<学術雑誌論文>
Gauss–Newton meets PANOC: A fast and globally convergent algorithm for nonlinear optimal control

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
会議情報
出版タイプ
アクセス権
権利関係
権利関係
関連DOI
関連DOI
関連URI
関連URI
関連HDL
概要 PANOC is an algorithm for nonconvex optimization that has recently gained popularity in real-time control applications due to its fast, global convergence. The present work proposes a variant of PANOC... that makes use of Gauss–Newton directions to accelerate the method. Furthermore, we show that when applied to optimal control problems, the computation of this Gauss–Newton step can be cast as a linear quadratic regulator (LQR) problem, allowing for an efficient solution through the Riccati recursion. Finally, we demonstrate that the proposed algorithm is more than twice as fast as the traditional L–BFGS variant of PANOC when applied to an optimal control benchmark problem, and that the performance scales favorably with increasing horizon length.続きを見る

本文ファイル

pdf 7157990 pdf 593 KB 155  

詳細

EISSN
レコードID
査読有無
関連URI
主題
助成情報
登録日 2023.11.27
更新日 2024.12.02

この資料を見た人はこんな資料も見ています