<会議発表論文>
Learning Control Strategies for High Performance Genetic Algorithms
作成者 | |
---|---|
本文言語 | |
出版者 | |
発行日 | |
収録物名 | |
開始ページ | |
終了ページ | |
会議情報 | |
出版タイプ | |
アクセス権 | |
概要 | In this paper, we propose a method to learn high performance strategies for controlling genetic algorithms. In our proposal, control strategies are represented by fuzzy systems that dynamically contro...l population sizing, crossover rates, and mutation rates. The control strategies are acquired and optimized according to online and of Hine measures using a genetic algorithm technique. We compare control strategies obtained using our methods with optimized static genetic algorithms and show performance Improvements. In some experiments, these strategies use a combination of high crossover rates, fluctuating population size, and exponentially decreasing mutation rates to realize high online and of Hine performance.続きを見る |
目次 | 1 Introduction 2 The Dynamic Parametric GA 3 Results 4 Conclusions and Further Research |
本文ファイル
ファイル | ファイルタイプ | サイズ | 閲覧回数 | 説明 |
---|---|---|---|---|
![]() |
1.72 MB | 131 |
詳細
レコードID | |
---|---|
登録日 | 2021.08.24 |
更新日 | 2021.08.24 |