem on the global ε-conjecture

4.2.1. Setting. Let k,N � 1 be positive integers. Let f(τ) =∑∞
n=1 an(f)q

n ∈ Sk+1(Γ1(N))new be a normalized Hecke eigen new form
of level N , weight k + 1, where τ ∈ C such that Im(τ) > 0, q := exp(2πiτ)
and

Γ1(N) :=

{
g ∈ SL2(Z)

∣∣∣∣ g ≡
(
1 ∗
0 1

)
mod N

}
.

Set f∗(τ) :=
∑∞

n=1 an(f)q
n (an(f) is the complex conjugation of an(f)),

which is also a Hecke eigen new form in Sk+1(Γ1(N))new by the theory of
new forms.

For each homomorphism δ : Z×
p → C× with finite image (which we

naturally regard as a Dirichlet character δ : (Z/pn(δ))× → C× (n(δ) is the
conductor of δ), or a Hecke character δ : A×

Q/Q
× → C×), set

L(f, δ, s) :=
∑
n�1

an(f)δ(n)

ns
and L{p}(f, δ, s) :=

∑
n�1,(n,p)=1

an(f)δ(n)

ns
.

These functions absolutely converge when Re(s) > k
2 + 1. The L-function

L(f, δ, s) is analytically continued to the whole C, and, if we denote by
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πf = ⊗′
v:place of Qπf,v the automorphic cuspidal representation of GL2(AQ)

associated to f , then it satisfies the following functional equation

(40) ΓC(s)L(f, δ, s) = ε(f, δ, s)ΓC(k+1− s)L(f∗, δ−1, k+1− s) (s ∈ C),

where we set ΓC(s) :=
Γ(s)
(2π)s and ε(f, δ, s) is the global ε-factor associated to

πf ⊗ (δ ◦ det), which is defined as the product of the local ε-factors

ε(f, δ, s) = ε∞(f, δ, s)
∏
l∈S

εl(f, δ, s),

where, for v ∈ S ∪{∞}, εv(f, δ, s) is the local ε-factor associated to the v-th
component πf,v ⊗ (δ ◦ det) with respect to the additive character ψv : Qv →
C× and the Haar measure dxv on Qv which are uniquely characterized by
ψ∞(a) := exp(−2πi · a) (a ∈ R), ψl(

1
ln ) = exp(2πiln ) (n ∈ Z),

∫
Zl
dxl = 1 and

dx∞ is the standard Lebesgue measure on R. We remark that one has

(41) ε∞(f, δ, s) = ik+1.

Set F := Q({ι−1
∞ (an(f))}n�1) ⊆ Q, L := Qp({ιp(ι−1

∞ (an(f)))}n�1) ⊆ Qp

and S := {l|N}∪{p}. Let denote by OF , O := OL the rings of integers of F ,
L respectively. For f0 = f, f∗, let Tf0 be the O-representation of GQ,S of rank
two associated to f0 which is obtained as a quotient of the étale cohomology
(with coefficients) of a modular curve (this is denoted by VOλ

(f0) in § 8.3 of
[Ka04]). Set Vf0 = Tf0 [1/p]. By the Poincaré duality of the étale cohomology
of a modular curve, one has a canonical GQ,S-equivariant isomorphism

Vf∗(1)
∼→ (Vf (k))

∗,

which induces a canonical isomorphism ΔIw
L,S(Vf∗(1))

∼→ ΔIw
L,S((Vf (k))

∗).

Since the sub Λ := ΛO-module ΔIw
O,S(T ) of ΔIw

L,S(V ) is independent of the
choice of GQ,S-stable lattice T of V for any L-representation V of GQ,S

(because ΔIw
O,S(T ) is of grade zero), the latter also induces a canonical iso-

morphism

ΔIw
O,S(Tf∗(1))

∼→ ΔIw
O,S((Tf (k))

∗).

Therefore, we obtain a canonical isomorphism

(42) ΔIw
O,S(Tf∗(1))ι

∼→ ΔIw
O,S((Tf (k))

∗)ι
∼→ ΔS

Λ(Dfm(Tf (k))
∗),

where the second isomorphism is defined in the same way as in the last part
of §2.1.
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We denote by Q(Λ) the total fraction ring of Λ. For a Λ-module or a
graded invertible Λ-module M , we set

MQ := M ⊗Λ Q(Λ)

to simplify the notation.

4.2.2. Statement of the main theorem. Using (the p-th layer of) the
Kato’s Euler system associated to f0, we define below a candidate of the
zeta-isomorphism

z̃IwO,S(Tf0(r)) : 1Q(Λ)
∼→ ΔIw

O,S(Tf0(r))Q

for f0 = f, f∗ and r ∈ Z.
Before defining this isomorphism, we propose the following conjecture,

and state the second main theorem of this article concerning the global
ε-conjecture, whose proof is given in the next subsection.

Conjecture 4.1. One has the equality

z̃IwO,S(Tf∗(1))ι = �l∈S
(
εIwO,(l)(Tf (k))⊗ idQ(Λ)

)
� z̃IwO,S(Tf (k))

under the isomorphism obtained by the base change to Q(Λ) of the canonical
isomorphism

ΔIw
O,S(Tf∗(1))ι

∼→ �l∈SΔ
Iw
O,(l)(Tf (k)) � ΔIw

O,S(Tf (k))

defined by (37) for (R, T ) = (Λ,Dfm(Tf (k))) and (42), where the isomor-
phism

εIwO,(l)(Tf (k)) := εIwO,ζ(l)(Tf (k)|GQl
) : 1Λ

∼→ Δ
Iw,(l)
O (Tf (k))

is the local ε-isomorphism defined by Theorem 3.1 (resp. [Ya09]) for l = p
(resp.l �= p) for the pair (Λ,Dfm(Tf (k)|GQl

)).

Theorem 4.2. Assume that Vf |GQp
is non-trianguline. Then, the conjecture

4.1 is true.

Remark 4.3. Assuming Conjecture 1.5 which state that the isomorphism
z̃IwO,S(Tf (k)) comes from the conjectural zeta isomorphism for Dfm(Tf (k))
defined over Λ, then Conjecture 4.1 is equivalent to the global ε-conjecture
in [Ka93b] and [FK06] for Dfm(Tf (k)).

4.2.3. Definition of the zeta isomorphism. In the rest of this subsec-
tion, we define our zeta isomorphism z̃IwO,S(Tf0(r)) using the p-th layer of the
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Kato’s Euler system which we recall now. Since the definitions for f and f∗

are the same, we only define it for f0 = f .
For an O-representation T of GQ,S (which we also regard as a smooth

O-sheaf on the étale site over Spec(Z[1/S])), we define a Λ-module

Hi(T ) := Hi
Iw(Z[1/p], T ) := lim←−

n�0

Hi(Z[1/p, ζpn ], T )

for i � 0, where we define for n � 0

Hi(Z[1/p, ζpn ], T ) := Hi
ét(Spec(Z[1/p, ζpn ]), (jn)∗(T |Spec(Z[1/S,ζpn ])))

for the canonical inclusion jn : Spec(Z[1/S, ζpn ]) ↪→ Spec(Z[1/p, ζpn ]). For
V = T [1/p], we set Hi(V ) := Hi(T )[1/p].

For the eigen form f , Kato defined in Theorem 12.5 [Ka04] an L-linear
map

Vf → H1(Vf ) : γ 	→ z(p)γ (f)

which interpolates the critical values of the L-functions L(f∗, δ, s) for all δ,
whose precise meaning we explain in the next subsection. By Theorem 12.4
of [Ka04], H1(Tf ) is torsion free over Λ, and H1(Vf ) is a free ΛL := Λ[1/p]-
module of rank one, and H2(Tf ) is a torsion Λ-module (and Hi(Tf ) = 0
for i �= 1, 2). The restriction map Hi(Tf ) → Hi

Iw(Z[1/S], Tf ) induces an
isomorphism

H1(Tf )
∼→ H1

Iw(Z[1/S], Tf )

and an exact sequence

0 → H2(Tf ) → H2
Iw(Z[1/S], Tf ) →

⊕
l∈S\{p}

H2
Iw(Ql, Tf ) → 0,

which follow from (for example) the proof of Lemma 8.5 of [Ka04]. Since
H2

Iw(Ql, T ) is a torsion Λ-module for any l by Proposition A.2.3 of [Pe95],
H2

Iw(Z[1/S], Tf ) is also a torsion Λ-module by the above exact sequence.
By these facts, we obtain a canonical Q(Λ)-linear isomorphism

(43) ΔIw
O,1,S(Tf (r))Q

∼→ (H1(Tf (r))Q, 1)

for r = 0. For general r ∈ Z, we also define the isomorphism above induced
by that for r = 0 using the canonical (not Λ-linear) isomorphism

Hi(Tf )
∼→ Hi(Tf (r)) : z 	→ z(r)
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which is induced by the isomorphism

Tf ⊗O Λ
∼→ Tf (r)⊗O Λ : x⊗ y 	→ (x⊗ er)⊗ gχr(y)

defined in the same way as in the proof of Lemma 2.9.
For each l ∈ S \ {p} and r ∈ Z, we set

L
(l)
Iw(Tf (r)) := detΛ(1− ϕl|Dfm(Tf (r))

Il) = 1− al(f)l
−r[σl] ∈ Λ ∩Q(Λ)×

(remark that Dfm(Tf (r))
Il = T Il

f (r) ⊗O Λ is free over Λ), where the sec-
ond equality follows from the global-local compatibility of the Langlands
correspondence proved by [La73], [Ca86].

Denote the sign of (−1)r by sgn(r) ∈ {±}. Set Λ± := {λ ∈ Λ|[σ−1] · λ =
±λ}.

Using these, we define an isomorphism

z̃IwO,S(Tf (r)) : 1Q(Λ)
∼→ ΔIw

O,S(Tf (r))Q

which corresponds to the isomorphism

Θr(f) : Δ
Iw
O,2,S(Tf (r))

−1
Q

∼→ (H1(Tf (r))Q, 1)

defined as the base change to Q(Λ) of the Λ-linear morphism

Θr(f) : (Dfm(Tf (r))(−1))+
(44)

= T
sgn(r−1)
f (r − 1)⊗O Λ+ ⊕ T

sgn(r)
f (r − 1)⊗O Λ−

→ H1(Vf (r)) : (γ ⊗ er−1 ⊗ λ+, γ′ ⊗ er−1 ⊗ λ−)

	→
∏

l∈S\{p}
L
(l)
Iw(Tf∗(1 + k − r))ι(λ+ · (z(p)γ (f)(r)) + λ− · (z(p)γ′ (f)(r))),

where we set λι := ι(λ) for λ ∈ Q(Λ), and the fact that the base change to
Q(Λ) of this morphism is isomorphism follows from Theorem 12.5 of [Ka04].

4.3. Proof of Theorem 4.2

In this subsection, we give a proof of Theorem 4.2. We first precisely recall
the interpolation property of the Kato’s Euler system which is so called the
explicit reciprocity law (Theorem 12.5 (1) of [Ka04]), which is crucial in our
proof of the theorem.
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4.3.1. Kato’s explicit reciprocity law. Using the comparison between

the Betti and the étale cohomologies, one has a canonical OF -lattice Tf,OF

of Tf which is stable by the action of GR(⊆ GQ,S). Set Vf,F := Tf,OF
⊗OF

F ,

which is a GR-stable F -lattice of Vf . Using the comparison theorem in the

p-adic Hodge theory, one has a canonical F -lattice S(f) = Ff of D1
dR(Vf ) =

Dk
dR(Vf ).

By the theory of Eichler-Shimura, one has a canonical F -linear map

perf : S(f) ↪→ Vf,C := Vf,F ⊗F,ι∞ C.

For each pair (r, δ) such that 0 � r � k− 1 and δ : Γ → Q
×
a homomor-

phism with finite image (which we regard as a homomorphism with values

in C× or Q
×
p by the fixed embeddings ι∞ or ιp), we set Vf (k − r)(δ) :=

Vf (k − r)⊗L Qp(δ), and define an L-linear map

(45) H1(Vf ) → D0
dR(Vf (k − r)(δ)) = L(f ⊗ 1

tk−r
ek−r)⊗L (Qp,∞(δ))Γ

as the composites of the following morphisms

H1(Vf)
can−−→H1

Iw(Qp, Vf )
sp

χk−rδ−−−−−→H1(Qp, Vf (k−r)(δ))
exp∗

−−→D0
dR(Vf(k−r)(δ)),

For γ ∈ Vf,F , we decompose γ = γ+ + γ− such that γ± ∈ V ±
f,F . For each

(r, δ) as above, we denote by sgn(r, δ) ∈ {±} the sign of δ(−1)(−1)r.

Under these preliminaries, the interpolation property of z
(p)
γ (f) can be

described as follows. By Theorem 12.5 (1) of [Ka04], the image of z
(p)
γ (f) by

the map (45) is contained in the sub F -vector space

F (f ⊗ 1

tk−r
ek−r)⊗Q (Q∞(δ))Γ

of D0
dR(Vf (k − r)(δ)), and is sent to

(46) (2πi)k−r−1L{p}(f
∗, δ−1, r + 1)γsgn(k−r−1,δ) ∈ V

sgn(k−r−1,δ)
f,C .

by the injection map defined by the following composite

per
(k−r,δ)
f : F (f ⊗ 1

tk−r
ek−r)⊗F (Q∞(δ))Γ → Vf,C → V

sgn(k−r−1,δ)
f,C
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where the first map is defined by

(f ⊗ 1

tk−r
ek−r)⊗ (

∑
i∈I

bi ⊗ cieδ) 	→ ι∞(
∑
i∈I

bici)perf (f)

for bi ∈ Q, ci ∈ Q(ζp∞)(⊆ Q), and the second map is the canonical projection
Vf,C → V ±

f,C : x 	→ 1
2(x± c(x)).

4.3.2. Comparison of z(p)γ (f)(k) with z
(p)
γ′ (f∗)(1). We next reduce

Theorem 4.2 to the following Theorem 4.6 below concerning the equality of

the two elements in Df∗(1)ψ=1 respectively defined by using z
(p)
γ (f)(k) and

z
(p)
γ′ (f∗)(1). We denote by Df0 the étale (ϕ,Γ)-module over EL associated to

Vf0 |GQp
for f0 = f, f∗. By the following canonical morphisms (for r ∈ Z)

H1(Vf0(r))
can−−→ H1

Iw(Qp, Vf0(r))
∼→ Df0(r)

ψ=1 1−ϕ−−→ Df0(r)
ψ=0,

we freely regard z
(p)
γ (f0)(r) as an element in these modules.

Fix an OF -basis γ
± of T±

f,OF
for each ±, and set

γ := γ++γ− ∈ Tf,OF
and fγ := (γsgn(k)ek)∧ (γsgn(k−1)ek) ∈ detOF

Tf,OF
(k).

We take the basis γ±∗ of V ±
f∗,F such that the ordered pair {γ+∗ , γ−∗ } is the

dual basis of {γsgn(k)ek, γsgn(k−1)ek} under the canonical F -bilinear perfect
pairing

Vf∗,F × Vf,F (k) → F

induced by the Poincaré duality. We also set

γ∗ := γ+∗ + γ−∗ ∈ Vf∗,F .

For each l ∈ S \ {p}, set

ε0,(l)(Tf (k)) := ε0,O(Tf (k)|GQl
, ζ(l)) ∈ (O)×al(Tf (k))

the ε0-constant associated to the triple (O, Tf (k)|GQl
, ζ(l)) defined in Remark

2.4. Using the canonical isomorphism

⊗l∈S(O)al(Tf (k))
∼→ O : ⊗l∈Sxl 	→

∏
l∈S

xl,
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we set

ε0 := ⊗l∈S\{p}ε0,(l)(Tf (k))
−1 ∈ (⊗l �=p∈S(O)al(Tf (k))−1)× = (O)×ap(Tf (k))

.

Using this, we also set

eγ := fγ ⊗ ε0 ∈ LO(Tf (k)) = detOTf (k)⊗O (O)ap(Tf (k)).

For l ∈ S and an L-representation V of GQ,S such that V |GQp
is de Rham,

we denote by a(l)(V ) the exponent of the Artin conductor of W (V |GQl
)

defined in 8.12 of [De73], and set L(l)(V ) := detL(1 − ϕl|Dcris(V |GQl
)) ∈ L

and εL,(l)(V ) := εL(W (V |GQl
), ζ(l)) ∈ L∞, which we also regard as elements

in C by the injection L ⊆ Qp
ι−1

−−→ C and the projection L∞ = L⊗QQ(ζp∞) →
C : a⊗ b 	→ ι−1(a)ι∞(b).

Conjecture 4.4. One has the equality

∏
l∈S\{p}

[σl]
−a(l)(Vf (k))

detL(−ϕl|Vf (k)Il)
(wδDf (k)

(z(p)γ (f)(k))⊗ e∨γ ⊗ e1) = −z(p)γ∗
(f∗)(1)

under the canonical isomorphism

wδDf (k)
(Df (k)

ψ=1)Q⊗LLL(Df (k))
∨(1)

∼→ ((Df (k)
∗)ψ=1)Q

∼→ (Df∗(1)ψ=1)Q,

where the first isomorphism is defined in §3 and the second one is induced
by the canonical isomorphism Df (k)

∗ ∼→ Df∗(1) defined by the Poincaré
duality.

Remark 4.5. Since one has

[σ−1] · z(p)γ±(f) = ∓z
(p)
γ±(f)

(and similarly for z
(p)

γ±
∗
(f∗)) by Theorem 12.5 of [Ka04], the equality in the

conjecture above is equivalent to the equation

∏
l∈S\{p}

[σl]
−a(l)(Vf (k))

detL(−ϕl|Vf (k)Il)
[σ−1]·(wδDf (k)

(z
(p)
γ′ (f)(k))⊗e∨γ ⊗e1) = ±z

(p)
γ′
∗
(f∗)(1)

for each (γ′, γ′∗,±) ∈ {(γsgn(k), γ−∗ ,+), (γsgn(k−1), γ+∗ ,−)}.
We prove this conjecture for the non-trianguline case.
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Theorem 4.6. Assume that Vf |GQp
is non-trianguline. Then, the conjecture

4.4 is true.

4.3.3. Reduction of Theorem 4.2 to Theorem 4.6. Before proceeding
to the proof of Theorem 4.6, we first prove Theorem 4.2 using this Theorem.
For this purpose, it suffices to show the following proposition.

Proposition 4.7. The conjecture 4.1 for f is equivalent to the conjecture
4.4 for f .

Proof. We first explicitly describe the base change to Q(Λ) of the l-adic
ε-isomorphism

εIwO,(l)(Tf (k)) : 1Λ
∼→ ΔIw

O,(l)(Tf (k))

for l ∈ S \ {p} which is defined in [Ya09] (and Remark 2.4). We first remark
that, if we set εIw0,(l)(Tf (k)) := ε0,Λ(Dfm(Tf (k))|GQl

, ζ(l)), then we have

(47) εIw0,(l)(Tf (k)) = [σl]
(a(l)(Vf (k))+dimLVf (k)Il )ε0,(l)(Tf (k))

since one has

(48) ε0,Qp
(Vf (k)(δ)|GQl

, ζ(l)) = δ(σl)
−(a(l)(Vf (k))+dimLVf (k)Il )ε0,(l)(Tf (k))

for any continuous homomorphism δ : Γ → Q
×
p by (5.5.1) and (8.12.1) of

[De73]. Since Hi
Iw(Ql, Tf (k)) is a torsion Λ-module for any i by Proposition

A.2.3 of [Pe95], we have

ΔIw
O,1,(l)(Tf (k))Q = 1Q(Λ).

Then, the base change to Q(Λ) of the isomorphism 1Λ
∼→ ΔIw

O,1,(l)(Tf (k))
defined in Remark 2.4 is explicitly defined by

(49) 1Q(Λ)
∼→ ΔIw

O,1,(l)(Tf (k))Q = 1Q(Λ) :

1 	→ detΛ(1− ϕ−1
l |Dfm(Tf (k))

Il)

detΛ(1− ϕl|Dfm(T ∗
f (1))

Il)ι
=

detL(−ϕ−1
l |V Il

f (k))

[σl]dimLVf (k)Il

L
(l)
Iw(Tf (k))

L
(l)
Iw(Tf∗(1))ι

.

Since we have

(Λ)al(Dfm(T )) = (O)al(T ) ⊗O Λ

for any O-representation T of GQl
, (47) and (49) imply that the base change

to Q(Λ) of εIwO,(l)(Tf (k)) can be explicitly defined by
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(50) 1Q(Λ)
∼→ ΔIw

O,(l)(Tf (k))Q = ΔO,2,(l)(Tf (k))⊗O Q(Λ) :

1 	→ ε0,(l)(Tf (k))⊗
[σl]

a(l)(Vf (k))

detL(−ϕl|V Il
f (k))

L
(l)
Iw(Tf (k))

L
(l)
Iw(Tf∗(1))ι

.

Using this explicit expression, we next remark that Conjecture 4.1 is
equivalent to the commutativity of the following diagram.
(51)

Dfm(Tf (k))(−1)+Q ⊗Q(Λ) (Dfm(Tf∗(1))ι(−1)+Q)
∨ (a)−−−−→ (detΛDfm(Tf (k)))Q

Θk(f)⊗((Θ1(f
∗)ι)−1)∨

⏐⏐� �⏐⏐(c)
H1(Tf (k))Q ⊗Q(Λ) (H

1(Tf∗(1))ιQ)
∨ −−−−→

(b)
detQ(Λ)H

1
Iw(Qp, Tf (k))Q.

Here the arrows (a), (b) and (c) in the diagram above is defined as follows.
First, the isomorphism (a) is the base change to Q(Λ) of the canonical

isomorphism

Dfm(Vf (k))(−1)+ ⊗ΛL(Γ) (Dfm(Vf∗(1))ι(−1)+)∨(52)

→ (detΛL(Γ)Dfm(Vf (k))) : (λ
+
1 · γsgn(k−1)ek−1 + λ−

1 · γsgn(k)ek−1)

⊗ (λ+
2 ·ι (γ+∗ )∨ + λ−

2 ·ι (γ−∗ )∨) 	→ (λ−
1 λ

−
2 − λ+

1 λ
+
2 ) · fγ

for λ±
i ∈ Λ± (i = 1, 2) (remark that we have (γ+∗ )

∨ = γsgn(k)ek, (γ
−
∗ )

∨ =
γsgn(k−1)ek).

The isomorphism (b) is the isomorphism naturally induced by the short
exact sequence

(53) 0 → H1(Tf (k))Q → H1
Iw(Qp, Tf (k))Q → (H1(Tf∗(1))ι)∨Q → 0,

which is obtained by the base change to Q(Λ) of the Poitou-Tate exact
sequence for the pair (Λ,Dfm(Tf (k))) (and the Λ-torsionness of H2

Iw(Z[1/S],
Tf0(r)) for f0 = f, f∗, r ∈ Z, and that of H1

Iw(Ql, Tf (k)) for l ∈ S \ {p}).
Finally, the isomorphism (c)

(detΛH
1
Iw(Qp, Tf (k)))Q

∼→ (detΛDfm(Tf (k)))Q

is defined by sending (x ∧ y) ⊗ λ for x, y ∈ H1
Iw(Qp, Vf (k))

∼→ Df (k)
ψ=1,

λ ∈ Q(Λ) to

λ{[σ−1] · (wδDf (k)
(x)⊗ e∨γ ⊗ e1), y}Iw

∏
l∈S\{p}

[σl]
a(l)(Vf (k))

detL(−ϕl|V Il
f (k))

L
(l)
Iw(Tf (k))

L
(l)
Iw(Tf∗(1))ι

fγ
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(remark that here we use the definition of εIwO,(p)(Tf (k)) given in §3 and the

explicit description (50) of εIwO,(l)(Tf (k)) for ∈ S \ {p}).
By definition of these maps, the commutativity of the diagram (51) is

equivalent to the equalities

∏
l∈S\{p}

[σl]
a(l)(Vf (k))

detL(−ϕl|V Il
f (k))

× {[σ−1] · (wδDf (k)
(z

(p)
γ′ (f)(k))⊗ e∨f ⊗ e1),

˜
(z

(p)
γ′
∗
(f∗)(1))∨}Iw = ±1

for each (γ′, γ′∗,±) ∈ {(γsgn(k), γ−∗ ,+), (γsgn(k−1), γ+∗ ,−)}, where we denote
by ỹ ∈ H1

Iw(Qp, Tf (k))Q an arbitrary lift of y ∈ (H1(Tf∗(1))ιQ)
∨ by the sur-

jection in (53). This equality (for arbitrary lifts
˜

(z
(p)
γ′
∗
(f∗)(1))∨) is equivalent

to Conjecture 4.4 by Remark 4.5.

4.3.4. Proof of Theorem 4.6. From now on untile the end, we assume
that Vf |GQp

is non-trianguline. Finally, we prove Theorem 4.6.

Proof. (of Theorem 4.6) In this proof, we freely use the notations which
are used in §3.3. To simplify the notation, we set D := Df (k). We identify

D∗ ∼→ Df∗(1) by the canonical isomorphism induced the Poincaré duality.

For x ∈ Dψ=1, y ∈ (D∗)ψ=1 and a continuous character δ : Γ → L
×
, we

define xδ ∈ H1
ϕ,γ(D(δ)), yδ−1 ∈ H1

ϕ,γ(D
∗(δ−1)) to be the images of x and y

by the canonical specialization maps Dψ=1 → H1
ϕ,γ(D(δ)) and (D∗)ψ=1 →

H1
ϕ,γ(D

∗(δ−1)).
By Théorème A [Be05], it suffices to show the equality

∏
l∈S\{p}

δ(σl)
−a(l)(Vf (k))

detL(−ϕl|Vf (k)Il)
exp∗((wδD(z

(p)
γ (f)(k))⊗ e∨γ ⊗ e1)δ−1)(54)

= −exp∗((z(p)γ∗
(f∗)(1))δ−1)

in D0
dR(D

∗(δ−1)) for all the characters δ : Γ → Q
×
p with finite images.

Take any character δ as above. We first remark that we have

D0
dR(D

∗(δ−1)) = D0
dR(Vf∗(1)(δ−1)) ⊆ Qp,∞f∗ ⊗ 1

t
e1 ⊗ eδ−1 ,

and also have

D0
dR(D(δ)) = D0

dR(Vf (k)(δ)) ⊆ Qp,∞f ⊗ 1

tk
ek ⊗ eδ.
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By the interpolation property (46) of z
(p)
γ∗ (f

∗), if we set

exp∗((z(p)γ∗
(f∗)(1))δ−1) =: aδf

∗ ⊗ 1

t
e1 ⊗ eδ−1 ∈ Qp,∞f∗ ⊗ 1

t
e1 ⊗ eδ−1 ,

then we have aδ ∈ Q∞ and

per
(1,δ−1)
f∗ (aδf

∗ ⊗ 1

t
e1 ⊗ eδ−1) = L(f, δ, k)γ

sgn(0,δ−1)
∗ =: αδγ

sgn(0,δ−1)
∗

(remark that one has L{p}(f, δ, s)=L(f, δ, s) when Vf |GQp
is non-trianguline).

By (46) for z
(p)
γ (f), if we set

exp∗((z(p)γ (f)(k)))δ) = bδf ⊗ 1

tk
ek ⊗ eδ ∈ Qp,∞f ⊗ 1

tk
ek ⊗ eδ,

then we have bδ ∈ Q∞ and

per
(k,δ)
f (bδf ⊗ 1

tk
ek ⊗ eδ) = (2πi)k−1L(f∗, δ−1, 1)γsgn(k−1,δ) =: βδγ

sgn(k−1,δ).

By Proposition 3.14, if we set

exp∗((wδD(z
(p)
γ (f)(k))⊗ e∨γ ⊗ e1)δ−1) =: cδf ⊗ tke∨γ ⊗ 1

tk+1
ek+1 ⊗ eδ−1

(55)

∈ D0
dR(D

∗(δ−1)) ⊆ Qp,∞(f ⊗ 1

tk
ek)⊗ tke∨γ ⊗ 1

t
e1 ⊗ eδ−1 ,

then we have

cδ =
δ(−1)

(k − 1)!
εL,(p)(Vf (k)(δ))bδ =: dδbδ

(remark that we have

(wδD(z
(p)
γ (f)(k))⊗e∨γ⊗e1)δ−1 = δ(−1)([σ−1]·(wδD(z

(p)
γ (f)(k))⊗e∨γ⊗e1))δ−1).

Therefore, it suffices to show the equality

(56)
∏

l∈S\{p}

δ(σl)
−a(l)(Vf (k))

detL(−ϕl|Vf (k)Il)
dδβδγ

sgn(k−1,δ)ek ⊗ e∨γ = −αδγ
sgn(0,δ−1)
∗ .

Remark that γsgn(k)ek⊗ f∨γ (resp. γsgn(k−1)ek⊗ f∨γ ) is sent to −γ−∗ (resp.
γ+∗ ) under the canonical isomorphism
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Tf,OF
(k)⊗OF

(detOF
(Tf,OF

(k)))∨
∼→ HomOF

(Tf,OF
(k),OF )

∼→ Tf∗,OF
,

where the first isomorphism is defined by

x⊗ f∨γ 	→ [y 	→ f∨γ (y ∧ x)],

and the second isomorphism is defined by the Poincaré duality.
Hence, we obtain

γsgn(k−1,δ)ek ⊗ e∨γ = δ(−1)ε−1
0 γ

sgn(0,δ−1)
∗ .

Therefore, the equality (56) is equivalent to the equality

(57) δ(−1)
∏

l∈S\{p}

δ(σl)
−a(l)(Vf (k))

detL(−ϕl|Vf (k)Il)
ε−1
0 dδβδ = −αδ.

Since we have

δ(σl)
−a(l)(Vf (k))

detL(−ϕl|Vf (k)Il)
ε0,(l)(Tf (k)) =

δ(σl)
−(a(l)(Vf (k))+dimLVf (k)Il )

detL(−ϕl|Vf (k)(δ)Il)
ε0,(l)(Tf (k))

=
ε0,(l)(Tf (k)(δ))

detL(−ϕl|Vf (k)(δ)Il)
= εL,(l)(Vf (k)(δ)),

the left hand side of (57) is equal to

(58)
1

(k − 1)!

∏
l∈S

εL,(l)(Vf (k)(δ))(2πi)
k−1L(f∗, δ−1, 1).

Since we have

(k − 1)!

(2π)k
L(f, δ, k) = ik+1

∏
l∈S

εl(f, δ, k)
1

2π
L(f∗, δ−1, 1)

by evaluating at s = k of the functional equation (40) of L(f, δ, s) and
the ε-and L-constants for Vf correspond to those for πf by the global-local
compatibility ([Ca86] for l �= p, and [Sa97] for l = p), the value (58) is equal
to

(2π)k

i2(k − 1)!

(
ik+1
∏
l∈S

εl(f, δ, k)
1

2π
L(f∗, δ−1, 1)

)
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=
(2π)k

i2(k − 1)!

(
(k − 1)!

(2π)k
L(f, δ, k)

)
=

1

i2
L(f, δ, k)

= −L(f, δ, k) = −αδ,

which shows the equality (57), hence finishes to prove the theorem.
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List of notations

p. 288: GQl
,WQl

, Il, recQl
,Frl, ζ,Γ, χ,HQp

, σb, Ẽ
+.

p. 289: Ẽ, Ã, B̃+, B̃,BdR, t,Dperf(R),Pfg(R), P∨,PR,�.
p. 290: DetR(−),�,1R.
p. 291: R,L,R(δ), eδ, T (δ), C

•
cont(G,T ),Hi(Ql, T ), T (r), T

∗.
p. 292: ΔR,1(T ), Ra, al(T ),ΔR,2(T ),ΔR(T ).
p. 293: WQl

, ψζ , ε(ρ, ψ, dx), ε(ρ, ζ).
p. 294: ε(M, ζ),′WQl

,W (V ), L∞, εL(W (V )),Dpst(V ),Dcris(V ),DdR(V ),
Di

dR(V ), tV , θL(V ).
p. 295: Γ(V ), θdR,L(V ), hV , ε

dR
L (V ).

p. 297: ε0,L(V ), ε0,R(T ).
p. 298: ΛR,Dfm(T ),ΔIw

R,∗(T ),H
i
Iw(Ql, T ), fδ, ι.

p. 299: er, ER, D∗, D(T ), Xζ , ψ,Δ, γ.
p. 300: C•

ϕ,γ(D), C•
ψ,γ(D),Hi

ϕ,γ(D),Hi
ψ,γ(D).

p. 301: 〈−,−〉Tate,ΔR,∗(D),LR(D).
p. 302: Dfm(D),ΔIw

R (D), spδ, C
•
ψ(D).

p. 303: ιδ.
p. 304: ι̃δ, {−, }Iw.
p. 305: gδ.
p. 306: γ0, ER(Γ), {−,−}0,Iw.
p. 306: MZ

×
p
,∧Z

×
p
.

p. 310: V (D).
p. 311: εdRL (D).
p. 312: mδ, w∗, wδ.
p. 313: δD, d, [−,−]Iw.
p. 314: ηR(D).
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p. 317: εIwR (D).

p. 318: C(D).

p. 319: εR(D).

p. 320: RL,R(n)
L ,M (n), Drig, D

†, E†
L, C

•
ϕ,γ(M), C•

ψ,γ(M),ΔL,∗(M).

p. 321: RL(δ),LL(M),R+
L (Γ),RL(Γ),Dfm(M).

p. 322: ΔIw
L,∗(M), Fn, F∞,Dcris(M), ιn,D

(+)
dif,∗(M),DdR(M),Di

dR(M).

p. 323: tM , εdRL (M).

p. 329: DdR(D),W (D), f1, f2, ιD, ιD∗ , hD.

p. 330: eD,Ω, fD, α,Γ(D).

p. 331: [−,−]dR, β.

p. 332: G,B, P, P+, Z,D �δD P1,ResZp
, D � Qp.

p. 333: D�, D�, D� �δD P1,Π(D), [ζ
(−)

], D̃+, D̃, D̃+
dif .

p. 334: ι0, k,LP(Q×
p ,

1
tk D̃

+
dif/D̃

+
dif)

Γ, φz.

p. 335: N+
dif,∗(Drig), X

−
∞,LP(Q×

p , X
−
∞)Γ,LPc(Q×

p , X
−
∞)Γ,Π(D)alg.

p. 336: LPc(Q×
p , L∞)Γ, Symk−1L2 ⊗ detk1 , ι−i .

p. 337: X+
n , X+ � Qp, gp, ι

+
i,n, ι

+
i , 〈−,−〉.

p. 338: [−,−]dif , resL, res0, [−,−]P1 ,Π(D)∨.

p. 339: x̃, φm.

p. 342: w,ψm.

p. 344: ι, π′
p(D),W (D), πp(D), ωπp(D).

p. 345: πp(g).

p. 346: ξη,m, a(W (D)).

p. 347: Π(g).

p. 348: ι∞, ιp, ι, ζ
(l), GQ,S , c,M

±,M(k).

p. 349: Hi(Z[1/S], T ),Δ(l)
R.∗(T ), cT ,Δ

S
R,∗(T ).

p. 350: f(τ), f∗(τ), q, L(f, δ, s), L{p}(f, δ, s).

p. 351: πf , πf,v,ΓC(s), ε(f, δ, s), ε∞(f, δ, s), εl(f, δ, s), F, L,O, S, Tf0 , Vf0 ,Λ.

p. 352: Q(Λ),MQ, z̃
Iw
O,S(Tf0(r)), ε

Iw
O,(l)(Tf (k)).

p. 353: Hi(T ),Hi(V ), z
(p)
γ (f),ΛL.

p. 354: L
(l)
Iw(Tf (r)),Θr(f), λ

ι.

p. 355: Tf,OF
, Vf,F , S(f), perf , sgn(r, δ), per

(k−r,δ)
f .

p. 356: γ±, γ, fγ , γ∗, γ±∗ , ε0,(l)(Tf (k)).

p. 357: ε0, eγ , a
(l)(V ), L(l)(V ), εL,(l)(V ).

p. 358: εIw0,(l)(T (f)(k)).
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[BB08] D. Benois, L. Berger, Théorie d’Iwasawa des représentations
cristallines. II, Comment. Math. Helv. 83, no. 3, 603–677 (2008).

[Be02] L. Berger, Représentations p-adiques et équations différentielles,
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Astérisque 330 (2010), 281–509.



366 Kentaro Nakamura

[CD14] P. Colmez, G. Dospinescu, Complétés universels de représenta-
tions de GL2(Qp), Algebra and Number Theory 8 (2014), 1447–
1519.

[CDP14a] P. Colmez, G. Dospinescu, V. Paskunas, Irreducible components
of deformation spaces: wild 2-adic exercises, Int. Math. Res. Not.
IMRN (2015), 5333–5356.

[CDP14b] P. Colmez, G. Dospinescu, V. Paskunas, The p-adic local Lang-
lands correspondence for GL2(Qp), Cambridge J. Math. 2 (2014),
1–47.

[De69] P. Deligne, Formes modulaires et représentations p-adiques,
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