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Abstract: PANOC is an algorithm for nonconvex optimization that has recently gained
popularity in real-time control applications due to its fast, global convergence. The present
work proposes a variant of PANOC that makes use of Gauss—Newton directions to accelerate the
method. Furthermore, we show that when applied to optimal control problems, the computation
of this Gauss—Newton step can be cast as a linear quadratic regulator (LQR) problem, allowing
for an efficient solution through the Riccati recursion. Finally, we demonstrate that the proposed
algorithm is more than twice as fast as the traditional L-BFGS variant of PANOC when applied
to an optimal control benchmark problem, and that the performance scales favorably with

increasing horizon length.
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1. INTRODUCTION

The ever increasing scale and complexity of models used in
optimal control applications necessitate the development
of efficient numerical solvers for large-scale, nonconvex
optimization. One such solver is PANOC, the Proximal
Averaged Newton-type method for Optimality Conditions
(Stella et al., 2017), which has proven successful in real-
time model predictive control (MPC) applications (Sathya
et al., 2018; Small et al., 2019; Lindqvist et al., 2022).
Various implementations are available, in C++ (Pas et al.,
2022), Rust (Sopasakis et al., 2020), and Julia (Stella,
2017). The appeal of an algorithm like PANOC is that
it enjoys fast convergence thanks to its Newton-type
directions, without giving up any theoretic guarantees
about global convergence (De Marchi and Themelis, 2022).

In the original PANOC publication, the limited-memory
BFGS (L-BFGS) method was used to generate fast
Newton-type directions. In (Pas et al., 2022), the structure
of box-constrained problems was exploited to apply L—
BFGS more effectively by reducing the size of the Newton
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system after eliminating active constraints. The present
work continues the search for faster and more effective
Newton-type directions by exploiting the specific structure
of optimal control problems (OCPs).

The remainder of this paper is structured as follows.
Section 2 explores a linear Newton approximation (LNA)
of the fixed-point residual mapping that lies at the core
of PANOC. By using a Gauss—Newton (GN) approxima-
tion, the high computational cost of evaluating second-
order derivatives is avoided. In Section 3, we go on to
apply this Gauss—Newton variant of PANOC to an input-
constrained, nonconvex optimal control problem, and show
that the computation of the GN step corresponds to the so-
lution of an equality-constrained linear quadratic regulator
(LQR) problem. Section 4 solves this problem efficiently
using the Riccati recursion. Pseudocode for the algorithm
is provided, with a brief discussion of the computational
cost. The performance of the resulting solver is validated
in Section 5, where it is applied to a challenging model
predictive control benchmark. We report a speedup by a
factor of two compared to the L-BFGS version of PANOC.
Finally, Section 6 concludes with a recapitulation of the
main results and a discussion of future work.

1.1 Notation

Let [a,b] denote the closed interval from a to b, then
IN; ) £ [6,/]NIN. R £ IR U {400} is the set of extended
real values. z; refers to the i’th component of x € IR".
Given an index set Z = {i1, ..., im} S IN[1,), we use
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vz = (T4, .-, T4, ). Given a matrix A € R™*™, Az €
R denotes the matrix that consists of all elements
of A with row indices in Z and column indices in J; a dot
is used to denote all indices, e.g. A[z, -] selects the complete
rows of A with row indices in Z. In the context of OCPs,
the vector u € IR™™ without superscript refers to the
concatenation of vectors u* € IR™ for all time steps k in
the horizon. Given a positive definite matrix R, define the
R-norm as ||z||g & Va' Rz; |z|| refers to the Euclidean
norm. The indicator function d; of a set U is zero for
points in U and +oo otherwise. The proximal operator of
a function g : IR" — IR is defined as prox, () £ argmin,,
{g(w)+3 [|w — z||? }, with the projection onto U as special
case, Iy (x) £ prox;, (z). (Rockafellar and Wets, 2004,
§1.G). Denote the distance between a point 2 and a closed
set D by distp(z) £ ||z — Hp(x)|. Let f : R" — R?
and g : R™ — RRY, then (f x g) : R" x R™ — R” x
R?: (z,y) — (f(z),g(y)) is their Cartesian product, and
if p = ¢, their reduced sum is defined as (f @ g) : R" x
R™ — IR : (z,y) — f(x)+g(y). For a function F : R" —
IR™, denote its Jacobian matrix by Jr : IR" — IR™*"; a
superscript is used to refer to the variables with respect to
which to differentiate, e.g. JE £ %—5 = (V. F)". The Clarke
generalized Jacobian of F' is denoted by OcF (Clarke,
1990), and for a differentiable function f : IR"™ — IR, define
the generalized Hessian matrix as 92f 2 9c(V f).

2. GAUSS-NEWTON ACCELERATION OF PANOC

We consider optimization problems of the general form
minimize (u) + g(u), (P)
u

where ¢ : IR™ — IR has a locally Lipschitz-continuous gra-
dient but is not necessarily convex, and where g(u) : R" —
TR is proper, lower semicontinuous, and ~g-Prox-bounded,
but possibly nonsmooth and nonconvex. Problems of this
form can be tackled using the proximal gradient method,
or accelerated variants thereof, such as the PANOC algo-
rithm (Stella et al., 2017; De Marchi and Themelis, 2022).

2.1 Linear Newton approzimations for PANOC

Local solutions to (P) correspond to fixed points of the
forward-backward operator T, (u) £ prox., (u—vVﬂ;(u)),
and are characterized by the nonlinear inclusion 0 €
R, (u), where R, £ y~1(Id —T,) is the fived-point residual
of T.,. Traditionally, PANOC applies the L-BFGS quasi-
Newton method to this root-finding problem to achieve
fast convergence. A line search over the forward-backward
envelope @EB is used as a globalization strategy.

This paper explores alternative directions to accelerate
PANOC by studying generalized Jacobians to construct a
linear Newton approzimation (LNA) (Facchinei and Pang,
2003) of the fixed-point residual R, .

Proposition 1. (LNA scheme for R-)
Suppose that Vi is semismooth around @ € IR™ and that
prox., with v > 0 is semismooth at @ — vV (). Then,

Hoy(u) 97T = B(u) (v T = 8%(u)), (1)
where B(u) = d¢ prox., (u — yVi(u)) and 92¢(u) =
dc (Vi (u)), furnishes an LNA scheme for R, at @. (Patri-
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nos and Bemporad, 2013, Lem. 6) (Patrinos et al., 2014,
Prop. 3.7) (Themelis et al., 2019, §15.4.13)

Proof. Because of the semismoothness of prox,, and
Vi, B(u) is an LNA scheme for prox., at 4 — yV(a),
and I —70%(u) = dc (u — vV (u)) is an LNA scheme for
Id—~V1 at @. By (Facchinei and Pang, 2003, Thm. 7.5.17),
the product B(u)(y~'I — 9%y (u)) is an LNA scheme for
the composition T, = prox., o(Id — V) at w. O

This proposition motivates using a solution Awu of the New-
ton system H., (@) Au = —R- () as an update direction for
PANOC, using the LNA around the current iterate .

2.2 Structured PANOC

In the case where the nonsmooth term g in (P) is the
indicator of a rectangular box U, prox, is a separable
projection. This structure can be exploited to reduce the
dimension of the Newton system (Pas et al., 2022, §III).

Decompose the box U = X, U; as a Cartesian product
of one-dimensional intervals. Then, B(u) = 0¢ Iy (u —
YV (u)) is a set of diagonal matrices with

B(u);; € < {1} if u; —yVio(u) € int U, (2)
[0,1] if u; —yViy(u) € bdry U,.

Motivated by these different cases, let us define the in-

dex sets K(u) = {i € N[y, ) | u; —yVi(u) € int U; } and

J(u) & {z € IN[g, ) | u; — YViy(u) € int Ul-} of active and

inactive constraints respectively, and choose B(u) € B(u),

defining B(u); £ 0if i € K(u) and B(u)y; £ 1ifi € J(u).

By permutation of (1), the Newton step Au at a point @
can then be computed by solving the system

Aux = U — pr(ﬂ);g,

{53J1/1(ﬁ) Aug = =z (i) — 05 (i) Aug. )

2.8 Gauss—Newton approximation

We will now specialize to problems where the smooth term
is a composition ¢ (u) £ ¢(F(u)) of £ : R™ — IR convex
and F : R" — IR™. Considering the computational cost
of evaluating and factorizing the second-order derivatives
of 1, the proposed method approximates (3) using the
Gauss-Newton matrix Viy 2 Jr(u)T O*(F(u)) Ip(u)
(Schraudolph, 2002, §3).

Remark 2. For ¢ € C?, we have V21 = @éN + 0%y with
S&n(u) & 3T Vi 0(F(u)) V2F;(u). If the function F is
linear around a solution u*, or if F'(u*) is a stationary point

of £, the error term 62y vanishes, and the Gauss-Newton
approximation approaches the true Hessian matrix of .

Substituting 8%y by V3y in (3) and writing the solution
to the resulting system as the solution of an equality
constrained quadratic program yields
s 1A, TO2 (- T
minimize 5 Au' Vin(2)Au+ Vy(u) Au
mise § AuT VN () uk Vo Au o
subject to Aux = ux — T4 (4)k.
The following sections explore methods for efficiently solv-
ing this Gauss—Newton QP (GN-QP) by making use of
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© . Az Qr S\ (AzF
1 k Pk 1
mRRC L (AM) <Sk ) \auk) T2 (A7
subject to Az’ =0
AzFtt = A Axk 4+ B AuF

Au;g = Ui — T,y(u>)g

o Az Qr S\ [ AzF
; Jk Ok 1
TARRGE T (Auj;) (Sk Re) \Auk +5 (A

subject to

= A Azk + BkAuj + Ck
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MTQy (AzY +N 1( ) ( k)-l—(qN)T(AmN)

k=0
(P-ELQR)

(0<k<N)

MTQy (AzY +N 1( ) (Auj)+(@N)T(AxN)

k=0 (P-LQR)

(0<k<N)

the particular structure of finite-horizon optimal control
problems. The Gauss—Newton step Awu can then be used
as an accelerated direction for PANOC.

3. OPTIMAL CONTROL

This section explores how optimal control problems fit into
the optimization framework from the previous section, and
how their specific structure can be exploited to compute
Gauss—Newton directions efficiently.

3.1 Problem formulation

Consider the following general formulation of a nonlinear
optimal control problem with finite horizon N.

ng hkl‘ uf )+€N(hN( ))

subject to u € U

minimize
u,T

(OCP)
2 = Tinit
P = (k)
The function f : R™ x IR™ — IR™ models the discrete-
time, nonlinear dynamics of the system, with initial state
k
Tinit- The functions by : IR™ xIR™ — IR™ for0 < k< N
N
and hy : IR"™ — IR"™ can be used to represent the
(possibly time-varying) output mapping of the system, and

the convex functions £, : R™ — R and Iy : R™ — R
define the stage costs and the terminal cost respectively.

(0<k<N)

The problem (OCP) can be transcribed into formulation
(P) as follows. Recursively define the state transition
function ®* as ®°(u) £ ziy;; and ¥ (u) £ f(PF(u), u").
Define G as the function that maps a sequence of inputs
to the interleaved states and inputs over the horizon,
Gu) = (9°(u), ug, ®'(u), uy, ..., ®V(u)). Using this
definition, the single-shooting or sequential formulation of
problem (OCP) is an instance of (P), with £ = £y®- - -® Ly,
h=hyX-+xhy, F=hoG,¢¥={0oF and g = dy, i.e.

miniumize {(h(G(w)))

(SS-OCP)
subject to u e U.

3.2 Gauss—Newton approximations for optimal control

By specializing the Gauss-Newton QP (GN-QP) for this
class of optimal control problems, and by exploiting the

separable structure of the objective function, the Gauss—
Newton step can be shown to be the solution to the
equality-constrained, finite-horizon, linear quadratic reg-
ulator problem (P-ELQR) at the top of this page. For the
sake of readability, we defined the following variables.

k2 (I)k(—) Bk 2 hk(jk, ak)
¢ E ﬁk(i ) TV (RF) FE g (N ah) TV ()
A2 (k) Be2JjEha) g
Qr £ Jj (2" ") T 0°0,(h*) I (3", a)

Sk £ Jp (@5 a") T 20 (hY) Jf (28 @

)
Ry, & Jp (zha") T 0%0,(RF) hk(jkvﬂk)
In order to transform (P-ELQR) into a standard linear
quadratic regulator formulation, eliminate the fixed vari-
ables ux. The result is the problem (P-LQR), where we
used the following definitions.
ar=q"+ S, 1K uf, P2k + Ryl uf, (7)
Sk 2 Skl

7.1, Re2Rp17.7), Br2Byl-.7), &2 Byl Kuk.

Remark 3. In the absence of box constraints, we have
K = (), and the algorithm reduces to the iterative linear
quadratic regulator (ILQR) method for nonlinear MPC of
(Li and Todorov, 2004) with a line search.

3.8 Handling state constraints

Consider a standard state-constrained finite-horizon opti-
mal control problem of the following form.

minimize 1 E Hmk - H2 + Huk —u H2
w,x 2 T Q T R

S AR P
subjectto ueU (SC-OCP)
2 = Tinit
P = (2, ) (0<k<N)
cx(2®) € Dy, (0<k<N)

The costs are now given by the weighted squared distance
to the reference state x, and reference input u,. A smooth,
possibly nonlinear function ¢ of the states enables the rep-
resentation of general equality and inequality constraints,
by constraining its image to the box Dy.

It is common practice to relax the state constraints by
means of a penalty method, moving the constraints to
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the objective function as quadratic penalty terms. For
example, & dist7, (cx(2%)), for sufficiently large p > 0.

Such a soft-constrained optimal control problem fits into
the framework of (SS-OCP) by defining

O, u,2) 2 F |z — |G + 5 [lu — w7 + 4 distD, (2),
o — el + 4 dist, (2), (8)
hn(z) £ (z, en(2)) .

The cost £ is no longer twice differentiable, but its gradient
V/ is locally Lipschitz continuous, and hence its Clarke
generalized Jacobian 0%¢ is well defined and nonempty
(Facchinei and Pang, 2003, Prop. 7.1.4). Additionally, the
gradient is semismooth, so Proposition 1 applies.

éN(xa Z) £

hi (2, u) 2 (x, u, ck(ac)),

The following proposition gives a sufficient condition for
the solution to the Gauss—Newton QP (GN-QP) to be
uniquely defined.

Proposition 4. If the cost matrix R is positive definite,
Q@ is positive semidefinite, and pp > 0 for all k, then
the CGauss Newton matrix V3y for the soft-constrained
optimal control problem is positive definite.

Proof. By algebraic manipulations of @éN

Because of the block-diagonal structure of 82¢ and Jj,
their product L £ J;@zf Jp is also block-diagonal, with
blocks of the form blkdiag(Q + C} MyCy, R) = 0, where
Ci, £ J., (z*) and My, € 9%(4 dist, (cx(2¥))). Because of
the structure of G (it includes the identity map of u), the
block rows of Jg(u) that correspond to the inputs have
full rank (they contain n, X n, identity matrices) and line
up with the positive definite blocks R in L. Hence, the full
product V2 = Ja(u) T LJg(u) is positive definite. O

4. ALGORITHMIC DETAILS

We will now describe an algorithm for efficiently solving
(P-LQR) to obtain the Gauss-Newton step Awu that can
be used to accelerate PANOC.

The PANOC* method from (De Marchi and Themelis,
2022) is given in Algorithm 1. It has been specialized to use
the GN step Awu derived in Section 2. Unlike the original
version of PANOC™ with an L-BFGS accelerator, a GN
step can be computed from the very first iteration.

4.1 Solution of the LQR problem

The Gauss—Newton step Au can be computed as the
solution to (P-LQR) using LQR factorization and LQR
solution routines based on the Riccati recursion (Rawlings
et al., 2017, §8.8.3), (Patrinos and Bemporad, 2014, Alg. 3-
4). These routines, specialized to the problem at hand, are
listed in Algorithms 2 and 3.

An important observation is that the cost for the compu-
tation of the Gauss—Newton direction using these routines
scales linearly with the horizon length N. In the worst case,
when K(@) = 0, Algorithm 2 requires the factorization of
N matrices of size n, X n, and some matrix products. In
contrast, general direct solution methods for system (3)
require a single factorization of a much larger n, N X n, IV
matrix, with a cost that scales cubically with N.

4855

Algorithm 1: PANOCT (De Marchi and Themelis,
2022, Algorithm 2) with Gauss—Newton acceleration

In: initial guess u(?), initial step size vy > 0,
parameters «, 5 € (0,1)
Out: u*
a4 T, (u®), p@ 4@ — 4O 1
while Stopping criterion not satisfied for w1
Compute Au from (GN-QP) with @ £ u(V—1
Yo < Yv-1, T 1
>
u® — w1 4+ (1 —7)p 4+ 7 Au
W) T, (), pW) @@ — )
if $(a®) > P(u) + Vo u))p) + 52 pt||°
| % /2, 7< 1landgotor
se FB(, (v FB v— 1-a v—1)||2
if TP () > @B, (ul) = fzze |[p V||
| 7+ 7/2and go to >
| v<rv+l

T, (u(”_l))

Algorithm 2: LQR factor

In: Qkﬁk,ék,(jm% Ay, By, &
Py +@Qn, sn<dn
fork=N-1,..,0

R« Rk + B];rpk+1Bk

S« Sk + B,;rpk_HAk

Y = Pri1e + Sp

K, —R7LS

e —R_l(B;—y + ’Fk)

sk STer + Al y+ dr

P+ Qk + A;—P]H,lAk + STKk

Out: Ky, ey

Algorithm 3: LQR solve
In: Ay, By, Ky, ex, Aug
Az® 0

for k=0,..,N—-1

L Auf} — KkA.’Ek + ex

Out: Auy, Ax

AzFtl — A Azk + By AuF

4.2 Practical considerations

Far away from the solution, the Gauss—Newton model
might not approximate the true function well, and the GN
step might not perform much better than an L-BFGS step.
Considering the significant difference in computational
cost between Gauss—Newton and L-BFGS (the former
requires evaluation of the Jacobians of the dynamics,
matrix factorizations and multiplications, whereas the
latter only requires a limited number of vector operations),
we propose to only compute the GN step every kgn > 1
iterations. In between, cheaper structured PANOC L-
BFGS steps are used (Pas et al., 2022, §III). When
eventually a GN step is accepted by the line search with
step size 7 = 1, the algorithm continues to take GN steps,
for as long as they keep getting accepted with unit step
size. Using this technique, the algorithm initially maintains
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a low cost per iteration, and eventually enjoys the fast local
convergence of the more expensive GN iterations. This will
be corroborated experimentally in the following section.

5. EXPERIMENTAL RESULTS

In this section, the PANOC algorithm with Gauss—Newton
acceleration is applied to a nonlinear, input-constrained
model predictive control problem, and its performance is
compared to the approximate structured PANOC algo-
rithm with L-BFGS acceleration from (Pas et al., 2022).
As a benchmark, we consider the optimal control of
a “chain of masses connected by springs” described by
(Wirsching et al., 2006). One side of the chain is fixed, and
the other side is attached to an actuator. A disturbance is
applied to the system, and the controller aims to bring the
chain back to a steady state, with the actuator at a given
target position. The velocity of the actuator is limited to
1m/s along each axis. Unless specified otherwise, we use
the parameter values listed in (Wirsching et al., 2006).

CasADi (Andersson et al., 2019) is used to model and
discretize the problem using a fourth-order Runge-Kutta
integrator, and to generate C code for evaluating the
required problem functions and their derivatives. These
functions are then used in an optimized C++ implementa-
tion of Algorithms 1-3, based on ALPAQA (Pas, 2021).1

5.1 Number of iterations

In a first experiment, the convergence in terms of the num-
ber of iterations is compared for the PANOC algorithm
with Gauss—Newton acceleration as described in this pub-
lication, and for the structured PANOC algorithm with
L-BFGS acceleration without the off-diagonal Hessian—
vector term from (Pas et al., 2022). For the GN accelerator,
the parameter kg from Section 4.2 is set to one (i.e. a GN
step is computed on each PANOC iteration). The L-BFGS
memory is set to 40, equal to the length of the horizon.
Figure 1 shows the convergence of the two algorithms when
applied to an OCP using the chain model. Initially, they
both perform similarly, but after around 20 iterations, the
GN directions are accepted with unit step size, enabling
very fast linear convergence.

Note that a similar graph in terms of solver run time would
look quite different: even though the progress per iteration
is comparable for the first 20 iterations, the computational
cost per iteration for the GN accelerator is around ten
times higher than for the L-BFGS accelerator. This can
be greatly improved by increasing kg -

5.2 Run time in function of horizon length

In a second experiment, we explore the effect of the horizon
length on the solver run time. For each horizon length be-
tween N = 10 and N = 45, 256 optimal control problems
are composed, each with a different initial state xip;, gen-
erated by applying uniformly random inputs in [—1, 1] for
five time steps. We set kgn to 30, and select the L-BFGS

1 The Python source code to reproduce the results can be found
at github.com/kul-optec/panoc-gauss-newton-ifac-experiments.
The experiments were carried out using a Core i7-7700HQ@2.8 GHz.
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Convergence of PANOC
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A qov
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Iteration (v)

Fig. 1. Comparison of the convergence of structured PANOC
with L-BFGS and PANOC with the proposed Gauss—Newton
accelerator (kgn = 1), when applied to the chain OCP.

Effect of horizon length on solver performance

— L-BFGS
80 d GN
o’
= 60 -
(<]
=
= 40
=3
=
201
0 T T T T
10 20 30 40

Horizon length

Fig. 2. Median solver run time over the 256 test problems for
each horizon length, for structured PANOC with L-BFGS and
PANOC with the Gauss—-Newton accelerator (kgn = 30). The
shaded area indicates the P10 and P90 percentiles.

Solver run times for model predictive control

150

— L-BFGS (cold)
— L-BFGS (warm)

= — GN (cold)

8 100 GN (warm)

[}

£ ‘% J

b ‘ )

D% 50 ‘ “4 vww \w ‘m

,m Md/‘»ﬁ N
0 T
0 50 100 1 300

MPC time step

Fig. 3. Solver run times for structured PANOC with L-BFGS and
PANOC with the Gauss—Newton accelerator (kgn = 10) when
applied to the chain MPC problem. The cold label indicates an
initial guess of zero, for warm it is the shifted previous solution.

memory to equal the horizon length N. The solvers de-
clare convergence when ||u(”) — Iy (u(” Vi (u ) )H <
10719 Run times for structured PANOC with L-BFGS
and for PANOC with GN acceleration are reported in
Figure 2. The solver with GN acceleration is more than
twice as fast as the L-BFGS variant, and the run time
scales close to linearly with the horizon length V.
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5.8 Model predictive control

Finally, both solvers are applied in a closed-loop controller.
A disturbance of [-1, 1, 1] m/s is applied for five time steps,
and the system with the MPC controller is simulated for
one minute. The run times of the two solvers described
earlier are reported in Figure 3. The GN solver (with
ken = 10) outperforms the L-BFGS-based solver in terms
of both average and worst-case run time. The fast local
convergence of GN is especially noticeable when the initial
guess is close to the solution, e.g. by warm starting the
solver using the shifted solution from the previous time
step, and when the system starts to settle near the end
of the simulation. For reference, the popular Ipopt solver
(Wéchter and Biegler, 2006) requires around 1.7 seconds to
solve the first OCP (without JIT compilation), compared
to just 30 ms for the PANOC solver with GN acceleration.

6. CONCLUSION

In this paper, we extended the PANOC algorithm to
enable acceleration using Gauss—Newton directions. We
showed how the structure of optimal control problems can
be exploited to efficiently compute these Gauss—Newton
directions using the Riccati recursion, in such a way that
the computational cost scales linearly with the horizon
length. Performance of the proposed method was then
compared to a previous variant of PANOC: we reported
a speedup by a factor of two for a challenging optimal
control benchmark problem.

An open-source C++ implementation of the solver is
available in the ALPAQA GitHub repository. (Pas, 2021).
Further performance improvements could be achieved by
exploiting the sparsity of the Jacobians, or by employing
tailored linear algebra routines (Frison et al., 2018).
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