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Abstract -In this paper, we propose a method to learn high per-
formance strategies for controlling genetic algorithms. In our 
proposal, control strategies are represented by fuzzy systems that 
dynamically control population sizing, crossover rates, and muta-
tion rates. The control strategies are acquired and optimized 
according to online and ofHine measures using a genetic algo-
rithm technique. We compare control strategies obtained using 
our methods with optimized static genetic algorithms and show 
performance Improvements. In some experiments, these strate-
gies use a combination of high crossover rates, fluctuating popu-
lation size, and exponentially decreasing mutation rates to realize 
high online and ofHine performance. 

1 Introduction 

The relationship between genetic algorithm performance 
and genetic algorithm parameter settings, such as population 
size and crossover rates, is complex and has been the topic of 

many recent publications [1-9,12-14). In an effort to further 
our understanding of these issues and to realize high perfor-

mance genetic algorithms, we proposed the Dynamic Para-
metric GA; a genetic algorithm that uses a fuzzy knowledge-
based system to control genetic algorithm parameters dynami-
cally, such as population size, crossover rates, and mutation 
rates in a genetic algorithm (see Figure 1) [12,13). In that 

work, we also proposed acquiring control strategies using the 

automatic fuzzy design technique proposed in [11). The com-

bination of these two approaches yielded a method to auto-
matically discover genetic algorithms exhibiting high online 

and offline performance. In this paper we further compare re-
suits of acquired control strategies and reveal the dynamic na-

ture of these automatically obtained strategies. Section 2 
reviews the Dynamic Parametric GA framework and our au-
tomatic design technique. Section 3_ presents results for on-

line and offline strategies. Section 4 concludes and gives 
areas for further extensions. 

2 The Dynamic Parametric GA 

2.1 DPGA Framework 

Inputs to the fuzzy knowledge-based system for genetic 
algorithm control can be any combination of genetic algo-

rithm performance measures or current control settings, and 

outputs can be any of the genetic algorithm control parame-

ters, such as population size or mutation rate. Typical inputs 
might be population diversity measures such as the ratio of 

average fitness to best fitness, current population size, current 
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Figure I. Dynamic Parametric GA: a genetic algorithm with dy-
namic parameters controlled by a fuzzy knowledge-based system. 
The fuzzy knowledge based system monitors perfonnance mea-
sures from lhc evaluation system to control genetic algorithm pa-
ramctcrs such as population size, mutation rate, or crossover rate. 
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Figure 2. Input and outputs to fuzzy knowledge-based sys-
tern used in our Dynamic Parametric GA (DPGA) experi-
ments. Inputs measure characteristics of the performance of 
the genetic algorithm on the environmenL Outputs control 
the population si砒 crossoverrate, and mutation rate. 

mutation rate, or fitness variance. Rules in the fu互 yknow!-
edge-based system reason about these measures and pre-
scribe some control action. Typical rules in the knowledge 

base may include Lhe following: 
rF (average filncss)/(bcsl filncss) is big THT.:N population size should increase. 
I.F (worst filncss)/(avcragc filncss) is THEN population size should心crease.
small 

1. 加 spaper 10 appear in the Proc. of 1994 IEEE/Nagoya University World Wtscmen/Womcn Workshop (WWW'94), Nagoya, Aichi, Japan (August 9-10, 1994). 



2.2 Learning GA Control Strategies 

In our experiments, we automatically design DPGAs with 

inputs and outputs as shown in Figure 2. The initial popula-
tion size, crossover rate, and mutation rate as well as the 
membership function parameters, rule consequents, and the 

number of fuzzy rules of the fuzzy knowledge base represent 

the parameters of a control strategy. The ranges of the out-

puts were set such that the population size change could not 
change by more than half the current population size and 

could not go below 2 or exceed 160. The crossover and muta-

tion parameters were also restricted to change at most by half 
their current value and were bounded by [0.0001,1.0). For ex-

ample, a value of 1.5 for population size change would in-

crease the size of the population by 50% of its current size up 
to a maximum value of 160. The fuzzy system uses triangular 

membership functions, the min intersection operator and cor-

relation-product inference procedure. Defuzzification of the 

outputs is performed using the fuzzy centroid method [10). 

Each of the system parameters is encoded as part of a concat-
enated binary string that is operated on by another, meta-lev-

el, genetic algorithm (see [13) for details on fuzzy system 
design using genetic algorithms). 

The control strategies learned in our experiments were 

optimized according to performance measures and a five 

function test suite designed by DeJong [3): online perfor-

mance to measure ongoing performance and offline perfor-

mance to measure convergence. Online performance is the 

running average of all evaluations performed up to a given 

time and may be appropriate in situations where the cost of 

evaluating a structure is related monotonically increasing to 

its fitness value (i.e., evaluating a poor solution is more ex-
pensive than evaluating a good one). Offline performance is 
the running average of the best perfonnance value up to a giv-

en time and may be appropriate when there is no additional 

cost for evaluating poor structures. Both equations are given 

below: 

xonline(s, e, 1) = fふ(1)
t = I 

X。fflin/s,e, 1) = f幻*(1)
=ヽI 

wheres is the search strategy, e is the environment, /,(1) is the 

objective function value at time t, and //(t) is the best func-

tion value obtained up to time t and Tis the current number of 

evaluations. 

3 Results 

We design a separate Dynamic Parametric GAs for opti-

mizing online and offline performance measures. In this sec-

tion, we will look at the dynamic behavior of the DPGAs and 

compare the results with a simple static genetic algorithm pro-

posed by Delong (SSGA)[3], the optimized static online and 

offline genetic algorithms proposed by Grefenstette (OS-
GA)[7], and random search (see Table 1 for GA parameter 

seuings). 

Table 1: Genetic algorithm search parameter settings for simple static 
GA (SSGA), optimized static GA for online performance (OSGA 
online), and optimized static GA for off¥ine performance (OSGA 

offline). 

parameter SSGA OSGA online OSGA offline 

populalton size :,u jU !SU 

crossover rate 0.6 0.95 0.45 

mutation rate 0.001 O.Ql O.Ql 

generation gap 1.0 1.0 0.9 

window size 7 1 1 

selection strategy Elite Elite Pure 

The genetic algorithm used to design Dynamic Paramet-

ric GAs itself had fixed parameters of population size=lO, 

crossover rate=0.8, mutation rate=0.0333. It used an elitist se-
lection strategy and window sizes and generation gaps were 

fixed at 1 and 1.0 respectively. This genetic algorithm was 
allowed to evaluate 1000 Dynamic Parametric GAs. 

3.1 Online Performance 

The initial population of fuzzy systems and initial condi-

tions used for determining the good online perfonnance was 

seeded with an individual with static settings, i.e. no rules, as 
prescribed by'OSGA online'given in Table 1. For each 

fuzzy system produced for the Dynamic Parametric GA, the 

generation gap, window size, and selection strategy were 
fixed at 1.0, 1, and Elitist. After evaluating 665 fuzzy sys-

tems, the meta-level genetic algorithm produced a fuzzy sys-
tem with 59 rules and the following initial conditions[l3]: 

Initial Population Size: 

Initial Crossover Rate: 

Initial Mutation Rate: 

10 

0.942647 

0.009903 

The left plot of Figure 3 shows the online perfonnance 

vs. evaluations for the DPGA, OSGA online, SSGA, and ran-

dom search for Delong Function 3. The data in the figure is 

averaged from running each GA with ten different initial con-

ditions. 

The plots on the right show the dynamic conlrol of the 

population sizing, crossover rate, and the mutation rate for a 
typical run on DeJong Function 3. Both the population size 

and mutation rate decrease toward the minimum value while 

the crossover rate remains high. The strategy that this particu-

lar DPGA has chosen is a conservative approach. Because 

the elite selection strategy is enabled and the population size 

goes to two, the search becomes a greedy hill climber. A good 

solution is not abandoned until a better one is found. In addi-

tion, the low mutation rate keeps the exploration relatively lo-

cal. 
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Figure 3. Online performance of the Dynamic Parametric GA (DPGA) optimized for on line performance on DcJong Function 3. Also 
shown are the online performance measures of the optimized static GA (OSGA online), simple static GA (SSGA), and random search 
(see Table I for GA search parameters). The plots on the right show the dynamic control of the population size, crossover rate, and 
mutation rate for a tYPical DPGA run on DcJong Function 3. 

r~ 二三 ・:・・・・・・・・,・・・・・・・・・,・・・・・・・・・,・・・・・・・・・, 
: : . : : : ： 
0 .••..• . • : ..• •••• •• : .........) 
: : : 

: ： : : 
I I I I 

3匹 4000 4500 メ)00

1

・・ふ

H 
。。

1000 1メX〕

3.2 Offline Performance 

As with the online search, the initial population of fuzzy 
systems and initial conditions used for detennining the good 
offline performance was seeded with an individual identical 
with static settings, i.e. no rules, as prescribed by'OSGA of-
fline'given in Table 1. For each fuzzy system produced for 
the Dynamic Parametric GA, the generation gap, window 
size, and selection strategy were fixed at 0.9, 1, and Pure. Af-
ter.evaluating 373 fuzzy systems, the meta-level genetic algo-
rithm produced a fuzzy system with 68 rules and the 
following initial conditions[l3]: 
Initial Population Size: 

Initial Crossover Rate: 

Initial Mutation Rate: 

4 

0.922059 

0.170671 

Figure 4 shows the offline performance vs. evaluations 

for the DPGA, OSGA offline, SSGA, and random search for 
DeJong Function 3 (as wilh the online data, this data is aver-
aged over ten runs).The plots on the right show the dynamic 
control of the population sizing, crossover rate, and the muta-
tion rate. As in the online control strategy, the mutation rate 
decrease toward the minimum value while the crossover rate 
remains high. However, lhe population size increases toward 
the maximum value. As the number of evaluations increases, 
random search becomes more difficult to out-perfonn. Al-
though we expected the mutation rate to increase over time (a 
move toward random search behavior) we found that the con-
Lrol strategy relied more on the crossover operator than the 
mutation as it continued its search. 

4 Conclusions and Further Research 

We have demonstrated a method to acquire and optimize 

genetic aJgorilhm control strategies. The control strategies 

are represented using fuzzy systems and were automatically 

designed using a GA technique. These control strategies 

show improved performance over simple static and opti-
mized static GAs. We have also shown the dynamical behav-
ior of GA control strategies optimized for online and offline 
performance. Bolh lhe online and offline strategies prescribe 
high crossover rates and exponentially decreasing mutation 

rates. 

We have performed additional experiments that deacti-
vated the control of lhe mutation rate and population sizing 
and found lhat the combination of bolh are required to achieve 
lhe high performance exhibited when they are both active. We 

also found that the exponential decreasing mutation rate has a 
stronger effect than lhat of increasing or decreasing the popu-

Iation size. A further discussion of these behaviors is beyond 

lhe scope of lhis paper and will be addressed in future re-

search. 

By using an automatic technique, we gain the possibility 
of discovering new relations, which in tum, may offer insight 
to understanding lhe complex interaction between genetic al-

gorithm control parameters and genetic algorilhm perfor-
mance. We would like to emphasize that the experimental 
results we report have been obtained for a specific instance of 
lhe class of Dynamic Parametric GAs; our technique can be 
applied to systems with olher inputs and outputs. Research on 
eliminating useless rules, and determining relevant input vari-

ables should be explored and more analysis needs to be per-

fonned on the resulting systems. In addition, search 

performance metrics olher lhan the offline and online mea-

sures used in lhis paper warrant investigation. 
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Figure 4. Offline performance of the Dynamic Parametric GA (DPGA) optimized for offline performance on Delong Function 3. Also 
shown are the offline perfonnance measures of the optimized static GA (OSGA offlinc), simple static GA (SSGA), and random search 
(sec Table I for GA search parameters). The plots on the right show the dynamic control of the population size, crossover rate, and 
mutation rate for a typical DPGA run on Delong Function 3. 
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