<学術雑誌論文>
Block-coordinate and incremental aggregated proximal gradient methods for nonsmooth nonconvex problems

作成者
本文言語
出版者
発行日
収録物名
出版タイプ
アクセス権
関連DOI
概要 This paper analyzes block-coordinate proximal gradient methods for minimizing the sum of a separable smooth function and a (nonseparable) nonsmooth function, both of which are allowed to be nonconvex.... The main tool in our analysis is the forwardbackward envelope, which serves as a particularly suitable continuous and real-valued Lyapunov function. Global and linear convergence results are established when the cost function satisfies the Kurdyka–Łojasiewicz property without imposing convexity requirements on the smooth function. Two prominent special cases of the investigated setting are regularized finite sum minimization and the sharing problem; in particular, an immediate byproduct of our analysis leads to novel convergence results and rates for the popular Finito/MISO algorithm in the nonsmooth and nonconvex setting with very general sampling strategies.続きを見る

本文ファイル

pdf 4399989 pdf 276 KB 240  

詳細

PISSN
EISSN
NCID
レコードID
主題
タイプ
助成情報
登録日 2021.04.28
更新日 2024.12.02