<プレプリント>
Non-Gaussian quasi-likelihood estimation of locally stable SDE

作成者
本文言語
出版者
発行日
収録物名
出版タイプ
アクセス権
概要 We address parametric estimation of both trend and scale coefficients of a pure-jump Levy driven univariate stochastic differential equation (SDE) model based on high-frequency data over a fixed time... period. The conventional Gaussian quasi-maximum likelihood estimator is known to be inconsistent. In this paper, under the assumption that the driving Levy process is locally stable, we propose a novel quasi-likelihood function based on the small-time non-Gaussian stable approximation of the unknown transition density. The resulting estimator is shown to be asymptotically mixed-normally distributed and remarkably more efficient than the Gaussian quasi-maximum likelihood estimator. We need neither ergodicity nor existence of finite moments. Compared with the existing methods for estimating SDE models, the proposed quasi-likelihood enables us to achieve better performance in a unified manner for a wide range of the driving Levy processes.続きを見る

本文ファイル

pdf MI2016-4 pdf 320 KB 252  

詳細

レコードID
査読有無
主題
注記
登録日 2016.05.13
更新日 2018.01.24

この資料を見た人はこんな資料も見ています