<学術雑誌論文>
Assessment of Bi-Ventricular and Bi-Atrial Areas Using Four-Chamber Cine Cardiovascular Magnetic Resonance Imaging: Fully Automated Segmentation with a U-Net Convolutional Neural Network

作成者
本文言語
出版者
発行日
収録物名
開始ページ
出版タイプ
アクセス権
権利関係
権利関係
関連DOI
関連URI
関連HDL
概要 Four-chamber (4CH) cine cardiovascular magnetic resonance imaging (CMR) facilitates simultaneous evaluation of cardiac chambers; however, manual segmentation is time-consuming and subjective in practi...ce. We evaluated deep learning based on a U-Net convolutional neural network (CNN) for fully automated segmentation of the four cardiac chambers using 4CH cine CMR. Cine CMR datasets from patients were randomly assigned for training (1400 images from 70 patients), validation (600 images from 30 patients), and testing (1000 images from 50 patients). We validated manual and automated segmentation based on the U-Net CNN using the dice similarity coefficient (DSC) and Spearman’s rank correlation coefficient (ρ); p < 0.05 was statistically significant. The overall median DSC showed high similarity (0.89). Automated segmentation correlated strongly with manual segmentation in all chambers—the left and right ventricles, and the left and right atria (end-diastolic area: ρ = 0.88, 0.76, 0.92, and 0.87; end-systolic area: ρ = 0.81, 0.81, 0.92, and 0.83, respectively; p < 0.01). The area under the curve for the left ventricle, left atrium, right ventricle, and right atrium showed high scores (0.96, 0.99, 0.88, and 0.96, respectively). Fully automated segmentation could facilitate simultaneous evaluation and detection of enlargement of the four cardiac chambers without any time-consuming analysis.続きを見る

本文ファイル

pdf 4752582 pdf 2.27 MB 243  

詳細

EISSN
レコードID
主題
タイプ
助成情報
登録日 2022.02.02
更新日 2024.12.02