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Abstract: Four-chamber (4CH) cine cardiovascular magnetic resonance imaging (CMR) facilitates
simultaneous evaluation of cardiac chambers; however, manual segmentation is time-consuming and
subjective in practice. We evaluated deep learning based on a U-Net convolutional neural network
(CNN) for fully automated segmentation of the four cardiac chambers using 4CH cine CMR. Cine
CMR datasets from patients were randomly assigned for training (1400 images from 70 patients),
validation (600 images from 30 patients), and testing (1000 images from 50 patients). We validated
manual and automated segmentation based on the U-Net CNN using the dice similarity coefficient
(DSC) and Spearman’s rank correlation coefficient (ρ); p < 0.05 was statistically significant. The overall
median DSC showed high similarity (0.89). Automated segmentation correlated strongly with manual
segmentation in all chambers—the left and right ventricles, and the left and right atria (end-diastolic
area: ρ = 0.88, 0.76, 0.92, and 0.87; end-systolic area: ρ = 0.81, 0.81, 0.92, and 0.83, respectively; p < 0.01).
The area under the curve for the left ventricle, left atrium, right ventricle, and right atrium showed
high scores (0.96, 0.99, 0.88, and 0.96, respectively). Fully automated segmentation could facilitate
simultaneous evaluation and detection of enlargement of the four cardiac chambers without any
time-consuming analysis.

Keywords: cardiovascular magnetic resonance imaging; four-chamber cine imaging; fully automatic
cardiac segmentation; heart chamber enlargement; convolutional neural network; U-Net

1. Introduction

Although functional evaluation with medical imaging based on cardiac volume mea-
surement has mainly focused on the left ventricle (LV), its applications in recent research
have extended to the left atrium (LA), right ventricle (RV), and right atrium (RA) [1–6]. In
particular, four-chamber (4CH) imaging with echocardiography has been widely utilized
for such measurements because it allows information regarding the four cardiac chambers
to be obtained in one cross-sectional image. For example, changes in the left ventricular
area are clinically considered as indicators of simplified LV contraction; changes in the
right ventricular area are considered as indicators of RV contraction, given that accurate RV
volume measurement is difficult due to its complex geometry; and changes in the bilateral
atria area are used as indicators of atrial pressure and atrial function [7–10]. Furthermore,
clinical markers that combine the functions of the left and right ventricles and the left and
right atria have been proposed in recent years [11–13].

Chamber assessment with 4CH echocardiography still has major limitations due to its
narrow field of view. On the other hand, cardiac function analysis using cardiovascular
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magnetic resonance imaging (CMR) allows a relatively wider field of view, has high
accuracy, and provides reproducible results; therefore, it has become the gold standard
for cardiac function analysis. Recently, independent evaluations have been proposed for
each of the four cardiac chambers [14,15]. Although CMR is the gold standard for cardiac
function analysis, manual analysis requires considerable time and effort. A high-accuracy
analysis support tool, such as feature tracking, has been proposed; however, its efficacy
in terms of time reduction is limited. Moreover, observer-dependent errors owing to the
subjectivity of the analysis using semiautomatic feature-tracking measurements cannot be
eliminated. To solve these problems, highly accurate automatic extraction of the LV and RV
using deep learning for short-axis cine CMR images has been reported [16,17]. However, to
the best of our knowledge, there are no reports of automatic extraction of cardiac chambers
using 4CH cine CMR. We hypothesized that it would be clinically useful to automatically
measure the areas of the four cardiac chambers with cine CMR images. This study aimed
to investigate the accuracy of automatic extraction of the four cardiac areas using deep
learning with 4CH cine CMR and verify the effectiveness of this approach.

2. Materials and Methods
2.1. Cine CMR Datasets

For this study, 150 consecutive patients (age: 68 ± 12 years; men: 96; women: 54)
with known or suspected cardiac dysfunction, were between July 2018 and September
2020 retrospectively enrolled, and their 4CH cine CMR images of a middle slice of the
heart were used for evaluation. Patients who presented unacceptable imaging artifacts
due to magnetic inhomogeneity or motion were excluded from the study. All datasets
were randomly assigned to groups for training (1400 images from 70 patients), validation
(600 images from 30 patients), and testing (1000 images from 50 patients). This retrospective
observational study was approved by the institutional review board of Futsukaichi Hospital
(approval number 201) and Kyushu University (approval number 29-199) and conducted
in accordance with the 1964 Declaration of Helsinki. Because the requirement for obtaining
patient consent was waived for this study, an online provision on the hospital homepage
was prospectively made available to the patients, allowing them to opt out of the study.

2.2. CMR Parameters

Cine CMR was performed using a 3.0-T magnetic resonance imaging (MRI) system
(Ingenia, Philips Healthcare, Best, The Netherlands) equipped with a 33-mT/m maximum
gradient strength, 120-T/ms slew rate, and a 32-channel phased-array receiver coil. An
electrocardiography-gated steady-state free precession cine image was acquired in the 4CH
view with 20 reconstructed phases per heartbeat. The cine sequence parameters were as
follows: repetition time/echo time, 2.9/1.47 ms; flip angle, 50◦; slice thickness, 6 mm; field
of view, 350 × 350 mm2; acquisition matrix, 176 × 208; reconstruction matrix, 352 × 352;
and SENSE (sensitivity encoding) factor, 2.5.

2.3. Image Pre-Processing

The matrix size for the deep learning algorithm was downsized from 352 × 352 to
128 × 128 with nearest neighbour interpolation. Subsequently, the bit depth for all the
datasets were converted from 16 bits to 8 bits of portable network graphics files. The
window level and width were rescaled to 256 gradients with the minimum and maximum
values for each image intensity. These imaging processes were performed using an offline
software (MATLAB (R2017b; MathWorks, Inc., Natick, MA, USA)).

2.4. Image Segmentation Using Manual Delineation

Delineation of the endocardium of the four cardiac chambers for a cardiac cycle
was performed by adopting a concerted measure by analysts with 10–15 years of clinical
experience in cardiac radiology. The papillary muscles and trabeculations were included in
the blood pool. Delineation was performed using the MATLAB software [18].
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2.5. Image Segmentation Using Deep Learning

To develop an established CNN, we used a deep learning platform called Neural
Network Console (Sony Network Communications, Tokyo, Japan) and a specialized graphic
processing unit (GeForce GTX 1080; Nvidia, Santa Clara, CA, USA) [19]. In general, data
augmentation is performed based on the following parameters: rotation range, ±5.0◦; flip
vertical. Consequently, the segmentation models for bi-ventricular and bi-atrial areas were
generated using the 100-epoch U-Net architecture with a batch size of 10, learning rate of
0.002, momentum optimizer, and weight decay of 0.0005 [20].

2.6. Image Post-Processing

Each image predicted by the developed U-Net CNN contained blood pools that do
not correspond to each cardiac chamber. To correct the morphology, the predicted images
underwent morphological closing using a 3-pixel radius disk, based on selection of the
largest area and as reported previously [17]. The closed images were then binarized by the
adapted threshold method [21]. These imaging processes were performed using MATLAB.

2.7. Evaluation Criteria

The performance of segmentation was evaluated using the Dice similarity coefficient
(DSC) [22]. The DSC is described by Equation (1), where X represents the manually drawn
contour and Y represents the prediction produced by the U-Net CNN.

DSC =
2|X ∩ Y|
|X|+ |Y| (1)

Further, the performance of the segmentation was evaluated using the Mahalanobis
distance (MD) [23]. The MD is described by Equation (2), where X represents the manually
drawn contour and Y represents the prediction by U-Net CNN. The factor T represents the
matrix transpose, and S−1 represents the inverse of the pooled covariance matrix of the two
images; this matrix is computed as the weighted average of the two covariance matrices.

MD2 =
(
X− −Y−

)TS−1(X− −Y−
)

(2)

2.8. Image Categorization

Test datasets comprised 20 consecutive images per patient through an entire cardiac
cycle. The ventricle with the smallest area and the atrium with the largest area were defined
as the end-systolic area (ESA), and its first phase was defined as the end-diastolic area
(EDA). The fractional area change (FAC) was calculated as the percentage of the difference
between the EDA and ESA with respect to EDA.

2.9. Statistical Analyses

The Shapiro–Wilk test was used to assess the normality of the data distribution.
Due to non-normal data distribution, descriptive statistics data were presented as the
median and corresponding interquartile ranges. The correlations between the area in
each cardiac chamber from both manual segmentation and automated segmentation and
based on the U-Net CNN were analysed using Spearman’s rank correlation coefficient
(ρ). The accuracy of the U-Net CNN with respect to the manual method was evaluated
using Bland–Altman analysis and the intraclass correlation coefficient (ICC) with one-way
random single measures. The ICC values were defined as excellent (ICC ≥ 0.75), good
(ICC = 0.60–0.74), moderate (ICC = 0.40–0.59), and poor (ICC ≤ 0.39). Receiver operating
characteristic (ROC) analysis was performed to assess the accuracy of detection of heart
chamber enlargement using the U-Net CNN-derived EDA. Chamber enlargement was
diagnosed based on the value reported in previous studies [24,25]. Diagnostic cut-off
values of chamber enlargement as left ventricular EDV/body surface area (BSA), left atrial
EDA/BSA, right ventricular EDA/BSA, and right atrial EDA/BSA were (men: 108 mL/m2;
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women: 96 mL/m2), (men: 11.9 cm2/m2; women: 12.7 cm2/m2), (men: 13.6 cm2/m2;
women: 12.6 cm2/m2), and (men: 11.1 cm2/m2; women: 11.0 cm2/m2), respectively. All
statistical analyses were performed using GraphPad Prism version. 9.0.1, for Windows
(GraphPad Software, San Diego, CA, USA). Statistical significance was set at p < 0.05.

3. Results

The patients’ characteristics are shown in Table 1. The clinical characteristics were
compared between the training, validation, and test groups. For comparison, one-way
analysis of variance or the Kruskal–Wallis test was used depending on the distribution
of the data. There were no significant differences among the groups in the results of
the comparisons.

Table 1. Patient characteristics.

Training
(n = 70)

Validation
(n = 30)

Test
(n = 50) p Value

Clinical characteristics
Age, years 66 ± 13 71 ± 10 68 ± 12 0.20

Male 48 (69) 19 (63) 29 (58) 0.49
Heart rate, beats/min 65 ± 13 65 ± 13 70 ± 16 0.27

Weight, kg 64 ± 13 60 ± 13 60 ± 14 0.16
Height, cm 163 ± 9 162 ± 9 161 ± 10 0.48

Body surface area, m2 1.7 ± 0.2 1.6 ± 0.2 1.6 ± 0.3 0.16
Body mass index, kg 24 ± 4 23 ± 3 23 ± 4 0.42

Cardiovascular disease
ICM 10 (14) 12 (40) 10 (20)
HHD 6 (9) 1 (3) 3 (6)

Arrhythmia 18 (26) 9 (30) 14 (28)
HCM 9 (13) 3 (10) 9 (18)
DCM 8 (11) 1 (3) 3 (6)

Sarcoidosis 3 (4) 1 (3) 2 (4)
Amyloidosis 7 (10) 2 (7) 2 (4)

Others 9 (13) 1 (3) 7 (14)
CMR measurements

LV function
EDV, mL 169 ± 86 137 ± 40 143 ± 51 0.25
ESV, mL 110 ± 116 70 ± 41 77 ± 48 0.25

EF, % 46 ± 17 52 ± 16 49 ± 14 0.28
Baseline characteristics of all subjects are shown. Values are mean ± SD or n (%). Training datasets include
validation datasets. ICM = ischemic cardiomyopathy; HHD = hypertensive heart disease; HCM = hypertrophic
cardiomyopathy; DCM = dilated cardiomyopathy; CMR = cardiac magnetic resonance; LV = left ventricle;
EDV = end-diastolic volume; ESV = end-systolic volume; EF = ejection fraction; SD, standard deviation.

3.1. Accuracy of Segmentation of the Four Cardiac Chambers

The segmentation of the four cardiac chambers using the U-Net CNN was able to
detect all the chambers in the test datasets. The segmentation accuracy of the four car-
diac chambers was evaluated between images obtained with manual segmentation and
automated segmentation using the U-Net CNN; the overall median DSC was 0.89, and
the median DSCs in each chamber were 0.92, 0.90, 0.84, and 0.88 in the LV, LA, RV, and
RA, respectively. In each chamber, the DSC for all the cardiac phases demonstrated high
values (Figure 1). The segmentation accuracy of the four cardiac chambers images obtained
with manual segmentation and automated segmentation using U-Net CNN was evaluated;
the overall median MD was 2.11, and the median MDs in each chamber were 2.08, 2.14,
2.18, and 2.07 in the LV, LA, RV, and RA, respectively. In each chamber, the MD for all the
cardiac phases demonstrated low values (Figure 2).
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Figure 1. Distribution of Dice similarity coefficient (DSC) for the four cardiac chamber segmentations
using the U-Net convolutional neural network (CNN) on the test datasets. Box plots were generated
by using GraphPad Prism for all cardiac phases in each chamber. (a) DSC of the left ventricle
(LV), (b) DSC of the left atrium (LA), (c) DSC of the right ventricle (RV), and (d) DSC of the right
atrium (RA).
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Figure 2. Distribution of the Mahalanobis distance (MD) for the four cardiac chamber segmentations
using U-Net convolutional neural network (CNN) on the test datasets. Box plots were generated
using GraphPad Prism for all cardiac phases in each chamber. (a) MD of the left ventricle (LV), (b) MD
of the left atrium (LA), (c) MD of the right ventricle (RV), and (d) MD of the right atrium (RA).

We have illustrated the segmentation results of the four cardiac chambers in Figure 3
for representative cases.
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Figure 3. Four cardiac chamber segmentation—results of a representative case. Upper row: fusion
images with both original image of four-chamber (4CH) cine cardiovascular magnetic resonance
imaging (CMR) and label images extracted by the manual method. Lower row: fusion images with
both the original image of 4CH cine CMR and label images extracted by the fully automated method
with U-Net convolutional neural network (CNN). Left column: fusion images at the end-diastolic
phase. Right column: fusion images at the end-systolic phase. RV = right ventricle; LV = left ventricle;
RA = right atrium; LA = left atrium; DSC = Dice similarity coefficient.
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3.2. Functional Parameters of the Four Cardiac Chambers

The EDA and ESA with the U-Net CNN in each chamber showed strong correlations
and small biases against the EDA and ESA with manual segmentation (Figures 4 and 5).
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chamber generated from the manual method and U-Net CNN. (a) Left ventricular (LV) ESA, (b) left
atrial (LA) ESA, (c) right ventricular (RV) ESA, and (d) right atrial (RA) ESA.
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The biases of FAC in each chamber were small (Figure 6), and the FAC in the LV and
LA showed strong correlation with the U-Net CNN. However, the correlation of FAC in
the RV and RA was weaker than that in the left side of the heart.
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The ICCs of the EDA and ESA in the LV, LA, RV, and RA showed excellent variability,
as highlighted by their respective values (EDA: 0.93, 0.94, 0.80, and 0.88; ESA: 0.93, 0.94, 0.82,
and 0.87). The ICCs of FAC in the LV, LA, and RA showed good variability (0.61, 0.68, and
0.60, respectively), except it was poor in the RV only (0.19). ROC analysis revealed optimal
EDA values to identify cardiac chamber enlargement (23.8, 12.9, 13.4, and 11.2 cm2/m2 in
the LV, LA, RV, and RA, respectively). The area under the curves and the 95% confidence
intervals of the LV, LA, RV, and RA were 0.96 (0.91–1.00), 0.99 (0.99–1.00), 0.88 (0.77–0.98),
and 0.96 (0.91–1.00), respectively (Figure 7).

Int. J. Environ. Res. Public Health 2022, 19, x  11 of 14 
 

 

The ICCs of the EDA and ESA in the LV, LA, RV, and RA showed excellent variabil-
ity, as highlighted by their respective values (EDA: 0.93, 0.94, 0.80, and 0.88; ESA: 0.93, 
0.94, 0.82, and 0.87). The ICCs of FAC in the LV, LA, and RA showed good variability 
(0.61, 0.68, and 0.60, respectively), except it was poor in the RV only (0.19). ROC analysis 
revealed optimal EDA values to identify cardiac chamber enlargement (23.8, 12.9, 13.4, 
and 11.2 cm2/m2 in the LV, LA, RV, and RA, respectively). The area under the curves and 
the 95% confidence intervals of the LV, LA, RV, and RA were 0.96 (0.91–1.00), 0.99 (0.99–
1.00), 0.88 (0.77–0.98), and 0.96 (0.91–1.00), respectively (Figure 7). 

 
Figure 7. Receiver operating characteristic (ROC) curves of the chamber area extracted by the U-
Net convolutional neural network (CNN) for identifying a patient with an enlargement of each heart 
chamber. (a) Left ventricle (LV), (b) left atrium (LA), (c) right ventricle (RV), and (d) right atrium 
(RA). AUC = area under the curve. 

3.3. Computation Time 
The time of supervised learning was linearly dependent on the number of training 

and validation images and the number of epochs. The average time of learning with 12,000 
images and 20 epochs was 26 min. Once trained, the U-Net CNN was able to perform fully 
automated segmentation of 4CH cine CMR at approximately 0.02 s per cine image (20 s 
per 1000 images). 

Figure 7. Receiver operating characteristic (ROC) curves of the chamber area extracted by the U-Net
convolutional neural network (CNN) for identifying a patient with an enlargement of each heart
chamber. (a) Left ventricle (LV), (b) left atrium (LA), (c) right ventricle (RV), and (d) right atrium
(RA). AUC = area under the curve.

3.3. Computation Time

The time of supervised learning was linearly dependent on the number of training
and validation images and the number of epochs. The average time of learning with
12,000 images and 20 epochs was 26 min. Once trained, the U-Net CNN was able to
perform fully automated segmentation of 4CH cine CMR at approximately 0.02 s per cine
image (20 s per 1000 images).
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4. Discussion

We evaluated the accuracy of segmentation with 4CH cine CMR using the U-Net CNN
to test the datasets of 50 patients. Our results revealed high similarity and correlation for
all the cardiac phases in each chamber. Once the U-Net CNN learns to train datasets, it
can perform fast and accurate segmentation without a visually dependent manual method.
In addition, accurate fully automated segmentation of the four cardiac chambers allowed
automatic detection of the presence or absence of four cardiac chamber enlargement without
any subjective measurement and time-consuming analysis.

In this study, we performed four cardiac chamber segmentations in all cardiac phase
images of cine CMR using U-Net CNN. The DSC of all cardiac phases in each chamber
showed high similarity without any variations caused by the different phases. Thus, U-
Net CNN can perform four cardiac chamber segmentations independent of the cardiac
phase. In our study, LV segmentation revealed a high correlation, similar to that reported
previously [16,26]. One possible explanation for this could be that the LV structure com-
prises a thick myocardium with a simple morphology. The area correlations of the cardiac
chambers, excluding LV, also exhibited high values. These automatically extracted values
obtained using fully automated segmentation have the potential for useful clinical appli-
cation. However, FAC, a contraction indicator calculated based on the areas, exhibited
a low correlation on the right side of the heart. The right side of the heart has a more
complex morphology than the left side; it has a considerably thinner myocardium and
undergoes significant movement in the direction of the long axis. These factors can make
myocardial extraction difficult and prevent accurate extraction of the cardiac chambers.
Thus, we believe that accumulation of slight errors on the right side of the heart resulted
in a weak correlation of the FAC on the right side in our study. Similar to that reported
previously, the low extraction accuracy of the right side of the heart remains a major chal-
lenge for automated segmentation based on U-Net CNN, and further work is required in
this field [17,26–28]. Nevertheless, we demonstrated that U-Net CNN enables extraction of
areas in all the four cardiac chambers, with high accuracy, using 4CH cine CMR images.
Our study suggests that fully automated segmentation areas using U-Net CNN can be
employed for clinical applications.

Some studies have recently demonstrated the accuracy of segmentation of cine CMR
using the U-Net CNN [16,26]. Many of these studies have reported on the LV using short-
axis cine CMR. The accuracy of LV segmentation has been high in these studies, similar to
our results. A few studies have demonstrated the accuracy of RV segmentation, although
the performance of RV segmentation was lower than that of LV segmentation [27,28]. In
traditional segmentations with short axis cine CMR, it was necessary for the observers
to visually define the analytical slices for each chamber to determine the scope of analy-
sis. In other words, the above studies have used automated segmentation under limited
conditions, and this remains a major challenge in understanding fully automated segmen-
tation. In contrast, it was not necessary for the observers in our study to visually define
the analytical slices; moreover, fully automated segmentations of EDA and ESA for each
of the four cardiac chambers could be performed. These segmentations allowed extrac-
tion of the chambers and detection of heart chamber enlargement without any subjective
measurement and time-consuming analysis. Figure 5 accurately indicates the detection
of heart chamber enlargement in each of the four chambers. Compared to the short axis
cine CMR, 4CH cine CMR has the ability to evaluate all the heart chambers. In our study,
automated heart chamber extraction was able to detect heart chamber enlargement due
to pressure or volume overload. Future improvements in the accuracy of heart chamber
extraction may lead to strain analysis that is useful in assessing local wall movements or
heart chamber synchronization.

One limitation of our study is that it was performed at a single centre with a limited
patient population. However, as a preliminary study to validate the use of four cardiac
chamber segmentations using the U-Net CNN, the results of our study can still be useful.
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Further refinement of segmentation requires additional research in the near future, such as
the use of other CNN architectures and the use of larger datasets.

5. Conclusions

We developed and evaluated a fully automated 4CH cine CMR segmentation method
based on a U-Net CNN. Our automated method was able to extract each chamber in 4CH
cine CMR with high accuracy, and without any time-consuming and subjective analysis,
and detect heart chamber enlargement.
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