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Abstract This paper analyzes block-coordinate proximal gradient methods for min-
imizing the sum of a separable smooth function and a (nonseparable) nonsmooth
function, both of which are allowed to be nonconvex. The main tool in our analysis is
the forward-backward envelope (FBE), which serves as a particularly suitable contin-
uous and real-valued Lyapunov function. Global and linear convergence results are
established when the cost function satisfies the Kurdyka-Łojasiewicz property with-
out imposing convexity requirements on the smooth function. Two prominent special
cases of the investigated setting are regularized finite sum minimization and the shar-
ing problem; in particular, an immediate byproduct of our analysis leads to novel con-
vergence results and rates for the popular Finito/MISO algorithm in the nonsmooth
and nonconvex setting with very general sampling strategies.
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1 Introduction

This paper addresses block-coordinate (BC) proximal gradient methods for problems
of the form

minimize
x=(x1,...,xN )∈�

∑
i ni
Φ(x) B F(x) + G(x), where F(x) B 1

N
∑N

i=1 fi(xi), (1.1)

in the following setting.

Assumption I (problem setting). In problem (1.1) the following hold:

a1 function fi : �ni → � is L fi -smooth (Lipschitz differentiable with modulus L fi ),
i ∈ [N] B {1, . . . ,N};

a2 function G : �
∑

i ni → � B � ∪ {+∞} is proper and lower semicontinuous (lsc);
a3 a solution exists: arg minΦ , ∅.

Unlike typical cases analyzed in the literature where G is separable [57,60,40,
6,13,49,33,15,27,63], we here consider the complementary case where it is only
the smooth term F that is assumed to be separable. The main challenge in analyz-
ing convergence of BC schemes for (1.1) especially in the nonconvex setting is the
fact that even in expectation the cost does not necessarily decrease along the trajecto-
ries. Instead, we demonstrate that the forward-backward envelope (FBE) [43,56] is a
suitable Lyapunov function for such problems.

Several BC-type algorithms that allow for a nonseparable nonsmooth term have
been considered in the literature, all however in convex settings. In [59,61] a class of
convex composite problems is studied that involves a linear constraint as the nons-
mooth nonseparable term. A BC algorithm with a Gauss-Southwell-type rule is pro-
posed and the convergence is established using the cost as Lyapunov function by ex-
ploiting linearity of the constraint to ensure feasibility. A refined analysis in [38,39]
extends this to a random coordinate selection strategy. Another approach in the con-
vex case is to consider randomized BC updates applied to general averaged operators.
Although this approach can allow for a fully nonseparable structure, usually separa-
ble nonsmooth functions are considered in the literature. The convergence analysis of
such methods relies on establishing quasi-Fejér monotonicity [29,18,45,10,44,31].
In a primal-dual setting in [23] a combination of Bregman and Euclidean distance
is employed as Lyapunov function. In [26] a BC algorithm is proposed for strongly
convex functions that involves coordinate updates for the gradient followed by a full
proximal step, and the distance from the (unique) solution is used as Lyapunov func-
tion. The analysis and the Lyapunov functions in all of the above mentioned works
rely heavily on convexity and are not suitable for nonconvex settings.

Thanks to the nonconvexity and nonseparability of G, many machine learning
problems can be formulated as in (1.1), a primary example being constrained and/or
regularized finite sum problems [7,53,21,20,36,48,47,52]

minimizex∈�n ϕ(x) B 1
N

∑N
i=1 fi(x) + g(x), (1.2)

where fi : �n → � are smooth functions and g : �n → � is possibly nonsmooth, and
everything here can be nonconvex. One way to cast (1.2) into the form of problem
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(1.1) is by setting
G(x) B 1

N
∑N

i=1 g(xi) + δC(x), (1.3)

where C B
{
x ∈ �nN | x1 = x2 = · · · = xN

}
is the consensus set, and δC is the indi-

cator function of set C, namely δC(x) = 0 for x ∈ C and ∞ otherwise. Since the
nonsmooth term g is allowed to be nonconvex, formulation (1.2) can account for
nonconvex constraints such as rank constraints or zero norm balls, and nonconvex
regularizers such as `p with p ∈ [0, 1), [28].

Another prominent example in distributed applications is the “sharing” problem
[14]:

minimize
x∈�nN

Φ(x) B 1
N

∑N
i=1 fi(xi) + g

(∑N
i=1 xi

)
, (1.4)

where fi : �n → � are smooth functions and g : �n → � is nonsmooth, and all are
possibly nonconvex. The sharing problem is cast as in (1.1) by setting G B g ◦ A,
where A B [In . . . In] ∈ �n×nN (Ir denotes the r × r identity matrix).

1.1 The main block-coordinate algorithm

While gradient evaluations are the building blocks of smooth minimization, a funda-
mental tool to deal with a nonsmooth lsc term ψ : �r → � is its V-proximal mapping

proxV
ψ(x) B arg min

w∈�r

{
ψ(w) + 1

2‖w − x‖2V
}
, (1.5)

where V is a symmetric and positive definite matrix and ‖ · ‖V indicates the norm
induced by the scalar product (x, y) 7→ 〈x,Vy〉. It is common to take V = t−1Ir as a
multiple of the r × r identity matrix Ir, in which case the notation proxtψ is typically
used and t is referred to as a stepsize. While this operator enjoys nice regularity
properties when g is convex, such as (single valuedness and) Lipschitz continuity, for
nonconvex g it may fail to be a well-defined function and rather has to be intended as
a point-to-set mapping proxV

ψ : �r ⇒ �r. Nevertheless, the value function associated
to the minimization problem in the definition (1.5), namely the Moreau envelope

ψV (x) B inf
w∈�r

{
ψ(w) + 1

2 ‖w − x‖2V
}
, (1.6)

is a well-defined real-valued function, in fact locally Lipschitz continuous, that lower
bounds ψ and shares with ψ infima and minimizers. The proximal mapping is avail-
able in closed form for many useful functions, some of which are widely used reg-
ularizers in machine learning; for instance, the proximal mapping of the `0 and `1

regularizers amount to hard and soft thresholding operators.
In many applications the cost to be minimized is structured as the sum of a

smooth term h and a proximable (i.e., with easily computable proximal mapping)
term ψ. In these cases, the proximal gradient method [25,3] constitutes a cornerstone
iterative method that interleaves gradient descent steps on the smooth function and
proximal operations on the nonsmooth function, resulting in iterations of the form
x+ ∈ proxγψ(x − γ∇h(x)) for some suitable stepsize γ.
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Our proposed scheme to address problem (1.1) is a BC variant of proximal gra-
dient, in the sense that only some coordinates are updated according to the proximal
gradient rule, while the others are left unchanged. This concept is synopsized in Al-
gorithm 1, which constitutes the general algorithm addressed in this paper.

Algorithm 1 General forward-backward block-coordinate scheme
Require x0 ∈ �

∑
i ni , γi ∈ (0, N/L fi ), i ∈ [N]

Γ = blkdiag(γ1In1 , . . . , γN InN ), k = 0

Repeat until convergence

1: zk ∈ proxΓ
−1

G
(
xk − Γ∇F(xk)

)
2: select a set of indices Ik+1 ⊆ [N]

3: update xk+1
i = zk

i for i ∈ Ik+1 and xk+1
i = xk

i for i < Ik+1, k ← k + 1

Return zk

Although seemingly wasteful, in many cases one can efficiently compute individ-
ual blocks without the need of full operations. In fact, the BC Algorithm 1 bridges
the gap between a BC framework and a class of incremental methods where a global
computation typically involving the full gradient is carried out incrementally via per-
forming computations only for a subset of coordinates. Two such broad applications,
problems (1.2) and (1.4), are discussed in the dedicated Sections 3 and 4, where
among other things we show that Algorithm 1 leads to the well known Finito/MISO
algorithm [21,36].

1.2 Contribution

1) To the best of our knowledge this is the first analysis of BC schemes with a non-
separable nonsmooth term and in the fully nonconvex setting. While the original cost
Φ cannot serve as a Lyapunov function, we show that the forward-backward envelope
(FBE) [43,56] decreases surely, not only in expectation (Lemma 2.5).
2) This allows for a quite general convergence analysis for different sampling crite-
ria. This paper in particular covers randomized strategies (Section 2.3) where at each
iteration one or more coordinates are sampled with possibly time-varying probabili-
ties, as well as essentially cyclic (and in particular cyclic and shuffled) strategies in
case the nonsmooth term is convex (Section 2.4).
3) We exploit the Kurdyka-Łojasiewicz (KL) property to show global (as opposed to
subsequential) and linear convergence when the sampling is essentially cyclic and
the nonsmooth function is convex, without imposing convexity requirements on the
smooth functions (Theorem 2.11).
4) As immediate byproducts of our analysis we obtain (a) an incremental algorithm
for the sharing problem [14] that to the best of our knowledge is novel (Section 4), and
(b) the Finito/MISO algorithm [21,36] leading to a much simpler and more general
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analysis than available in the literature with new convergence results both for ran-
domized sampling strategies in the fully nonconvex setting and for essentially cyclic
samplings when the nonsmooth term is convex (Section 3).

1.3 Organization

In the next subsection we introduce the adopted notation. The core of the paper lies
in the convergence analysis of Algorithm 1 detailed in Section 2: Section 2.1 intro-
duces the FBE, fundamental tool of our methodology and lists some of its properties
whose proofs are detailed in the dedicated Appendix A.1, followed by other ancillary
results documented in Appendix A.2. The algorithmic analysis begins in Section 2.2
with a collection of facts that hold independently of the chosen sampling strategy, and
later specializes to randomized and essentially cyclic samplings in the dedicated Sec-
tions 2.3 and 2.4. Sections 3 and 4 discuss two particular instances of the investigated
algorithmic framework, namely (a generalization of) the Finito/MISO algorithm for
finite sum minimization and an incremental scheme for the sharing problem, both for
fully nonconvex and nonsmooth formulations. Convergence results are immediately
inferred from those of the more general BC Algorithm 1. Section 5 concludes the
paper.

1.4 Notation

With id we indicate the identity function x 7→ x defined on a suitable space, and with
I the identity matrix of suitable size. For a symmetric and positive definite matrix V ,
we denote by ‖ · ‖V the norm induced by the scalar product (x, y) 7→ 〈x,Vy〉, namely
‖x‖V B

√
〈x,V x〉. We denote by ‖ · ‖ the standard Euclidean norm. For a set E and

a sequence (xk)k∈� we write (xk)k∈� ⊆ E to indicate that xk ∈ E for all k ∈ �, and
we say that (xk)k∈� is summable if

∑
k∈� ‖xk‖ is finite. We say that (xk)k∈� converges

at Q-linear rate (resp. R-linear rate) to a point x if there exist c ∈ (0, 1) such that
‖xk+1 − x‖ ≤ c‖xk − x‖ (resp. ‖xk − x‖ ≤ ρck for some ρ > 0) holds for all k ∈ �.

We use the notation H : �n ⇒ �m to indicate a point-to-set mapping H : �n →

2�
m
, where 2�

m
is the power set of�m (the set of all subsets of�m). The graph of H is

the set gph H B {(x, y) ∈ �n ×�m | y ∈ H(x)}. We say that H is outer semicontinuous
(osc) if gph H is a closed subset of�n×�m, and locally bounded if for every bounded
U ⊂ �n the set

⋃
x∈U H(x) is bounded.

The domain and epigraph of an extended-real-valued function h : �n → � B
�∪{∞} are the sets respectively defined as dom h B {x ∈ �n | h(x) < ∞} and epi h B
{(x, α) ∈ �n ×� | h(x) ≤ α}. Function h is said to be proper if dom h , ∅, and lower
semicontinuous (lsc) if epi h is a closed subset of �n+1. For α ∈ �, lev≤α h is the
α-sublevel set of h, i.e., lev≤α h B {x ∈ �n | h(x) ≤ α}. We say that h is level bounded
if lev≤α h is bounded for all α ∈ �. We denote by ∂̂h : �n ⇒ �n the regular subdif-
ferential of h, where

v ∈ ∂̂h(x̄) ⇔ lim inf
x→x̄
x, x̄

h(x) − h(x̄) − 〈v, x − x̄〉
‖x − x̄‖

≥ 0.
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A necessary condition for local minimality of x for h is 0 ∈ ∂̂h(x), see [51, Th. 10.1].
The (limiting) subdifferential of h is ∂h : �n ⇒ �n, where v ∈ ∂h(x) iff x ∈ dom h
and there exists a sequence (xk, vk)k∈� ⊆ gph ∂̂h such that (xk, h(xk), vk)→ (x, h(x), v)
as k → ∞.

The B-subdifferential (also known as Bouligand or limiting Jacobian) of a locally
Lipschitz-continuous function G : �n → �m at x̄ ∈ �n is the set-valued mapping
∂BG : �n ⇒ �m×n defined as

∂BG(x̄) B
{
H ∈ �m×n | ∃(xk)k∈� ⊂ CG with xk → x̄, JG(xk)→ H

}
,

where CG ⊆ �
n denotes the (dense) set of points at which G is differentiable (in

the classical sense) and JG denotes the Jacobian of G. If G : �n → �m is locally
Lipschitz on �n, then ∂BG(x) is a nonempty and compact subset of �m×n matrices,
and as a set-valued mapping it is osc at every x ∈ �n. The interested reader is referred
to the textbooks [17,22,51] for the details.

2 Convergence analysis

We begin by observing that Assumption I is enough to guarantee the well definedness
of the forward-backward operator in Algorithm 1, which for notational convenience
will be henceforth denoted as TfbΓ (x). Namely, TfbΓ : �

∑
i ni ⇒ �

∑
i ni is the point-to-set

mapping

TfbΓ (x) B proxΓ
−1

G (x − Γ∇F(x))

= arg min
w∈�

∑
i ni

{
F(x) + 〈∇F(x),w − x〉 + G(w) + 1

2 ‖w − x‖
2
Γ−1

}
. (2.1)

Lemma 2.1. Suppose that Assumption I holds, and let Γ B blkdiag(γ1In1 , . . . , γNInN )
with γi ∈ (0, N/L fi ), i ∈ [N]. Then proxΓ

−1

G and TfbΓ are locally bounded, outer semicon-
tinuous (osc), nonempty- and compact-valued mappings.

Proof. See Appendix A.1.

2.1 The forward-backward envelope

The fundamental challenge in the analysis of (1.1) is the fact that, without separability
of G, descent on the cost function cannot be established even in expectation. Instead,
we show that the forward-backward envelope (FBE) [43,56] can be used as Lyapunov
function. This subsection formally introduces the FBE, here generalized to account
for a matrix-valued stepsize parameter Γ, and lists some of its basic properties needed
for the convergence analysis of Algorithm 1. Although easy adaptations of the similar
results in [43,56,55], for the sake of self-containedness the proofs are detailed in the
dedicated Appendix A.1.
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Definition 2.2 (forward-backward envelope). In problem (1.1), let fi be differentiable
functions, i ∈ [N], and for γ1, . . . , γN > 0 let Γ = blkdiag(γ1In1 , . . . , γNInN ). The
forward-backward envelope (FBE) associated to (1.1) with stepsize Γ is the function
ΦfbΓ : �

∑
i ni → [−∞,∞) defined as

ΦfbΓ (x) B inf
w∈�

∑
i ni

{
F(x) + 〈∇F(x),w − x〉 + G(w) + 1

2 ‖w − x‖
2
Γ−1

}
. (2.2a)

Definition 2.2 highlights an important symmetry between the Moreau envelope
and the FBE: similarly to the relation between the Moreau envelope (1.6) and the
proximal mapping (1.5), the FBE (2.2a) is the value function associated with the
proximal gradient mapping (2.1). By replacing any minimizer z ∈ TfbΓ (x) in the right-
hand side of (2.2a) one obtains yet another interesting interpretation of the FBE in
terms of the Γ−1-augmented Lagrangian associated to (1.1)

LΓ−1 (x, z,y) B F(x) + G(z) + 〈y,x − z〉 + 1
2 ‖x − z‖

2
Γ−1 ,

namely,

ΦfbΓ (x) = F(x) + 〈∇F(x), z − x〉 + G(z) + 1
2 ‖z − x‖

2
Γ−1 (2.2b)

= LΓ−1 (x, z,−∇F(x)). (2.2c)

Lastly, by rearranging the terms it can easily be seen that

ΦfbΓ (x) = F(x) − 1
2 ‖∇F(x)‖2Γ + GΓ−1

(x − Γ∇F(x)), (2.2d)

hence in particular that the FBE inherits regularity properties of F, ∇F, and the
Moreau envelope GΓ−1

(cf. (1.6)), some of which are summarized in the next result.

Lemma 2.3 (FBE: fundamental inequalities). Suppose that Assumption I is satisfied
and let γi ∈ (0, N/L fi ), i ∈ [N]. Then, the FBE ΦfbΓ is a (real-valued and) locally
Lipschitz-continuous function. Moreover, the following hold for any x ∈ �

∑
i ni :

(i) ΦfbΓ (x) ≤ Φ(x).
(ii) 1

2‖z − x‖2
Γ−1−ΛF

≤ ΦfbΓ (x) − Φ(z) ≤ 1
2 ‖z − x‖2

Γ−1+ΛF
for any z ∈ TfbΓ (x), where

ΛF B
1
N blkdiag

(
L f1 In1 , . . . , L fn InN

)
.

Proof. See Appendix A.1.

Another key property that the FBE shares with the Moreau envelope is that min-
imizing the extended-real valued function Φ is equivalent to minimizing the contin-
uous function ΦfbΓ . Moreover, the former is level bounded iff so is the latter. This
fact will be particularly useful for the analysis of Algorithm 1, as it will be shown
in Lemma 2.5 that the FBE (surely) decreases along its iterates. As a consequence,
despite the fact that the same does not hold for Φ (in fact, iterates may even be infea-
sible), coercivity of Φ is enough to guarantee boundedness of (xk)k∈� and (zk)k∈�.

Lemma 2.4 (FBE: minimization equivalence). Suppose that Assumption I is satisfied
and that γi ∈ (0, N/Li), i ∈ [N]. Then the following hold:

(i) minΦfbΓ = minΦ;
(ii) arg minΦfbΓ = arg minΦ;



8 P. Latafat, A. Themelis and P. Patrinos

(iii) ΦfbΓ is level bounded iff so is Φ.

Proof. See Appendix A.1.

We remark that the kinship of ΦfbΓ and Φ extends also to local minimality; the
interested reader is referred to [54, Th. 3.6] for details.

2.2 A sure descent lemma

We now proceed to the theoretical analysis of Algorithm 1. Clearly, some assump-
tions on the index selection criterion are needed in order to establish reasonable con-
vergence results, for little can be guaranteed if, for instance, one of the indices is never
selected. Nevertheless, for the sake of a general analysis it is instrumental to first in-
vestigate which properties hold independently of such criteria. After listing some of
these facts in Lemma 2.5, in Sections 2.3 and 2.4 we will specialize the results to
randomized and (essentially) cyclic sampling strategies.

Lemma 2.5 (sure descent). Suppose that Assumption I is satisfied. Then, the follow-
ing hold for the iterates generated by Algorithm 1:

(i) ΦfbΓ (xk+1) ≤ ΦfbΓ (xk) −
∑

i∈Ik+1
ξi

2γi
‖zk

i − xk
i ‖

2, where ξi B
N−γiL fi

N , i ∈ [N], are
strictly positive;

(ii) (ΦfbΓ (xk))k∈� monotonically decreases to a finite value Φ? ≥ minΦ;
(iii) ΦfbΓ is constant (and equals Φ? as above) on the set of cluster points of (xk)k∈�;
(iv) the sequence (‖xk+1 − xk‖2)k∈� has finite sum (and in particular vanishes);
(v) if Φ is coercive, then (xk)k∈� and (zk)k∈� are bounded.

Proof.

♠ 2.5(i) To ease notation, let ΛF B
1
N blkdiag

(
L f1 In1 , . . . , L fn InN

)
and for w ∈ �

∑
i ni

let wI ∈ �
∑

i∈I ni denote the slice (wi)i∈I, and let ΛFI , ΓI ∈ �
∑

i∈I ni×
∑

i∈I ni be defined
accordingly. Start by observing that, since zk+1 ∈ proxΓ

−1

G (xk+1 − Γ∇F(xk+1)), from
the proximal inequality on G it follows that

G(zk+1) −G(zk) ≤ 1
2‖z

k − xk+1 + Γ∇F(xk+1)‖2
Γ−1 −

1
2‖z

k+1 − xk+1 + Γ∇F(xk+1)‖2
Γ−1

= 1
2‖z

k − xk+1‖2
Γ−1 −

1
2‖z

k+1 − xk+1‖2
Γ−1 + 〈∇F(xk+1), zk − zk+1〉.

(2.3)

We have

ΦfbΓ (xk+1)−ΦfbΓ (xk)= F(xk+1)+〈∇F(xk+1),zk+1−xk+1〉+G(zk+1)+ 1
2 ‖z

k+1−xk+1‖2
Γ−1

−
(
F(xk)+〈∇F(xk),zk−xk〉+G(zk)+ 1

2‖z
k−xk‖2

Γ−1

)
apply the upper bound in (A.1) with w=xk+1 and the proximal inequality (2.3)

≤〈∇F(xk),xk+1−zk〉+ 1
2‖x

k+1−xk‖2ΛF
+〈∇F(xk+1),zk−xk+1〉

− 1
2‖z

k−xk‖2
Γ−1 + 1

2 ‖z
k−xk+1‖2

Γ−1 .



Block-coordinate and incremental aggregated proximal gradient methods 9

To conclude, notice that the `-th block of xk+1 − zk is zero if ` ∈ Ik+1, and the `-th
block of ∇F(xk)−∇F(xk+1) is zero for ` < Ik+1 (due to separability of F). Hence, the
scalar product vanishes. For similar reasons, one has ‖zk −xk+1‖2

Γ−1 − ‖z
k −xk‖2

Γ−1 =

− ‖zk
Ik+1 − xk

Ik+1‖
2
Γ−1
Ik+1

and ‖xk+1 − xk‖2ΛF
= ‖zk

Ik+1 − xk
Ik+1‖

2
ΛF
Ik+1

, yielding the claimed

expression.
♠ 2.5(ii) Monotonic decrease of (ΦfbΓ (xk))k∈� is a direct consequence of assertion
2.5(i). This ensures that the sequence converges to some value Φ?, bounded below
by minΦ in light of Lemma 2.4(i).
♠ 2.5(iii) Directly follows from assertion 2.5(ii) together with the continuity of ΦfbΓ ,
see Lemma 2.3.
♠ 2.5(iv) Denoting ξmin B mini∈[N] {ξi}which is a strictly positive constant, it follows
from assertion 2.5(i) that for each k ∈ � it holds that

ΦfbΓ (xk+1) −ΦfbΓ (xk) ≤ −
∑

i∈Ik+1

ξi
2γi
‖zk

i − xk
i ‖

2

≤ −
ξmin

2

∑
i∈Ik+1

γ−1
i ‖z

k
i − xk

i ‖
2

= −
ξmin

2 ‖x
k+1 − xk‖2

Γ−1 .

By summing for k ∈ � and using the positive definiteness of Γ−1 together with the
fact that minΦfbΓ = minΦ > −∞ as ensured by Lemma 2.4(i) and Requirement I.a3,
we obtain that

∑
k∈� ‖x

k+1 − xk‖2 < ∞.
♠ 2.5(v) It follows from assertion 2.5(ii) that the entire sequence (xk)k∈� is contained
in the sublevel set

{
w | ΦfbΓ (w) ≤ ΦfbΓ (x0)

}
, which is bounded provided that Φ is co-

ercive as shown in Lemma 2.4(iii). In turn, boundedness of (zk)k∈� then follows from
local boundedness of TfbΓ , cf. Lemma 2.1.

2.3 Randomized sampling

In this section we provide convergence results for Algorithm 1 where the index se-
lection criterion complies with the following requirement.

Assumption II (randomized sampling requirements). There exist p1, . . . , pN > 0
such that, at any iteration and independently of the past, each i ∈ [N] is sampled with
probability at least pi.

Our notion of randomization is general enough to allow for time-varying prob-
abilities and mini-batch selections. The role of parameters pi in Assumption II is to
prevent that an index is sampled with arbitrarily small probability. In more rigorous
terms, Pk[i ∈ Ik+1] ≥ pi shall hold for all i ∈ [N], where Pk represents the probabil-
ity conditional to the knowledge at iteration k. Notice that we do not require the pi’s
to sum up to one, as multiple index selections are allowed, similar to the setting of
[10,31] in the convex case.

Due to the possible nonconvexity of problem (1.1), unless additional assump-
tions are made not much can be said about convergence of the iterates to a unique
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point. Nevertheless, the following result shows that any cluster point x? of sequences
(xk)k∈� and (zk)k∈� generated by Algorithm 1 is a stationary point, in the sense that
it satisfies the necessary condition for minimality 0 ∈ ∂̂Φ(x?), see [51, Th. 10.1].

Theorem 2.6 (randomized sampling: subsequential convergence). Suppose that As-
sumptions I and II are satisfied. Then, the following hold almost surely for the iterates
generated by Algorithm 1:

(i) the sequence (‖xk − zk‖2)k∈� has finite sum (and in particular vanishes);
(ii) the sequence (Φ(zk))k∈� converges to Φ? as in Lemma 2.5(ii);

(iii) (xk)k∈� and (zk)k∈� have the same cluster points, all stationary and on which
Φ and ΦfbΓ equal Φ?.

Proof. In what follows, Ek denotes the expectation conditional to the knowledge at
iteration k.

♠ 2.6(i) Let ξi B
N−γiL fi

N > 0, i ∈ [N], be as in Lemma 2.5(i). We have

Ek

[
ΦfbΓ (xk+1)

]2.5(i)
≤ Ek

ΦfbΓ (xk) −
∑

i∈Ik+1

ξi
2γi
‖zk

i − xk
i ‖

2


= ΦfbΓ (xk) −

∑
I∈Ω

Pk

[
Ik+1 = I

]∑
i∈I

ξi
2γi
‖zk

i − xk
i ‖

2

= ΦfbΓ (xk) −
N∑

i=1

∑
I∈Ω,I3i

Pk

[
Ik+1 = I

]
ξi

2γi
‖zk

i − xk
i ‖

2

≤ ΦfbΓ (xk) −
N∑

i=1

piξi
2γi
‖zk

i − xk
i ‖

2, (2.4)

where Ω ⊆ 2[N] is the sample space. Therefore,

Ek

[
ΦfbΓ (xk+1)

]
≤ ΦfbΓ (xk) − σ

2 ‖x
k − zk‖2

Γ−1 , where σ B min
i=1...N

piξi > 0. (2.5)

The claim follows from the Robbins-Siegmund supermartingale theorem, see e.g.,
[50] or [7, Prop. 2].
♠ 2.6(ii) Observe that ΦfbΓ (xk)−‖zk−xk‖2

Γ−1+ΛF
≤ Φ(zk) ≤ ΦfbΓ (xk)−‖zk−xk‖2

Γ−1−ΛF
holds (surely) for k ∈ � in light of Lemma 2.3(ii). The claim then follows by invoking
Lemma 2.5(ii) and assertion 2.6(i).
♠ 2.6(iii) In the rest of the proof, for conciseness the “almost sure” nature of the
results will be implied without mention. It follows from assertion 2.6(i) that a sub-
sequence (xk)k∈K converges to some point x? iff so does the subsequence (zk)k∈K .
Since TfbΓ (xk) 3 zk and both xk and zk converge to x? as K 3 k → ∞, the inclu-
sion 0 ∈ ∂̂Φ(x?) follows from Lemma A.1. Since the full sequences (ΦfbΓ (xk))k∈� and
(Φ(zk))k∈� converge to the same value Φ? (cf. Lemma 2.5(ii) and assertion 2.6(ii)),
due to continuity of ΦfbΓ (Lemma 2.3) it holds that ΦfbΓ (x?) = Φ?, and in turn the
bounds in Lemma 2.3(ii) together with assertion 2.6(i) ensure that Φ(x?) = Φ?

too.
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When G is convex and F is strongly convex (that is, each of the functions fi
is strongly convex), the FBE decreases Q-linearly in expectation along the iterates
generated by the randomized BC Algorithm 1.

Theorem 2.7 (randomized sampling: linear convergence under strong convexity).
Additionally to Assumptions I and II, suppose that G is convex and that each fi is
µ fi -strongly convex. Then, for all k the following hold for the iterates generated by
Algorithm 1:

Ek

[
ΦfbΓ (xk+1) −minΦ

]
≤ (1 − c)

(
ΦfbΓ (xk) −minΦ

)
(2.6a)

E
[
Φ(zk) −minΦ

]
≤

(
Φ(x0) −minΦ

)
(1 − c)k (2.6b)

1
2E

[
‖zk − x?‖2µF

]
≤

(
Φ(x0) −minΦ

)
(1 − c)k (2.6c)

where x? B arg minΦ, µF B
1
N blkdiag

(
µ f1 In1 , . . . µ fn InN

)
, and denoting ξi =

N−γiL fi
N ,

i ∈ [N],

c = min
i∈[N]

{
ξi pi
γi

}/
max
i∈[N]

{
N−γiµ fi

γ2
i µ fi

}
. (2.7)

Moreover, by setting the stepsizes γi and minimum sampling probabilities pi as

γi = N
µ fi

(
1 −

√
1 − 1/κi

)
and pi =

(√
κi +
√
κi − 1

)2

∑N
j=1

(√
κ j +

√
κ j − 1

)2 (2.8)

with κi B
L fi
µ fi

, i ∈ [N], then the constant c in (2.6) can be tightened to

c = 1∑N
i=1 (√κi+

√
κi−1)2 . (2.9)

Proof. The claimed Q-linear convergence rate (2.6a) with factor c as in (2.7) is ob-
tained by combining the upper bound in Lemma A.2(vi) with (2.4). The R-linear rates
in terms of the cost function and distance from the solution are obtained by repeated
application of (2.6a) after taking (unconditional) expectation from both sides and us-
ing Lemma 2.3 and the lower bound in Lemma A.2(vi).

To obtain the tighter estimate (2.9), observe that (2.4) with the choice

pi B
1

γiµ fi

N−γiµ fi
N−γiL fi

(∑
j

1
γ jµ f j

N−γ jµ f j

N−γ jL f j

)−1
,

which equals the one in (2.8) with γi as prescribed, yields

Ek

[
ΦfbΓ (xk+1)

]
≤ ΦfbΓ (xk) −

(
2N

∑
j

1
γ jµ j

N−γ jµ j

N−γ jL j

)−1 N∑
i=1

N−γiµ fi

γ2
i µ fi
‖zk

i − xk
i ‖

2

= ΦfbΓ (xk) −
(
2N

∑
j

1
γ jµ j

N−γ jµ j

N−γ jL j

)−1
‖zk − xk‖2

Γ−1µ−1
F (Γ−1−µF )

.

The assertion now follows by combining this with the upper bound in Lemma A.2(vi)
and replacing the values of γi as proposed in (2.8). Notice that as κi’s approach 1 the
linear rate tends to 1 − 1/N.
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2.4 Cyclic, shuffled and essentially cyclic samplings

In this section we analyze the convergence of the BC Algorithm 1 when a cyclic,
shuffled cyclic or (more generally) an essentially cyclic sampling [58,57,27,16,63]
is used. As formalized in the following standing assumption, an additional convexity
requirement for the nonsmooth term G is needed.

Assumption III (essentially cyclic sampling requirements). In problem (1.1), func-
tion G is convex. Moreover, there exists T ≥ 1 such that in Algorithm 1 each index is
selected at least once within any interval of T iterations.

Note that having T < N is possible because of our general sampling strategy
where sets of indices can be sampled within the same iteration. For instance, T = 1
corresponds to Ik+1 = [N] for all k, in which case Algorithm 1 would reduce to a
(full) proximal gradient scheme.

Two notable special cases of single index selection rules are the cyclic and shuf-
fled cyclic sampling strategies.
Shuffled cyclic sampling: corresponds to setting

Ik+1 =
{
πbk/Nc

(
mod(k,N) + 1

)}
for all k ∈ �, (2.10)

where π0, π1, . . . are permutations of the set of indices [N] (chosen randomly or de-
terministically).
Cyclic sampling: corresponds to the case (2.10) with πbk/Nc = id, i.e.,

Ik+1 = {mod(k,N) + 1} for all k ∈ �. (2.11)

Consistently with the deterministic nature of the essentially cyclic sampling, all the
results of the previous section hold surely, as opposed to almost surely.

Theorem 2.8 (essentially cyclic sampling: subsequential convergence). Suppose that
Assumptions I and III are satisfied. Then, all the assertions of Theorem 2.6 hold
surely.

Proof. We first establish an important descent inequality for ΦfbΓ after every T iter-
ations, cf. (2.18). Convexity of G, entailing proxΓ

−1

G being Lipschitz continuous (cf.
Lemma A.2(i)), allows the employment of techniques similar to those in [6, Lemma
3.3]. Since all indices are updated at least once every T iterations, one has that

tν(i) B min
{
t ∈ [T ] | i is sampled at iteration Tν + t − 1

}
(2.12)

is well defined for each index i ∈ [N] and ν ∈ �. Since i is sampled at iteration
Tν + tν(i) − 1 and xTν

i = xTν+1
i = · · · = xTν+tν(i)−1

i by definition of tν(i), it holds that

xTν+tν(i)
i = xTν+tν(i)−1

i + U>i
(
TfbΓ (xTν+tν(i)−1) − xTν+tν(i)−1

)
= xTν+tν(i)−1

i + U>i
(
TfbΓ (xTν+tν(i)−1) − xTν

)
, (2.13)

where Ui ∈ �
(
∑

j n j)×ni denotes the i-th block column of the identity matrix so that for
a vector v ∈ �ni

Uiv = (0, . . . , 0,
i-th

v, 0, . . . , 0)>. (2.14)
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For all t ∈ [T ] the following holds

ΦfbΓ (xT (ν+1)) −ΦfbΓ (xTν) =

T∑
τ=1

(
ΦfbΓ (xTν+τ) −ΦfbΓ (xTν+τ−1)

)
≤ ΦfbΓ (xTν+t) −ΦfbΓ (xTν+t−1)

≤ −
ξmin

2 ‖x
Tν+t − xTν+t−1‖2

Γ−1 , (2.15)

where ξi B
N−γiL fi

N as in Lemma 2.5(i), ξmin B mini∈[N] {ξi}, and the two inequalities
follow from Lemma 2.5(i). Moreover, the triangular inequality for i ∈ [N] yields

‖xTν+tν(i)−1 − xTν‖Γ−1 ≤

tν(i)−1∑
τ=1

‖xTν+τ − xTν+τ−1‖Γ−1

≤ T√
ξmin/2

(
ΦfbΓ (xTν) −ΦfbΓ (xT (ν+1))

)1/2
, (2.16)

where the second inequality follows from (2.15) together with the fact that tν(i) ≤ T .
For all i ∈ [N], from the triangular inequality and the LT-Lipschitz continuity of TfbΓ
(Lemma A.2(iv)) we have

γ−
1/2

i ‖U
>
i (xTν − TfbΓ (xTν))‖ ≤ γ−1/2

i ‖U
>
i
(
xTν − TfbΓ (xTν+tν(i)−1)

)
‖

+ γ−
1/2

i ‖U
>
i
(
TfbΓ (xTν+tν(i)−1) − TfbΓ (xTν)

)
‖

(2.13)
≤ γ−

1/2

i ‖x
Tν+tν(i)−1
i − xTν+tν(i)

i ‖

+ ‖TfbΓ (xTν+tν(i)−1) − TfbΓ (xTν)‖Γ−1

≤ ‖xTν+tν(i)−1 − xTν+tν(i)‖Γ−1 + LT‖x
Tν+tν(i)−1 − xTν‖Γ−1

(2.15), (2.16)
≤

1+T LT√
ξmin/2

(
ΦfbΓ (xTν) −ΦfbΓ (xT (ν+1))

)1/2
. (2.17)

By squaring and summing over i ∈ [N] we obtain

ΦfbΓ (xT (ν+1)) −ΦfbΓ (xTν) ≤ − ξmin
2N(1+T LT)2 ‖z

Tν − xTν‖2
Γ−1 . (2.18)

By telescoping the inequality and using the fact that minΦfbΓ = minΦ as shown in
Lemma 2.4(i), we obtain that (‖zTν − xTν‖2

Γ−1 )ν∈� has finite sum, and in particular
vanishes. Clearly, by suitably shifting, for every t ∈ [T ] the same can be said for
the sequence (‖zTν+t − xTν+t‖2

Γ−1 )ν∈�. The whole sequence (‖zk − xk‖2)k∈� is thus
summable, and we may now infer the claim as done in the proof of Theorem 2.6.

In the next theorem explicit linear convergence rates are derived under the addi-
tional strong convexity assumption for the smooth functions. The cyclic and shuffled
cyclic cases are treated separately, as tighter bounds can be obtained by leveraging
the fact that within cycles of N iterations every index is updated exactly once.
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Theorem 2.9 (essentially cyclic sampling: linear convergence under strong convex-
ity). Additionally to Assumptions I and III, suppose that each function fi is µ fi -
strongly convex. Then, denoting δ B mini∈[N]

{ γiµ fi
N

}
and ∆ B maxi∈[N]

{ γiL fi
N

}
, for

all ν ∈ � the following hold for the iterates generated by Algorithm 1:

ΦfbΓ (xT (ν+1)) −minΦ ≤ (1 − c)
(
ΦfbΓ (xTν) −minΦ

)
(2.19a)

Φ(zTν) −minΦ ≤
(
Φ(x0) −minΦ

)
(1 − c)ν (2.19b)

1
2 ‖z

Tν − x?‖2µF
≤

(
Φ(x0) −minΦ

)
(1 − c)ν (2.19c)

where x? B arg minΦ, µF B
1
N blkdiag

(
µ f1 In1 , . . . µ fn InN

)
, and

c =
δ(1 − ∆)

N
(
1 + T (1 − δ)

)2(1 − δ)
. (2.20)

In the case of shuffled cyclic (2.10) or cyclic (2.11) sampling, the inequalities can be
tightened by replacing T with N and with

c =
δ(1 − ∆)

N(2 − δ)2(1 − δ)
. (2.21)

Proof.

♠ The general essentially cyclic case. Since TfbΓ is LT-Lipschitz continuous with LT =

1 − δ as shown in Lemma A.2(v), inequality (2.18) becomes

ΦfbΓ (xT (ν+1)) −ΦfbΓ (xTν) ≤ − 1−∆
2N(1+T (1−δ))2 ‖z

Tν − xTν‖2
Γ−1 .

Moreover, it follows from Lemma A.2(vi) that

ΦfbΓ (xTν) −minΦ ≤ 1
2 (δ−1 − 1)‖zTν − xTν‖2

Γ−1 . (2.22)

By combining the two inequalities the claimed Q-linear convergence (2.19a) with
factor c as in (2.20) is obtained. In turn, the R-linear rates (2.19b) and (2.19c) are ob-
tained by repeated application of (2.19a) and using Lemma 2.3 and Lemma A.2(vi).
♠ The shuffled cyclic case. Let us now suppose that the sampling strategy follows a
shuffled rule as in (2.10) with permutations π0, π1, . . . (hence in the cyclic case πν = id
for all ν ∈ �). Let Ui be as in (2.14) and ξmin as in the proof of Theorem 2.8. Observe
that tν(i) = π−1

ν (i) ≤ N for tν(i) as defined in (2.12). For all t ∈ [N]

ΦfbΓ (xN(ν+1)) −ΦfbΓ (xNν) ≤ ΦfbΓ (xNν+t−1) −ΦfbΓ (xNν)

≤ −
ξmin

2

t−1∑
τ=1

‖xNν+τ − xNν+τ−1‖2
Γ−1

= −
ξmin

2 ‖x
Nν+t−1 − xNν‖2

Γ−1 , (2.23)

where the equality follows from the fact that at every iteration a different coordinate
is updated (and that Γ is diagonal), and the inequalities from Lemma 2.5(i). Similarly,
(2.15) holds with T replaced by N (despite the fact that T is not necessarily N, but is
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rather bounded as T ≤ 2N − 1). By using (2.23) in place of (2.16), inequality (2.17)
is tightened as follows

γ−
1/2

i ‖U
>
i(x

Nν − TfbΓ (xNν))‖ ≤ 1+LT√
ξmin/2

(
ΦfbΓ (xNν) −ΦfbΓ (xN(ν+1))

)1/2
.

By squaring and summing for i ∈ [N] we obtain

ΦfbΓ (xN(ν+1)) −ΦfbΓ (xNν) ≤ − ξmin
2N(1+LT)2 ‖z

Nν − xNν‖2
Γ−1 = − 1−∆

2N(1+LT)2 ‖z
Nν − xNν‖2

Γ−1 ,

where LT = 1− δ as discussed above. By combining this and (2.22) (with T replaced
by N) the improved coefficient (2.21) is obtained.

Note that if one sets γi = αN/L fi for some α ∈ (0, 1), then δ = αmini∈[N]
{
µ fi/L fi

}
and ∆ = α. With this selection, as the condition number approaches 1 the rate in
(2.21) tends to 1 − α

N(2−α)2 .

2.5 Global and linear convergence with KL inequality

The convergence analyses of the randomized and essentially cyclic cases both rely
on a descent property on the FBE that quantifies the progress in the minization of ΦfbΓ
in terms of the squared forward-backward residual ‖x − z‖2. A subtle but important
difference, however, is that the inequality (2.5) in the former case involves a condi-
tional expectation, whereas (2.18) in the latter does not. The sure descent property
occurring for essentially cyclic sampling strategies is the key for establishing global
(as opposed to subsequential) convergence based on the Kurdyka-Łojasiewicz (KL)
property [34,35,30]. A similar result is achieved in [63], which however considers the
complementary case to problem (1.1) where the nonsmooth function G is assumed to
be separable, and thus the cost function itself can serve as Lyapunov function.

Definition 2.10 (KL property with exponent θ). A proper lsc function h : �n → �

is said to have the Kurdyka-Łojasiewicz (KL) property with exponent θ ∈ (0, 1) at
w̄ ∈ dom h if there exist ε, η, % > 0 such that

ψ′(h(w) − h(w̄)) dist(0, ∂h(w)) ≥ 1

holds for all w such that ‖w−w̄‖ < ε and h(w̄) < h(w) < h(w̄)+η, where ψ(s) B %s1−θ.
We say that h satisfies the KL property with exponent θ (without mention of w̄) if it
satisfies the KL property with exponent θ at any w̄ ∈ dom ∂h.

Semialgebraic functions comprise a wide class of functions that enjoy this prop-
erty [12,11], which has been extensively exploited to provide convergence rates of
optimization algorithms [1,2,3,13,24,42,32,62]. Based on this, in the next result
we provide sufficient conditions ensuring global and R-linear convergence of Algo-
rithm 1 with essentially cyclic sampling.
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Theorem 2.11 (essentially cyclic sampling: global and linear convergence). Addi-
tionally to Assumptions I and III, suppose that Φ has the KL property with exponent
θ ∈ (0, 1) (as is the case when fi and G are semialgebraic), and is coercive. Then,
any sequences (xk)k∈� and (zk)k∈� generated by Algorithm 1 converge to (the same)
stationary point x?. Moreover, if θ ≤ 1/2 then (‖zk − xk‖)k∈�, (xk)k∈� and (zk)k∈�
converge at R-linear rate.

Proof. Let (xk)k∈� and (zk)k∈� be sequences generated by Algorithm 1 with essen-
tially cyclic sampling, and let Φ? be the limit of the sequence (ΦfbΓ (xk))k∈� as in
Lemma 2.5(ii). To avoid trivialities, we may assume that ΦfbΓ (xk) 	 Φ? for all k, for
otherwise the sequence (xk)k∈� is asymptotically constant, and thus so is (zk)k∈�. Let
Ω be the set of cluster points of (xk)k∈�, which is compact and such that ΦfbΓ ≡ Φ? on
Ω, as ensured by Theorem 2.8. It follows from Lemma A.3 and [1, Lem. 1(ii)] thatΦfbΓ
enjoys a uniform KL property onΩ; in particular, ψ′(ΦfbΓ (xk)−Φ?) dist(0, ∂ΦfbΓ (xk)) ≥
1 holds for all k large enough such that xk is sufficiently close to Ω and ΦfbΓ (xk) is
sufficiently close to Φ?, where ψ(s) = %s1−θ′ for some % > 0 and θ′ = max {θ, 1/2}.
Combined with Lemma A.2(iii), for all k large enough we thus have

ψ′(ΦfbΓ (xk) −Φ?) ≥
c

‖xk − zk‖Γ−1
, (2.24)

where c B N mini {
√
γi}

N+maxi {γiL fi }
> 0. Let ∆k B ψ(ΦfbΓ (xk) − Φ?). By combining (2.24) and

(2.18) we have that there exists a constant c′ > 0 such that

∆(ν+1)T − ∆νT ≤ ψ
′(ΦfbΓ (xνT ) −Φ?)

(
ΦfbΓ (x(ν+1)T ) −ΦfbΓ (xνT )

)
≤ − c′‖xνT − zνT ‖Γ−1

(2.25)
holds for all ν ∈ � large enough (the first inequality uses concavity of ψ). By sum-
ming over ν (sure) summability of the sequence (‖xνT − zνT ‖)ν∈� is obtained. By
suitably shifting, for every t ∈ [T ] the same can be said for the sequence (‖zTν+t −

xTν+t‖)ν∈�, and since T is finite we conclude that the whole sequence (‖zk − xk‖)k∈�
is summable. Since ‖xk+1−xk‖ ≤ ‖zk−xk‖we conclude that (xk)k∈� has finite length
and is thus convergent (to a single point), and consequently so is (zk)k∈�.

Suppose now that θ ≤ 1/2, so that ψ(s) = %
√

s. Then,

‖xνT − zνT ‖Γ−1

(2.24)
≥ 2c

%

√
ΦfbΓ (xνT ) −Φ? = 2c

%2ψ(ΦfbΓ (xνT ) −Φ?) = 2c
%2∆νT .

Combined with (2.25) it follows that (∆νT )ν∈� converges Q-linearly. By rearranging
(2.25) as

c′‖xνT − zνT ‖Γ−1 ≤ ∆νT − ∆(ν+1)T ≤ ∆νT ,

R-linear convergence of (‖xνT − zνT ‖)ν∈� follows. By suitably shifting, for every
t ∈ [T ] the same can be said for the sequence (‖zTν+t − xTν+t‖)ν∈�, and since T is
finite we conclude that the whole sequence (‖zk − xk‖)k∈� converges R-linearly. On
the other hand, since ‖xk+1 − xk‖ ≤ ‖zk − xk‖, also (‖xk+1 − xk‖)k∈� converges R-
linearly, hence so does (xk)k∈�. By combining the two, we conclude that also (zk)k∈�
converges R-linearly.
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3 Nonconvex finite sum problems: the Finito/MISO algorithm

As mentioned in Section 1, if G is of the form (1.3) then problem (1.1) reduces to
the finite sum minimization presented in (1.2). Most importantly, the proximal map-
ping of the original nonsmooth function G (in the larger space �nN) can be easily
expressed in terms of that of the small function g (in the original space �n) in the re-
duced finite sum reformulation, as shown in the next lemma. We remark that, when
g is convex, this result can also be deduced from [23, Lem. 5] through duality argu-
ments.

Lemma 3.1. Given γi > 0, i ∈ [N], let Γ B blkdiag(γ1In, . . . , γNIn) and γ̂ B(∑N
i=1 γ

−1
i

)−1. Then, for G as in (1.3) and any u ∈ �nN

proxΓ
−1

G (u) =
{
(v̂, . . . , v̂) | v̂ ∈ proxγ̂g(û)

}
, where û B γ̂

∑N
i=1 γ

−1
i ui.

Proof. Observe first that for every w ∈ �n one has∑
i γ
−1
i ‖w − ui‖

2 =
∑

i γ
−1
i ‖û − ui‖

2 +
∑

i γ
−1
i ‖w − û‖2 +

︷                       ︸︸                       ︷
2
∑

i γ
−1
i 〈û − ui,w − û〉= 0

=
∑

i γ
−1
i ‖û − ui‖

2 + γ̂−1‖w − û‖2. (3.1)

Next, observe that since dom G ⊆ C (the consensus set),

proxΓ
−1

G (u) = arg min
w∈�nN

{
G(w) +

∑N
i=1

1
2γi
‖wi − ui‖

2
}

= arg min
w∈�nN

{
G(w) +

∑N
i=1

1
2γi
‖wi − ui‖

2 | w1 = · · · = wN

}
= arg min

(w,...,w)

{
g(w) +

∑N
i=1

1
2γi
‖w − ui‖

2
}

(3.1)
= arg min

(w,...,w)

{
g(w) + 1

2γ̂ ‖w − û‖2
}

=
{
(v̂, . . . , v̂) | v̂ ∈ proxγ̂g(û)

}
as claimed.

If all stepsizes are set to the same value γ, so that Γ = γInN , then the forward-
backward step reduces to

z ∈ proxΓ
−1

G (x − Γ∇F(x)) ⇔ z = (z̄, . . . , z̄),

z̄ ∈ proxγg/N

(
1
N

∑N
j=1

(
x j −

γ
N∇f j(x j)

))
. (3.2)

The argument of proxγg/N is the (unweighted) average of the forward operator. By ap-
plying Algorithm 1 with (3.2), Finito/MISO [21,36] is recovered. Differently from
the existing convergence analyses, ours covers fully nonconvex and nonsmooth prob-
lems, more general sampling strategies and the possibility to select different stepsizes
γi for each block, which can have a significant impact on the performance compared
to the case where all stepsizes are equal. Moreover, to the best of our knowledge this
is the first work that shows global convergence and linear rates even when the smooth
functions are nonconvex. The resulting scheme is presented in Algorithm 2. We re-
mark that the consensus formulation to recover Finito/MISO (although from a differ-
ent umbrella algorithm) was also observed in [19] in the convex case. Moreover, the
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Finito/MISO algorithm with cyclic sampling is also studied in [37] when g ≡ 0 and
fi are strongly convex functions; consistently with Assumption III, our analysis cov-
ers the more general essentially cyclic sampling even in the presence of a nonsmooth
convex term g and allowing the smooth functions fi to be nonconvex. Randomized
Finito/MISO with g ≡ 0 is also studied in the recent work [46]; although their analy-
sis is limited to a single stepsize, in the convex case it is allowed to be larger than our
worst-case stepsize mini γi.

Algorithm 2 Nonconvex proximal Finito/MISO for problem (1.2)
Require xinit ∈ �n, γi ∈ (0, N/L fi ), i ∈ [N]

γ̂ B
(∑N

i=1 γ
−1
i

)−1, si = xinit −
γi
N ∇fi(xinit) i ∈ [N], ŝ = γ̂

∑N
i=1 γ

−1
i si

Repeat until convergence

1: select a set of indices I ⊆ [N]

2: z ∈ proxγ̂g(ŝ)

3: for i ∈ I do
4: v← z − γi

N ∇fi(z)

5: update ŝ← ŝ +
γ̂
γi

(v − si) and si ← v

Return z

The convergence results from Section 2 are immediately translated to this setting
by noting that the bold variable zk corresponds to (zk, . . . , zk). Therefore, Φ(zk) =

ϕ(zk) where ϕ is the cost function for the finite sum problem.

Corollary 3.2 (subsequential convergence of Algorithm 2). In the finite sum problem
(1.2) suppose that arg minϕ is nonempty, g is proper and lsc, and each fi is L fi -
Lipschitz differentiable, i ∈ [N]. Then, the following hold almost surely (resp. surely)
for the sequence (zk)k∈� generated by Algorithm 2 with randomized sampling strategy
as in Assumption II (resp. with any essentially cyclic sampling strategy and g convex
as required in Assumption III):

(i) the sequence (ϕ(zk))k∈� converges to a finite value ϕ? ≤ ϕ(xinit);
(ii) all cluster points of (zk)k∈� are stationary and on which ϕ equals ϕ?.

If, additionally, ϕ is coercive, then the following also hold:

(iii) (zk)k∈� is bounded (in fact, this holds surely for arbitrary sampling criteria).

Corollary 3.3 (linear convergence of Algorithm 2 under strong convexity). Addition-
ally to the assumptions of Corollary 3.2, suppose that g is convex and that each fi is
µ fi -strongly convex. The following hold for the iterates generated by Algorithm 2:
Randomized sampling: under Assumption II,

E
[
ϕ(zk) −minϕ

]
≤ (ϕ(xinit) −minϕ)(1 − c)k

1
2E

[
‖zk − x?‖2

]
≤

N(ϕ(xinit) −minϕ)∑
i µ fi

(1 − c)k
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holds for all k ∈ �, where c is as in (2.7) and x? B arg minϕ. If the stepsizes
γi and the sampling probabilities pi are set as in Theorem 2.7, then the tighter
constant c as in (2.9) is obtained.

Shuffled cyclic or cyclic sampling: under either sampling strategy (2.10) or (2.11),

ϕ(zνN) −minϕ ≤ (ϕ(xinit) −minϕ)(1 − c)ν

1
2E

[
‖zνN − x?‖2

]
≤

N(ϕ(xinit) −minϕ)∑
i µ fi

(1 − c)ν

holds surely for all ν ∈ �, where c is as in (2.21).

The next result follows from Theorem 2.11 once the needed properties of Φ as in
the umbrella formulation (1.1) are shown to hold.

Corollary 3.4 (global convergence of Algorithm 2). In the finite sum problem (1.2),
suppose that ϕ has the KL property with exponent θ ∈ (0, 1) (as is the case when fi and
g are semialgebraic) and is coercive, g is proper convex and lsc, and each fi is L fi -
Lipschitz differentiable, i ∈ [N]. Then the sequence (zk)k∈� generated by Algorithm 2
with any essentially cyclic sampling strategy as in Assumption III converges surely to
a stationary point for ϕ. Moreover, if θ ≤ 1/2 then it converges at R-linear rate.

Proof. Function Φ = F + G with G as in (1.3) is clearly coercive and satisfies As-
sumption I. In order to invoke Theorem 2.11 is suffices to show that there exists a
constant c > 0 such that

c dist(0, ∂Φ(x)) ≥ dist(0, ∂ϕ(x)) for all x ∈ �n and x = (x, . . . , x), (3.3)

as this will ensure that Φ enjoys the KL property at x? = (x?, . . . , x?) with the
same desingularizing function (up to a positive scaling). Notice that for x ∈ �n and
x = (x, . . . , x), one has v ∈ ∂G(x) iff

∑N
i=1 vi ∈ ∂g(x). Since ∂Φ(x) = 1

N ×
N
i=1 ∇fi(xi) +

∂G(x) and ∂ϕ(x) = 1
N

∑N
i=1 ∇fi(x) + ∂g(x), see [51, Ex. 8.8(c) and Prop. 10.5], for

x ∈ �n and denoting x = (x, . . . , x) we have

dist(0, ∂ϕ(x)) ≤ inf
v∈∂G(x)

∥∥∥ 1
N

∑N
i=1 ∇fi(x) +

∑N
i=1 vi

∥∥∥ ≤ c inf
u∈∂Φ(x)

‖u‖,

for some positive c, thus establishing inequality (3.3).

4 Nonconvex sharing problem

In this section we consider the sharing problem (1.4). As discussed in Section 1,
(1.4) fits into the problem framework (1.1) by simply letting G B g ◦ A, where
A B [In . . . In] ∈ �n×nN . By arguing as in [5, Th. 6.15] it can be shown that, given a
general matrix A with full row rank, the proximal mapping of G = g ◦ A is given by

proxΓ
−1

G (u) = u + ΓA>(AΓA>)−1
(
prox(AΓA>)−1

g (Au) − Au
)
. (4.1)

Since AΓA>= (
∑N

i=1 γi)In for the sharing problem (1.4),

v ∈ proxΓ
−1

G (u) ⇔ v = (u1 + γ1w, . . . , uN + γNw)
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w ∈ γ̃−1
(
proxγ̃g(ũ) − ũ

)
, γ̃ B

∑N
i=1 γi, ũ B

∑N
i=1 ui.

Consequently, the general BC Algorithm 1 when applied to the sharing problem (1.4)
reduces to Algorithm 3.

Algorithm 3 Block-coordinate method for the nonconvex sharing problem (1.4)
Require xinit

i ∈ �n, γi ∈ (0, N/L fi ), i ∈ [N]

γ̃ B
∑N

i=1 γi, si = xinit
i −

γi
N ∇fi(xinit

i ) i ∈ [N], s̃ =
∑N

i=1 si

Repeat until convergence

1: select a set of indices I ⊆ [N]

2: w← γ̃−1(proxγ̃g(s̃) − s̃)

3: for i ∈ I do
4: vi ← si + γiw −

γi
N ∇fi(si + γiw)

5: update s̃← s̃ + (vi − si) and si ← vi

Return z = (s1 + γ1w, . . . , sN + γNw) with w ∈ γ̃−1(proxγ̃g(s̃) − s̃)

Remark 4.1 (generalized sharing constraint). Another notable instance of G = g ◦
A well suited for the BC framework of Algorithm 1 is when g = δ{0} and A =

[A1 . . . AN], Ai ∈ �
n×ni such that A is full row rank. This models the generalized

sharing problem

minimize
x∈�

∑
i ni

1
N

∑N
i=1 fi(xi) subject to

∑N
i=1 Aixi = 0.

In this case (4.1) simplifies to

(
proxΓ

−1

G (u)
)

i
= ui − γiA>iA

−1
N∑

i=1

Aiui,

where A B AΓA> can be factored offline and
∑N

i=1 Aixi can be updated in an incre-
mental fashion in the spirit of Algorithm 3.

The convergence results for Algorithm 3 summarized below fall as special cases
of those in Section 2.

Corollary 4.2 (convergence of Algorithm 3). In the sharing problem (1.4), suppose
that arg minΦ is nonempty, g is proper and lsc, and each fi is L fi -Lipschitz differ-
entiable, i ∈ [N]. Consider the sequences (wk)k∈� and (sk)k∈� generated by Algo-
rithm 3 and let (zk)k∈� = (sk

1 + γ1wk, . . . , sk
N + γNwk)k∈�. Then, the following hold

almost surely (resp. surely) with randomized sampling strategy as in Assumption II
(resp. with any essentially cyclic sampling strategy and g convex as required in As-
sumption III):

(i) the sequence (Φ(zk))k∈� converges to a finite value Φ? ≤ Φ(xinit);
(ii) all cluster points of (zk)k∈� are stationary and on which Φ equals Φ?.

If, additionally, Φ is coercive, then the following also hold:
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(iii) (zk)k∈� is bounded (in fact, this holds surely for arbitrary sampling criteria).

Corollary 4.3 (linear convergence of Algorithm 3 under strong convexity). Addition-
ally to the assumptions of Corollary 4.2, suppose that g is convex and that each fi is
µ fi -strongly convex. The following hold:
Randomized sampling: under Assumption II,

E
[
Φ(zk) −minΦ

]
≤

(
Φ(xinit) −minΦ

)
(1 − c)k

1
2E

[
‖zk − x?‖2µF

]
≤

(
Φ(xinit) −minΦ

)
(1 − c)k

holds for all k ∈ �, where x? B arg minΦ, µF B
1
N blkdiag

(
µ f1 In1 , . . . µ fn InN

)
,

and c is as in (2.7). If the stepsizes γi and the sampling probabilities pi are set as
in Theorem 2.7, then the tighter constant c as in (2.9) is obtained.

Shuffled cyclic or cyclic sampling: under either sampling strategy (2.10) or (2.11),

Φ(zNν) −minΦ ≤
(
Φ(xinit) −minΦ

)
(1 − c)ν

1
2‖z

Nν − x?‖2µF
≤

(
Φ(xinit) −minΦ

)
(1 − c)ν

holds surely for all ν ∈ �, where c is as in (2.21).

We conclude with an immediate consequence of Theorem 2.11 that shows that
(strong) convexity is in fact not necessary for global or linear convergence to hold.

Corollary 4.4 (global and linear convergence of Algorithm 3). In problem (1.4), sup-
pose that Φ has the KL property with exponent θ ∈ (0, 1) (as is the case when g and fi
are semialgebraic) and is coercive, g is proper convex lsc, and each fi is L fi -Lipschitz
differentiable, i ∈ [N]. Then the sequence (zk)k∈� as defined in Corollary 4.2 with
any essentially cyclic sampling strategy as in Assumption III converges surely to a
stationary point for Φ. Moreover, if θ ≤ 1/2 it converges with R-linear rate.

5 Conclusions

We presented a general block-coordinate forward-backward algorithm for minimiz-
ing the sum of a separable smooth and a nonseparable nonsmooth function, both
allowed to be nonconvex. The framework is general enough to encompass regular-
ized finite sum minimization and sharing problems, and leads to (a generalization of)
the Finito/MISO algorithm [21,36] with new convergence results and with another
novel incremental-type algorithm. The forward-backward envelope is shown to be a
particularly suitable Lyapunov function for establishing convergence: additionally to
enjoying favorable continuity properties, sure descent (as opposed to in expectation)
occurs along the iterates. Possible future developments include extending the frame-
work to account for a nonseparable smooth term, for instance by “quantifying the
strength of coupling” between blocks of variables as in [9, §7.5].
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A The key tool: the forward-backward envelope

This appendix contains some proofs and auxiliary results omitted in the main body. We begin by observing
that, since F and −F are 1-smooth in the metric induced by ΛF B

1
N blkdiag(L f1 In1 , . . . , L fN InN ), one has

F(x) + 〈∇F(x),w − x〉 − 1
2 ‖w − x‖

2
ΛF
≤ F(w) ≤ F(x) + 〈∇F(x),w − x〉 + 1

2 ‖w − x‖
2
ΛF

(A.1)

for all x,w ∈ �
∑

i ni , see [8, Prop. A.24]. Let us denote

MΓ(w,x) B F(x) + 〈∇F(x),w − x〉 + G(w) + 1
2 ‖w − x‖

2
Γ−1

the quantity being minimized (with respect to w) in the definition (2.2a) of the FBE. It follows from (A.1)
that

Φ(w) + 1
2 ‖w − x‖

2
Γ−1−ΛF

≤ MΓ(w,x) ≤ Φ(w) + 1
2 ‖w − x‖

2
Γ−1+ΛF

(A.2)

holds for all x,w ∈ �
∑

i ni . In particular,MΓ is a majorizing model for Φ, in the sense thatMΓ(x,x) =

Φ(x) andMΓ(w,x) ≥ Φ(w) for all x,w ∈ �
∑

i ni . In fact, as explained in Section 2.1, while a Γ-forward-
backward step z ∈ TfbΓ (x) amounts to evaluating a minimizer ofMΓ( · ,x), the FBE is defined instead as
the minimization value, namely ΦfbΓ (x) =MΓ(z,x) where z is any element of TfbΓ (x).

A.1 Proofs of Section 2.1

Proof of Lemma 2.1. For x? ∈ arg minΦ it follows from (A.1) that

minΦ ≤ F(x) + G(x) ≤ G(x) + F(x?) + 〈∇F(x?),x − x?〉 + 1
2 ‖x

? − x‖2ΛF
.

Therefore, G is lower bounded by a quadratic function with quadratic term − 1
2 ‖ · ‖

2
ΛF

, and thus is prox-
bounded in the sense of [51, Def. 1.23]. The claim then follows from [51, Th. 1.25 and Ex. 5.23(b)] and
the continuity of the forward mapping id − Γ∇F.

Proof of Lemma 2.3 (FBE: fundamental inequalities). Local Lipschitz continuity follows from (2.2d) in
light of Lemma 2.1 and [51, Ex. 10.32].

♠ 2.3(i) Follows by replacing w = x in (2.2a).
♠ 2.3(ii) Directly follows from (A.2) and the identity ΦfbΓ (x) =MΓ(z,x) for z ∈ TfbΓ (x).

Proof of Lemma 2.4 (FBE: minimization equivalence).

♠ 2.4(i) and 2.4(ii) It follows from Lemma 2.3(i) that inf ΦfbΓ ≤ minΦ. Conversely, let (xk)k∈� be such
that ΦfbΓ (xk) → infΦfbΓ as k → ∞, and for each k let zk ∈ TfbΓ (xk). It then follows from Lemmas 2.3(i)
and 2.3(ii) that

infΦfbΓ ≤ minΦ ≤ lim inf
k→∞

Φ(zk) ≤ lim inf
k→∞

ΦfbΓ (xk) = infΦfbΓ ,

hence minΦ = infΦfbΓ . Suppose now that x ∈ arg minΦ (which exists by Assumption I); then it follows
from Lemma 2.3(ii) that TfbΓ (x) = {x} (for otherwise another element would belong to a lower level set of
Φ). Combining with Lemma 2.3(i) with z = x we then have

minΦ = Φ(z) ≤ ΦfbΓ (x) ≤ Φ(x) = minΦ.

Since minΦ = infΦfbΓ , we conclude that x ∈ arg minΦfbΓ , and that in particular infΦfbΓ = minΦfbΓ .
Conversely, suppose x ∈ arg minΦfbΓ and let z ∈ TfbΓ (x). By combining Lemmas 2.3(i) and 2.3(ii) we
have that z = x, that is, that TfbΓ (x) = {x}. It then follows from Lemma 2.3(ii) and assertion 2.4(i) that

Φ(x) = Φ(z) ≤ ΦfbΓ (x) = minΦfbΓ = minΦ,

hence x ∈ arg minΦ.
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♠ 2.4(iii) Due to Lemma 2.3(i), if ΦfbΓ is level bounded clearly so is Φ. Conversely, suppose that ΦfbΓ is
not level bounded. Then, there exist α ∈ � and (xk)k∈� ⊆ lev≤α ΦfbΓ such that ‖xk‖ → ∞ as k → ∞. Let
λ = mini

{
γ−1

i − L fi N
−1

}
> 0, and for each k ∈ � let zk ∈ TfbΓ (xk). It then follows from Lemma 2.3(ii) that

minΦ ≤ Φ(zk) ≤ ΦfbΓ (xk) − λ
2 ‖x

k − zk‖2 ≤ α − λ
2 ‖x

k − zk‖2,

hence (zk)k∈� ⊆ lev≤α Φ and ‖xk − zk‖2 ≤ 2
λ (α − minΦ). Consequently, also the sequence (zk)k∈� ⊆

lev≤α Φ is unbounded, proving that Φ is not level bounded.

A.2 Further results

This section contains a list of auxiliary results invoked in the main proofs of Section 2.

Lemma A.1. Suppose that Assumption I holds, and let two sequences (uk)k∈� and (vk)k∈� satisfy vk ∈

TfbΓ (uk) for all k and be such that both converge to a point u? as k → ∞. Then, u? ∈ TfbΓ (u?), and in
particular 0 ∈ ∂̂Φ(u?).

Proof. Since ∇F is continuous, it holds that uk − Γ∇F(uk) → u? − Γ∇F(u?) as k → ∞. From outer
semicontinuity of proxΓ

−1

G [51, Ex. 5.23(b)] it then follows that

u? = lim
k→∞

vk ∈ lim sup
k→∞

proxΓ
−1

G (uk − Γ∇F(uk)) ⊆ proxΓ
−1

G (u? − Γ∇F(u?)) = TfbΓ (u?),

where the limit superior is meant in the Painlevé-Kuratowski sense, cf. [51, Def. 4.1]. The optimality
conditions defining proxΓ

−1

G [51, Th. 10.1] then read

0 ∈ ∂̂
(
G + 1

2 ‖ · − (u? − Γ∇F(u?))‖2
Γ−1

)
(u?) = ∂̂G(u?) + Γ−1

(
u? − (u? − Γ∇F(u?))

)
= ∂̂G(u?) + ∇F(u?) = ∂̂Φ(u?),

where the first and last equalities follow from [51, Ex. 8.8(c)].

Lemma A.2. Suppose that Assumption I holds and that function G is convex. Then, the following hold:

(i) proxΓ
−1

G is (single-valued and) firmly nonexpansive (FNE) in the metric ‖ · ‖Γ−1 ; namely,

‖ proxΓ
−1

G (u) − proxΓ
−1

G (v)‖2
Γ−1 ≤ 〈 proxΓ

−1

G (u) − proxΓ
−1

G (v), Γ−1(u − v)〉 ≤ ‖u − v‖2
Γ−1 ∀u,v;

(ii) the Moreau envelope GΓ−1
is differentiable with ∇GΓ−1

= Γ−1(id − proxΓ
−1

G );

(iii) for every x ∈ �
∑

i ni it holds that dist(0, ∂ΦfbΓ (x)) ≤
N+maxi

{
γiL fi

}
N mini {

√
γi}
‖x − TfbΓ (x)‖Γ−1 ;

(iv) TfbΓ is LT-Lipschitz continuous in the metric ‖ · ‖Γ−1 for some LT ≥ 0;

If in addition fi is µ fi -strongly convex, i ∈ [N], then the following hold:

(v) In A.2(iv), LT ≤ 1 − δ for δ = 1
N mini∈[N]

{
γiµ fi

}
;

(vi) For every x ∈ �
∑

i ni

1
2 ‖z − x

?‖2µF
≤ ΦfbΓ (x) −minΦ ≤ 1

2 ‖z − x‖
2
Γ−2µ−1

F (I−ΓµF )

where x? B arg minΦ, µF B
1
N blkdiag

(
µ f1 In1 , . . . , µ fN InN

)
, and z = TfbΓ (x).

Proof.

♠ A.2(i) and A.2(ii) See [4, Prop.s 12.28 and 12.30].
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♠ A.2(iii) Let D ⊆ �
∑

i ni be the set of points at which ∇F is differentiable. From the chain rule of differ-
entiation applied to the expression (2.2d) and using assertion A.2(ii), we have that ΦfbΓ is differentiable on
D with gradient

∇ΦfbΓ (x) =
[
I − Γ∇2F(x)

]
Γ−1[x − TfbΓ (x)

]
∀x ∈ D.

Since D is dense in �
∑

i ni owing to Lipschitz continuity of ∇F, we may invoke [51, Th. 9.61] to infer that
∂ΦfbΓ (x) is nonempty for every x ∈ �

∑
i ni and

∂ΦfbΓ (x) ⊇ ∂BΦ
fb
Γ (x) =

[
I − Γ∂B∇F(x)

]
Γ−1[x − TfbΓ (x)

]
=

[
Γ−1 − ∂B∇F(x)

][
x − TfbΓ (x)

]
,

where ∂B denotes the (set-valued) Bouligand differential [22, §7.1]. The claim now follows by observ-
ing that ∂B∇F(x) = 1

N blkdiag(∂B∇f1(x1), . . . , ∂B∇fN (xN )) and that each element of ∂B∇fi(xi) has norm
bounded by L fi .
♠ A.2(iv) Lipschitz continuity follows from assertion A.2(i) together with the fact that Lipschitz continuity
is preserved by composition.
♠ A.2(v) By [41, Thm 2.1.12] for all xi, yi ∈ �

ni

〈∇fi(xi) − ∇fi(yi), xi − yi〉 ≥
µ fi L fi
µ fi +L fi

‖xi − yi‖
2 + 1

µ fi +L fi
‖∇fi(xi) − ∇fi(yi)‖2. (A.3)

For the forward operator we have

‖(id − γi
N ∇fi)(xi) − (id − γi

N ∇fi)(yi)‖2

= ‖xi − yi‖
2 +

γ2
i

N2 ‖∇fi(xi) − ∇fi(yi)‖2 −
2γi
N 〈xi − yi,∇fi(xi) − ∇fi(yi)〉

(A.3)
≤

(
1 −

γ2
i µ fi L fi

N2

)
‖xi − yi‖

2 −
γi
N

(
2 − γi

N (µ fi + L fi )
)
〈∇fi(xi) − ∇fi(yi), xi − yi〉

≤

(
1 −

γ2
i µ fi L fi

N2

)
‖xi − yi‖

2 −
γiµ fi

N

(
2 − γi

N (µ fi + L fi )
)
‖xi − yi‖

2

=
(
1 −

γiµ fi
N

)2
‖xi − yi‖

2,

where strong convexity and the fact that γi < N/L fi ≤
2N/(µ fi +L fi ) were used in the second inequality.

Multiplying by γ−1
i and summing over i shows that id − Γ∇F is (1 − δ)-contractive in the metric ‖ · ‖Γ−1 ,

and so is TfbΓ = proxΓ
−1

G ◦(id − Γ∇F) as it follows from assertion A.2(i).
♠ A.2(vi) By strong convexity, denoting Φ? B minΦ, we have

Φ? ≤ Φ(z) − 1
2 ‖z − x

?‖2µF
≤ ΦfbΓ (x) − 1

2 ‖z − x
?‖2µF

where the second inequality follows from Lemma 2.3(ii). This establishes the lower bound.
Since z is a minimizer in (2.2a), the necessary stationarity condition reads Γ−1(x − z) − ∇F(x) ∈ ∂G(z).
Convexity of G then implies

G(x?) ≥ G(z) + 〈Γ−1(x − z) − ∇F(x),x? − z〉,

whereas from strong convexity of F we have

F(x?) ≥ F(x) + 〈∇F(x),x? − x〉 + 1
2 ‖x − x

?‖2µF
.

By combining these inequalities and (2.2b), we have

ΦfbΓ (x) −Φ? ≤
1
2 ‖z − x‖

2
Γ−1 −

1
2 ‖x

? − x‖2µF
+ 〈Γ−1(z − x),x? − z〉

= 1
2 ‖z − x‖

2
Γ−1−µF

+ 〈(Γ−1 − µF )(z − x),x? − z〉 − 1
2 ‖x

? − z‖2µF
.

Next, by using the inequality 〈a, b〉 ≤ 1
2 ‖a‖

2
µF

+ 1
2 ‖b‖

2
µ−1

F
to cancel out the last term, we obtain

ΦfbΓ (x) −Φ? ≤
1
2 ‖z − x‖

2
Γ−1−µF

+ 1
2 ‖(Γ

−1 − µF )(x − z)‖2
µ−1

F

= 1
2 ‖z − x‖

2
Γ−2µ−1

F (I−ΓµF )
,

where the last identity uses the fact that the matrices are diagonal.
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The next result recaps an important property that the FBE inherits from the cost function Φ that is
instrumental for establishing global convergence and asymptotic linear rates for the BC Algorithm 1. The
result falls as special case of [64, Th. 5.2] after observing that

ΦfbΓ (x) = inf
w
{Φ(w) + DH(w,x)},

where DH(w,x) = H(w)−H(x)−〈∇H(x),w−x〉 is the Bregman distance with kernel H = 1
2 ‖ · ‖

2
Γ−1 −F.

Lemma A.3 ([64, Th. 5.2]). Suppose that Assumption I holds and for γi ∈ (0, N/L fi ), i ∈ [N], let Γ =

blkdiag(γ1In1 , . . . , γN InN ). If Φ has the KL property with exponent θ ∈ (0, 1) (as is the case when fi and G
are semialgebraic), then so does ΦfbΓ with exponent max {1/2, θ}.
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