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NON-GAUSSIAN QUASI-LIKELIHOOD ESTIMATION OF LOCALLY STABLE SDE

HIROKI MASUDA

Abstract. We address parametric estimation of both trend and scale coefficients of a pure-jump Lévy
driven univariate stochastic differential equation (SDE) model based on high-frequency data over a

fixed time period. It is known from the previous study [35] that the conventional Gaussian quasi-
maximum likelihood estimator is inconsistent. In this paper, under the assumption that the driving
Lévy process is locally stable, we propose a novel quasi-likelihood function based on the small-time non-
Gaussian stable approximation of the unknown transition density. The resulting estimator is shown to

be asymptotically mixed-normally distributed and remarkably more efficient than the Gaussian quasi-
maximum likelihood estimator. We need neither ergodicity nor existence of finite moments. Compared
with the existing methods for estimating SDE models, the proposed quasi-likelihood enables us to achieve
better performance in a unified manner for a wide range of the driving Lévy processes.

1. Introduction

Stochastic differential equation (SDE) is a basic model to describe time-varying physical and natural

phenomena. It is a common knowledge that, when considering Wiener process as a driving noise, the

small-time Gaussian approximation of increments very often leads to a good results, such as asymptotic

efficiency of estimators and so on; the same can be said to more general diffusion-type models such

as continuous Itô semimartingales. Nevertheless, there do exist quite a lot of situations where strong

non-Gaussian feature of distributions of small-time increments of data sequence is dominant, making

the Gaussianity assumption inappropriate to reflect reality. In particular, at high-frequency time scales

such a character often may not be described by a diffusion with compound-Poisson jumps as well, since

jumps are then very sparse so that increments may be approximately Gaussian except intervals where

a jump occurred. In order to reflect non-Gaussianity, which is one of the stylized facts often observed

in real data such as financial returns 1 and to build up a more versatile statistical model, it is of great

significance to incorporate a non-Gaussian noise distribution. The feature calls for a more tailor-made

estimation procedure when the driving Lévy process is of pure-jump type, for which the approximate

Gaussianity in small-time no longer holds true and its statistical inference of which becomes generally

more complicated. In this paper we will propose and analyze a new class of SDE models driven by a

“stable-like” Lévy process, forming a broad class of Lévy processes, which can even approximate a Wiener

process.

1.1. Objective. Given an underlying complete filtered probability space (Ω,F , (Ft)t∈R+ ,P), we consider
a solution to the univariate Markovian SDE

(1.1) dXt = a(Xt, α)dt+ c(Xt−, γ)dJt,

where we assume:

• The initial random variable X0 is F0-measurable;

• J is a pure-jump (càdlàg) Lévy process adapted to the filtration (Ft), independent of X0, and

having the Lévy-Khintchine representation

(1.2) E(eiuJt) = exp

{
t

(∫
|z|≤1

(eiuz − 1− iuz)ν(dz) +

∫
|z|>1

(eiuz − 1)ν(dz)

)}
for t ∈ R+ and u ∈ R;

Date: April 21, 2016.
Key words and phrases. Asymptotic mixed-normality, high-frequency sampling, locally stable Lévy process, stable quasi-

likelihood function, stochastic differential equations.
1 A quotation from [15]: “The apparent paradox, which has puzzled many a researcher, is that the tails appear to become

less heavy for less frequent (e.g., monthly) returns than for more frequent (e.g., daily) returns, a phenomenon not easily
explainable by the standard models.”
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• The trend coefficient a : R × Θα → R and scale coefficient c : R × Θγ → R are assumed to be

known except for the p-dimensional parameter

θ := (α, γ) ∈ Θα ×Θγ = Θ,

with Θα ∈ Rpα and Θγ ∈ Rpγ being bounded convex domains.

We will assume that the distribution L(h−1/βJh) weakly tends to the symmetric stable distribution with

index β ∈ [1, 2) (the assumption will be made rigorous in Assumption 2.1), and that the process X is

observed only at discrete but high-frequency time instants tnj = jhn, j = 0, 1, . . . , n, with nonrandom

sampling step size h = hn → 0; it is a trivial matter to remove the equidistance assumption on the

sampling times, as long as the ratios of minj≤n(tj − tj−1) and maxj≤n(tj − tj−1) are bounded in an

appropriate order. This paper focuses on the so-called bounded-domain asymptotics:

Tn ≡ T for a fixed terminal sampling time T ∈ (0,∞).

This amounts to observing not the complete path (Xt)t≤T but the discretized step process

(1.3) X
(n)
t := X⌊t/h⌋h, t ∈ [0, T ].

We are concerned here with estimation of θ, assuming that the true value θ0 = (α0, γ0) ∈ Θ does exist.

Due to the lack of a closed-form formula for the transition distribution, a feasible approach based on

the genuine likelihood function is rarely available. In this paper, we will introduce a novel non-Gaussian

quasi-likelihood function 2, much extending the prototype mentioned in [33] and [36]. More specifically,

under some conditions we will provide a quasi-likelihood estimator θ̂n = (α̂n, γ̂n) such that(√
nh1−1/β

n (α̂n − α0),
√
n(γ̂n − γ0)

)
is asymptotically mixed-normally distributed, entailing that the “activity” index β (see (2.2) below)

determines the rate of convergence of estimating the trend parameter α. Most notably, even when

Tn is fixed we can estimate not only the scale parameter γ but also the drift parameter α, with the

explicit asymptotic distribution in hand. To prove the asymptotic mixed normality, we will take a doubly

approximate procedure based on the Euler-Maruyama scheme combined with the stable approximation

of L(h−1/βJh) for small h: see Section 3.1.

The model is semiparametric in the sense that we do not completely specify the Lévy measure of

L(J), while supposing the parametric coefficients; of course, the Lévy measure is an infinite-dimensional

parameter, so that β never solely determines the distribution L(J). In estimation of L(X), it seems

desirable (whenever possible) to estimate (α, γ) with leaving the remaining parameters contained in Lévy

measure as much as unknown. The proposed quasi-likelihood provides us with a widely applicable tool for

this purpose, extending the preceding results on diffusion processes. It gives an estimator having much

better asymptotic behavior compared with the Gaussian maximum quasi-likelihood estimator, which was

previously studied by [35] and is known to be inconsistent when the target sampling time period is fixed

(see below for a literature review). Our results will clarify several interesting phenomena that cannot be

shared by the case of diffusion process where J is a standard Wiener process. Also we should mention that

use of the Gaussian quasi-likelihood can result in a rather inefficient and even inconsistent estimation,

see, e.g., [3] and [35].

Note that we assume from the very beginning that J contains no Gaussian factor. Normally, the simul-

taneous presence of a non-degenerate diffusion plus a non-null jump part makes parametric-estimation

problem much more complicated. Some recent studies have revealed utility of pure-jump models. See the

recent papers [24] and [29], which are especially concerned with financial context, however, it is obvious

that pure-jump models should be useful for modeling in many application fields where non-Gaussianity

of data should be more appropriate, such as signal processing (detection, estimation, etc.), population

dynamics, hydrology, radiophysics, turbulence, biological molecule movement, noise-contaminated biosig-

nals, and so on. We also refer to, among many others, [2] and [53] for recent related works in this direction.
3

2Non-Gaussian quasi-likelihoods have not received much attention compared with the popular Gaussian quasi-likelihood;

among others, we refer to the recent paper [11] for a certain non-Gaussian quasi-likelihood estimation of possibly heavy-tailed
GARCH models, and also to [60] for self-weighted Laplace quasi-likelihood in a time series context.

3See also the recent preprint: Klebanov, L. B. and Volchenkova, I. V. (2015), Heavy-tailed distributions in finance:
reality or myth? Amateurs viewpoint. arXiv:1507.07735.
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Formally, our model (1.1) is a continuous-time analogue to the discrete-time model

Xj = a(Xj−1, α) + c(Xj−1, γ)ϵj , j = 1, . . . , n,

where ϵj are i.i.d. random variables. By making use of the small-time non-Gaussian stable structure, our

model setup enables us to formulate a flexible and unified estimation paradigm, which cannot be shared

with the discrete-time counterpart. In particular, our estimation procedure is not effected by heavy-tail

property of the noise distribution L(J1).

We end this introductory subsection with some remarks on the high-frequency-sampling asymptotics.

• The present bounded-domain asymptotics enables us to “localize” the event, sidestepping stability

(such as the ergodicity) and moment-condition issues on L(J1), which is quite often inevitable for

developing asymptotic theory for Tn → ∞. To develop an infill asymptotics without ergodicity,

however, we need much more than the (martingale) central limit theorem with Gaussian limit: a

mixed-normal limit theory for LAQ statistical experiments plays an essential role. Fortunately,

we have a very general tool which can cover a setting where an underlying space is of Poisson

type carrying a pure-jump Lévy process: Jacod’s characterization of the conditionally Gaussian

martingales (see [12] and [19]).

• It should be noted that there is no correspondence between actual-time scale and the model-time

scale; virtually, we may always set the terminal sampling time Tn to be a fixed value T > 0, so

that T may represent one day, one month, one year, and whatever it be. However, it is well-

known that observed information corresponding to some parameters is stochastically bounded,

and thereby cannot be estimated consistently in theory; see [26], and [37] and the the references

therein.

1.2. Some background. The high-frequency data setting is quite beneficial from statistical point of

view, since it can enable us to: formulate explicit approximate estimation procedures; total observing

period can be fixed, say T = 1 being day, one week, and so forth (and it leads to a realized result, here

referring more precisely to the fact that we have not normal but mixed-normal asymptotic distribution

in parametric estimation); and, quite often, to keep the model structure rather general, making use of

fine continuous-time structure of the model.

In the rest of this paper we will suppress the dependence on n from the notations tnj and hn, and

denote by (Pθ)θ∈Θ the family of the image measures of X given by (1.1) in D(R+;R), the Skorokhod

space of càdlàg functions from R+ to R. For any process Y we will denote by

∆jY = ∆n
j Y := Ytj − Ytj−1

the jth increments, and

gj−1(v) = g(Xtj−1 , v)

for a function g having two components x and v, such as aj−1(α) = a(Xtj−1 , α). Below we will give a

brief overview on the related existing literature.

First, concerning the small-time Gaussian approximation, let us recall some basic results in the case

of an ergodic diffusion model

dXt = a(Xt, α)dt+ c(Xt, γ)dwt

with true invariant distribution π(dx; θ0). Under appropriate conditions we can deduce the asymptotic

normality of the Gaussian quasi-maximum likelihood estimator (GQMLE) defined to be any maximizer

of

(1.4) θ 7→
n∑

j=1

log

{
1√

2πc2j−1(γ)hn
exp

(
− (∆jX − aj−1(α)hn)

2

2c2j−1(γ)hn

)}
,

which comes from the “fake” small-time Gaussian approximation the transition probability:

(1.5) L(Xtj |Xtj−1 = x) ≈ N
(
Xtj−1 + aj−1(α)hn, c

2
j−1(γ)hn

)
.

Then, under appropriate conditions we have the asymptotic normality(√
Tn(α̂n − α0),

√
n(γ̂n − γ0)

)
L−→ N

(
0, diag

[{∫ (
∂αa

c

)⊗2

(x, θ0)π(dx; θ0)

}−1

, 2

{∫ (
∂γ(c

2)

c2

)⊗2

(x, θ0)π(dx; θ0)

}])
,(1.6)
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where
L−→ denotes the convergence in distribution. (1.6) clarifies that we can estimate the diffusion

parameter γ faster than the drift one α, where we have to let Tn → ∞ for α while we do not for γ (cf.

[27], [55], and [58]); we should note that the simple form (1.4) which works under the sampling-frequency

condition nh2n → 0 is just for simplicity of exposition, and incorporating the higher-order Itô-Taylor

expansion of the one-step conditional mean and variance into the quasi-likelihood enables us to deduce

an estimator having the same asymptotic normality as in (1.6). The resulting phenomenon is known to

be asymptotically efficient [14]. Also known in the literature is that, even when Tn ≡ T we may estimate

γ in an asymptotically efficient manner as

(1.7)
√
n(γ̂n − γ0)

L−→MN

(
0, 2

{
1

T

∫ T

0

(
∂γ(c

2)

c2

)⊗2

(Xt, γ0)dt

}−1)
by making use of the variant of (1.4):

(1.8) γ 7→
n∑

j=1

log

{
1√

2πc2j−1(γ)hn
exp

(
− (∆jX)2

2c2j−1(γ)hn

)}
,

where the drift coefficient is now a non-estimable nuisance element: see [12], [13], and [56] for details.

Here and in the sequel, the symbol “MN” stands for the “mixed normal”.

Obviously, the above-mentioned features is already in force for the scaled Wiener process with drift

Xt = αt+ γwt, where the Gaussian quasi-likelihood becomes the genuine likelihood, so that the asymp-

totics of the MLE becomes trivial: in the independent-increment case where a(x, α) = α and c(x, γ) =

γ > 0, (1.6) formally reduces to (
√
Tn(α̂n−α0),

√
n(γ̂n−γ0))

L−→ N(0, γ20diag(1, 1/2)). In this paper we

will extend the notion of the “local-Gauss” contrast function well-known for diffusions can be extended

to the “local-non-Gaussian-stable” contrast function, resulting in an essentially much more efficient esti-

mator. Nevertheless, it should be mentioned that the GQMLE can be also used for the Lévy driven case.

Indeed, it turned out by the previous work [35], where the Gaussian part may or may not be present, that

adopting the Gaussian quasi-maximum likelihood estimator based on the local-Gauss approximation (1.5)

leads to the asymptotic normality only at rate
√
Tn for both of α and γ, possibly resulting in significant

efficiency loss with inevitably requiring that Tn → ∞.

Turning to the pure-jump cases, we proceed along remarks.

Remark 1.1. Consider the Lévy process Xt = αt+γJt for a standard β-stable Lévy process J associated

with the characteristic function u 7→ exp(−|u|β). Then the jth increment is h−1/β∆jX = αh1−1/β +

γh−1/β∆jJ , from which we see that the model shows different feature depending on the value β:

• for β ∈ (1, 2), the noise part γh−1/β∆jJ is dominant compared with the drift part αh1−1/β ;

• for the critical case β = 1 (the Cauchy case), the drift and the noise parts are of the same

stochastic order;

• for β ∈ (0, 1), the drift part αh1−1/β is dominant compared with the noise part γh−1/β∆jJ .

These phenomena turns out to remain the same even when both drift and scale coefficients are randomly

time-varying. Our results can cover the case β ∈ [1, 2) for much more general non-linear SDE of the form

(1.1), revealing an analogous phenomena. □

Remark 1.2. For an explicit example, let us consider estimation of θ = (α, γ) of a Lévy process Xt =

αt+ γJt where J is a normal-inverse Gaussian Lévy process, which is locally Cauchy (see [26]). Just for

comparison with the GQMLE, L(Jt) = NIG(δ, 0, δt, 0) for some δ > 0, so that E(Jt) = 0, E(J2
t ) = t, and

L(Xt) = NIG(δ/γ, 0, γδt, αt); see [5] for the details of NIG Lévy processes. Then we have the following.

(1) The GQMLE is asymptotically normal:(√
Tn(α̂n − α0),

√
Tn(γ̂n − γ0)

)
L−→ N

(
0, γ20diag

(
1,

3

2δ2

))
.

This can be deduced in a direct manner, following an analogous way to [35]. Indeed, for the

GQMLE a simple computation gives the identity

(
√
Tn(α̂n − α0),

√
Tn(γ̂

2
n − γ20)) = T−1/2

n

n∑
j=1

(vj , v
2
j − γ20h),
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where vj := ∆jX − α0h. Even for a general centered and standardized J (i.e. E(Jt) = 0,

E(J2
t ) = t) it readily follows from the fact h−1E(Jk

h ) → νk :=
∫
zkν(dz) for k ≥ 2, where

ν denotes the Lévy measure of J , and the Lindeberg-Feller theorem together with the delta

method that

(
√
Tn(α̂n − α0),

√
Tn(γ̂n − γ0))

L−→ N2

(
0, γ20

(
1 ν3/2

ν3/2 ν4/2

))
.

In this case, we may leave δ unknown while the value does affect the asymptotic covariance

matrix.

(2) Let δ = 1. The QMLE based on the Cauchy likelihood (a special case of the proposed quasi-

likelihood) satisfies that(√
n(α̂n − α0),

√
n(γ̂n − γ0)

) L−→ N2

(
0, 2γ20I2

)
.

This is asymptotically efficient, that is, our estimator makes it possible to estimate (α, γ). We

emphasize that the asymptotic normality holds even when L(Jt) = NIG(δ′, 0, t, 0) with leaving

δ′ > 0 unknown.

Thus very different asymptotic behaviors can occur, our estimator being much better. □

Remark 1.3. We note that consistent estimation of β is possible by two data only. Consider a Lévy

process Xt = αt+ γJt. Let L(h−1/β(Xh − hα)) ⇒ Sβ(γ), and suppose that we have δn := h1−1/β(α̂n −
α)

p−→ 0. Fix any j ≤ n, and write Sj = h−1/β(∆jX − αh) and

β̃n =
− log(1/h)

log |∆jX − α̂nh|
.

Then we have under Pθ,

log(1/h)(β̃−1
n − β−1) = − log |Sj − δn|.

It follows from the assumption δn
p−→ 0 that the right-hand side is Op(1). To see this, fix any ϵ > 0, and

pick an M ′ > 0 such that supn Pθ(|δn| > M ′) < ϵ/2. With this M ′ > 0, we have for M > M ′ large

enough and κ ∈ (0, 1),

sup
n

Pθ

(∣∣ log |Sj − δn|
∣∣ > M

)
≤ ϵ/2 + sup

n
Pθ

(∣∣ log |Sj − δn|
∣∣ > M

∧
|δn| ≤M ′

)
≤ ϵ/2 + sup

n
Pθ

(
|Sj − δn|κ + |Sj − δn|−κ ≳M

∧
|δn| ≤M ′

)
≤ ϵ/2 + sup

n
Pθ (|S1|κ ≳M/2) + sup

n
Pθ

(
|Sj − δn|−κ ≳M/2

)
≤ ϵ/2 + ϵ/4 + ϵ/4 = ϵ.

It may be checked that the joint distribution L(Sj , δn) is tight with bounded density. The above im-

plies that log(1/h)(β̃n − β) is asymptotically L(β2 log |Sβ |)-distributed, while the rate log(1/h) is quite

unsatisfactory. □

Remark 1.4. Contrary to the diffusion case, very little is known about asymptotic efficiency phenomenon

for the Lévy driven (1.1) with observing (1.3). For local asymptotic normality results when X is a Lévy

process, i.e. when a(x, α) and c(x, γ) are constants, we refer to [37] for several explicit case studies for

Lévy processes, and to [18] for a general locally stable Lévy processes. Recently, [8] proved the LAMN

property about the drift parameter α especially when c(x, γ) is a given constant and the support of

the Lévy measure ν is bounded. The asymptotic efficiency in the sense of Hajék-Jeganathan-Le Cam

of the β-stable quasi-likelihood estimator is assured by their LAMN result. Just like that the Gaussian

quasi-likelihood is asymptotically efficient for diffusions, concerning the SDE (1.1) driven by a locally

β-stable Lévy process we conjecture that our estimator is asymptotically efficient (see also the discussion

in Section 3.3). The detailed study of which is the scope of this paper and one of important future

works. □

Remark 1.5. For general locally β-stable pure-jump Itô-semimartingale models, there exist many results

on asymptotic behavior of the power-variation statistics of the form 1
n

∑[nt]
j=1 |n1/β∆jX|p (here hn = 1/n)

in estimation of the integrated(-powered) scale process [50], [51], [52], and [53]. Application of the law of

large numbers and the stable convergence in law available in the p-variation literature seems attractive due
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to their computational simplicity, while it does not seem to be of direct use for our parametric-estimation

purpose. □

Section 2 describes our basic model setup. The main results are presented in Section 3. Section 4 is

devoted to the proof of the main results.

We end this section with some basic notation. For a variable x = (xi)i, ∂
k
x denotes the kth partial-

differentiation operators with respect to the components of x (e.g. ∂x = { ∂
∂xi

}i and ∂2x = { ∂2

∂xi∂xj
}i,j);

given a function f = f(s1, . . . , sk) : S1×· · ·×Sk → Rm with Si ⊂ Rdi , we write ∂j1s1 . . . ∂
jk
sk
f for the array

of partial derivatives of dimension m × (
∏k

i=1 diji); φξ denotes the characteristic function of a random

variable ξ; M⊗2 :=MM⊤ for any matrix M with ⊤ denoting the transpose; C denotes a generic positive

constant which may vary at each appearance; an ≲ bn and an ∼ bn mean that an ≤ Cbn for every n

large enough and that an/bn → 1 for n → ∞, respectively; and finally, the symbols
p−→ and ⇒ denotes

the convergence in P-probability and the weak convergence, respectively.

2. Setup and assumptions

2.1. Locally stable Lévy process: weak convergence and L1-local limit theorem. Recall the

Lévy-Khintchine form (1.2) of J . In our study, asymptotic behavior of the distribution L(Jh) in small-time

will play an essential role. As was mentioned in the introduction, the small-time Gaussian approximation

(1.5) efficiently works in case of diffusions, where J is a standard Wiener process so that L(h−1/2Jh) =

N(0, 1) exactly. The construction of our quasi-likelihood (Section 3.1) will be based on a non-Gaussian-

stable counterpart to this fact.

The infinitely divisibility is a vital concept in statistical modeling, building the most general class

stemming from cumulate asymptotically negligible independent noises: the celebrated Lindeberg-Feller

central limit theorem describes a special case of this phenomenon. The locally infinitely divisible approx-

imation of the likelihood function seems work well, but it is too diverse to make up a reasonably unified

estimation procedure. Fortunately and importantly, we know that only strictly stable distribution can

occur as a possible asymptotic distribution of a linearly scaled small-time increment of the driving Lévy

process (see [7, Proposition 1]). Supposing its locally stable property, we can give a unified approximation

procedure for a quasi-likelihood estimation of the model. Specifically, we know from [7, Proposition 1]

that if L(κ−1
h Jh) weakly converges as h → 0 to a non-trivial distribution for some positive nonrandom

sequence κh such that κh → 0 as h→ 0, then it necessarily follows that:

• κ is regularly varying of index 1/β with β ∈ (0, 2];

• F is strictly β-stable; and L(κ−1
h Jh) admits a bounded continuous Lebesgue density.

We call any Lévy process satisfying the above a locally stable Lévy process. We here look at symmetric

ν and the choice κh = h1/β with β ∈ [1, 2), the weak limit being the standard symmetric β-stable

distribution corresponding to the characteristic function

u 7→ exp(−|u|β), u ∈ R.

Denote this distribution by Sβ . We refer to [23], [45], and [61] for a comprehensive account of the general

theory of stable distributions and/or processes.

Now we assume that

(2.1) ν is symmetric and L(h−1/βJh) ⇒ Sβ as h→ 0;

we will assume that β ∈ [1, 2) later on. The value β equals the Blumenthal-Getoor index:

(2.2) β := inf

{
b ≥ 0 :

∫
|z|≤1

|z|bν(dz) <∞
}
,

which measures degree of J ’s jump activity. We note that many locally stable Lévy processes with finite

variance can exhibit both small-time non-Gaussianity (e.g., heavy-tailed property (excess kurtosis)) and

large-time Gaussianity (i.e. central-limit effect), which are consistent with stylized facts observed in some

actual phenomena; see, e.g., [40] and [44] and the references therein. 4

4See also the recent preprint: Klebanov, L. B. and Volchenkova, I. V. (2015), Heavy-tailed distributions in finance:
reality or myth? Amateurs viewpoint. arXiv:1507.07735.
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The locally stable property in (2.1) can be characterized by the β-stable-like behavior of ν around the

origin. Let us briefly discuss how to verify it. By (1.2) with the symmetry of ν, the random variable

h−1/βJh has no drift and its Lévy measure is given by

νh(B) := hν
({
z; h−1/βz ∈ B

})
.

Then, according to [46, Theorem 8.7] we have L(h−1/βJh) ⇒ Sβ as h→ 0 if and only if∫
f(y)νh(dy) →

∫
f(y)ν0(dy), h→ 0,

for every continuous bounded function f vanishing in a neighborhood of the origin, where ν0 is the Lévy

measure of Sβ , namely ν0(dy) = g0(y)dy for g0(y) = cβ |z|−1−β with (cf. [46, Lemma 14.11])

cβ :=
1

2

{
1

β
Γ(1− β) cos

(
βπ

2

)}−1

.

(limβ→1 cβ = π−1).

A convenient sufficient condition can be given in terms of the Lévy density of the most active part

of J : for example, it is enough that for a neighborhood U of the origin ν can be bounded below on

U \ {0} by a β-stable-like absolute continuous part. Specifically, let the Lévy measure ν be symmetric

and decomposed as

(2.3) ν(dz) = ν♯(dz) + ν♭(dz),

where ν♯(dz) = g(z)dz in a neighborhood of the origin where

(2.4) g(z) =
cβ

|z|1+β
ḡ(z)

for a bounded continuous non-negative function ḡ satisfying that lim|z|→0 ḡ(z) = 1, and where

(2.5) ν♭
(
{z ̸= 0; ϵ ≤ |z| ≤ 1}

)
≲ ϵ−β′

, ϵ ∈ (0, 1],

for some β′ < β. Then (2.1) is satisfied. The condition (2.5) means that the ν♭-part of J is strictly less

active than the ν♯-part; equivalently, writing J = J♯ + J♭ with independent Lévy processes J♯ and J♭

corresponding to the Lévy measures ν♯ and ν♭, respectively, we have h−1/βJ♯
h ⇒ Sβ and h−1/βJ♭

h

p−→ 0 as

h → 0. In particular, the infinitely divisible distribution L(h−1/βJ♯
h) admits the Lévy density gh(z) :=

cβ |z|−1−β ḡ(h1/βz).

The condition (2.4) is satisfied by many concrete Lévy processes for which L(J1) is generalized hy-

perbolic (except for the normal gamma), Student-t, Meixner, stable, and the (normal) tempered stable

distributions. Under (2.4) it is not difficult to show that |φh−1/βJh
(·)| ∈

∩
q>0 L

q(du), so that, thanks to

Sharpe’s criterion [48], fh is everywhere positive and log fh is always well-defined.

As a matter of fact, the mere weak convergence L(h−1/βJh) ⇒ Sβ is not enough for our purpose.

Under (2.1), we denote by fh the Lebesgue density of L(h−1/βJh):

fh(y) =
1

2π

∫
e−iuyφh−1/βJh

(u)du.

Denote by ϕβ the bounded smooth Lebesgue density of Sβ .
5 We now describe the assumptions on J

given by (1.2), requiring an L1-local limit theorem with some convergence rate:

Assumption 2.1 (Structure of J). (i) The Lévy measure ν is symmetric and L(h−1/βJh) ⇒ Sβ as

h→ 0 for some β ∈ [1, 2).

(ii) There exist positive constants C0 and Cν such that

∫
|z|>y

ν(dz) ≤ Cνy
−β for y ∈ (0, C0].

(iii) lim sup
n→∞

√
n

∫
|fhn(y)− ϕβ(y)|dy <∞.

Remark 2.2. • Assumption 2.1(ii) roughly says that ν behaves like the Lévy measure of Sβ dis-

tribution near the origin and that the tail of ν is equivalent to or lighter than that of Sβ ; hence

it is trivial when L(J1) = Sβ . In particular, if the tail of ν is as just described, then Assumption

2.1(ii) holds under (2.3), (2.4) and (2.5).

5Some asymptotic behavior of ϕβ can be found in [4, Eq. (2.5)–(2.10)] and the references therein.
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• Under Assumption 2.1(ii) we can apply [30, Theorem 2(a) and (c)] to conclude that

E
(
sup
t≤h

|Jt|r
)

≲ hr/β .

• If ∥fh − ϕβ∥∞ ≲ haν for some aν > 0 (see Lemma 2.4 below), then Assumptions 2.1(ii) and (iii)

together imply that

(2.6) lim sup
n→∞

∫
|y|κ|fh(y)− ϕβ(y)|dy = 0

for some κ ∈ (0, β) small enough. Indeed, noting that suph∈(0,1]

∫
|y|κfh(y)dy +

∫
|y|κϕβ(y)dy <

∞, we have
∫
|y|κ|fh(y)− ϕβ(y)|dy ≲ h−κ/2∥fh − ϕβ∥∞ +

∫
|y|≥h−1/2 |fh(y)− ϕβ(y)|dy ≲ hκ/2 +∫

|y|≥h−1/2 |y|κfh(y)dy +
∫
|y|≥h−1/2 |y|κϕβ(y)dy → 0.

□

We will need Assumption 2.1(iii) for proving the central limit theorem for the quasi-score function

evaluated at the true value. Unfortunately, contrary to Assumption 2.1(i) and (ii) verification of As-

sumption 2.1(iii) seems non-trivial even when we know the explicit form of ν; obviously, it is automatic

if L(J1) = Sβ . A trivial sufficient conditions for Assumption 2.1(iii) is that there exist a constant cν > 0

and a positive sequence (ϵn) such that

(2.7)
√
nϵn → 0 and |fhn(y)− ϕβ(y)| ≤ ϵn(1 ∧ |y|−(1+cν));

then, limn→∞
∫
{log(1+|y|)}1+ϵ|fhn(y)−ϕβ(y)|dy = 0 and limn→∞

√
n
∫
|fhn(y)−ϕβ(y)|dy = 0. However,

this still seems not so simple to verify.

Here is an explicit example where Assumption 2.1(iii) holds.

Example 2.3 (Normal inverse-Gaussian Lévy process). Let J be an NIG Lévy process such that L(Jt) =
NIG(η, 0, t, 0), where η > 0 may be unknown. The probability density fh and Lévy density gh of L(h−1Jh)

are given by

fh(y) =
eηh

π(1 + y2)
ηh

√
1 + y2K1

(
αh

√
1 + y2

)
,

gh(z) =
1

π|z|2
ηh|z|K1(ηh|z|),

respectively. It follows that L(h−1Jh) weakly tends to the standard Cauchy distribution, whose prob-

ability density and Lévy density are given by y 7→ π−1(1 + y2)−1 and z 7→ π−1|z|−2, respectively,

hence Assumption 2.1(i) follows. Assumption 2.1(ii) is obvious. For Assumption 2.1(iii), we note that

fh(y)− ϕ1(y) = ϕ1(y)uh(y), where

uh(y) := A(ηh
√
1 + y2)eηh + {(eηh − 1)/(ηh)}ηh

with A(ϵ) := ϵK1(ϵ)− 1. We deduce from [16, 9.6.8, 9.6.26, 9.7.2] that:

• K1(z) ∼
√
π/(2z)e−z as z → ∞;

• ∂A′(ϵ) = −ϵK0(ϵ) ∼ −ϵ log(1/ϵ) → 0 as ϵ → 0, hence supϵ>0 ϵ
−k|A(ϵ)| < ∞ for k ∈ (0, 1] by

L’Hopital’s Rule and the smoothness of the Bessel function on (0,∞).

Then it follows that |uh(y)| ≲ hk(1 + y2)k/2 + h ≲ hk(1 + |y|k) for any k ∈ (0, 1]. Since
√
nhkn ≲√

Tnh
k−1/2
n ≲ h

k−1/2
n (here (Tn) is presupposed to be bounded), the condition (2.7) follows on taking any

k ∈ (1/2, 1). □

2.2. Verification of Assumption 2.1(iii). We now discuss how to verify Assumption 2.1(iii) in terms

of ν(dz). For this purpose, we refer to the following lemma, which provides us with, under the symmetry

of ν, some easy conditions under which we can specify the rate of convergence in the sup-norm local limit

theorem.

Lemma 2.4. Assume the decomposition (2.3) with (2.4) and (2.5), and assume that there exists a constant

δ > 0 such that

(2.8) ḡ(z) = 1 +O(|z|δ), |z| → 0.
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Then there exits a constant aν > 0 such that 6

(2.9) ∥fh − ϕβ∥∞ ≲ haν

with the value aν being given as follows:

• if ν♭(R) <∞, aν = δ′/β for any δ′ ∈ (0, β) ∩ (0, δ];

• if ν♭(R) = ∞, aν = (δ′/β) ∧ (1− β1+/β) for any δ′ ∈ (0, β) ∩ (0, δ] and β1+ > β1, where β1 < β

denotes the Blumental-Getoor index of the Lévy measure ν♭.

See [32, Lemma 4.4(b)-(iv),(v)] for the proof of Lemma 2.4.

Lemma 2.5. Let Assumptions 2.1(i) and (ii) and (2.9) hold, and suppose that hn ≲ n−c for some c > 0.

Then Assumption 2.1(iii) hold with lim supn→∞
√
n
∫
|fhn(y)− ϕβ(y)|dy = 0 if

(2.10)
1

2c

(
1

β
+ 1

)
< aν .

Proof. Let κ > 0 be a constant and divide the domain of integration into {y; |y| ≤ nκ} and its comple-

ment, to deduce that ∆n :=
√
n
∫
|fh(y)− ϕβ(y)|dy ≲ n1/2+κ∥fh − ϕβ∥∞ +

√
n
∫
|y|>nκ(fh + ϕβ)(y)dy ≲

n1/2+κ−caν +
√
n
∫
|y|>nκ |y|−1−βdy ≲ n(1/2+κ−caν)∨(1/2−κβ). Hence, to conclude that ∆n → 0 it suffices

to pick κ such that both 1/2+ κ− caν < 0 and 1/2− κβ < 0 hold. Such a κ does exist under (2.10). □

In particular, if c = 1 and aν = δ′/β < 1 under the assumptions of Lemmas 2.4 and 2.5, then the

condition (2.10) reduces to
1

2
(1 + β) < δ′.

This condition entails β > 1, preferring a bigger δ > 0; no restriction on β arises if we can take, e.g.,

δ = 2 such as the case of ḡ(z) = exp(−cz2) for c > 0.

As a seemingly different way to verify Assumption 2.1(iii), we refer to the following inequality, which

states that the L1(dy)-norm estimate can be deduced from the sup-norm estimate, with a slight loss in

convergence rate.

Lemma 2.6. Let pn and p be probability densities on Rd, and r > 0 a number such that

sup
u>0

ur
∫
|y|>u

p(y)dy <∞.

Then we have ∫
|pn(y)− p(y)| dy = O

(
∥pn − p∥r/(r+d)

∞

)
, n→ ∞.

This lemma was given in [47], the proof being simple: for any A > 0 we have
∫
|pn(y)− p(y)| dy =

2
∫
(p− pn)+(y)dy ≤ 2{

∫
|x|≤A

(p− pn)+(y)dy +
∫
|x|>A

(p− pn)+(y)dy} ≲ Ad∥pn − p∥∞ +
∫
|y|>A

p(y)dy ≲
Ad∥pn − p∥∞ +A−r, hence optimizing the upper bound with respect to A leads to

∫
|pn(y)− p(y)| dy ≲

∥pn − p∥r/(r+d)
∞ .

It holds that supu u
β
∫
|y|>u

ϕβ(y)dy < ∞, hence if fhn and ϕβ fulfils (2.9) and if hn ≲ n−κ for κ > 0,

then we can apply Lemma 2.6 with r = β:

√
n

∫
|fhn(y)− ϕβ(y)|dy ≲

√
nhaνβ/(β+1)

n ≲ n1/2−aνκβ/(β+1).

Thus Assumption 2.1(iii) holds for aν > (β + 1)/(2βκ) with
√
n
∫
|fh(y) − ϕβ(y)|dy → 0; in particular,

this is the case if κ = 1, β > 1, and aν ≤ 1 can be arbitrarily close to 1.

Note that Lemma 2.6 becomes unworkable if d ≥ 2 were large because of the severely stringent

condition on the rate of ∥pn − p∥∞ → 0.

Remark 2.7. The criterion Lemma 2.6 is not sharp, as seen from Example 2.3: there, we can show

that supy∈R |fh(y)− ϕ1(y)| ≲ h, so that (2.9) holds with aν = 1, but then Lemma 2.6 only tells us that√
n
∫
|fhn(y)− ϕ1(y)|dy = O(1). □

6A seemingly related result is [28], which studied the rate of convergence in the locally stable-limit theorem for triangular
array of random variables.
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There seems to be no trivial inclusion relation between the criteria based on Lemmas 2.5 and 2.6.

2.3. Locally stable stochastic differential equation. Our objective is the SDE (1.1):

dXt = a(Xt, α)dt+ c(Xt−, γ)dJt.

We are concerned only with the coefficients smooth enough.

Assumption 2.8 (Regularity of the coefficients). (1) The functions a(·, α0) and c(·, γ0) are globally

Lipschitz and of class C2(R).
(2) a(x, ·) ∈ C3(Θα) and c(x, ·) ∈ C3(Θγ) for each x ∈ R.

(3) sup
θ∈Θ

{
max
0≤k≤3

max
0≤l≤2

( ∣∣∂kα∂lxa(x, α)∣∣+ ∣∣∂kγ∂lxc(x, γ)∣∣ )+ c−1(x, γ)

}
≲ 1 + |x|C .

The standard theory (e.g. [22, III §2c.]) ensures that the SDE admits a unique strong solution as a

functional of X0 and the Poisson random measure driving J .

Assumption 2.9 (Model identifiability). The random functions t 7→ (a(Xt, α), c(Xt, γ)) and t 7→
(a(Xt, α0), c(Xt, γ0)) on [0, T ] a.s. coincide if and only if θ = θ0.

3. Stable quasi-likelihood estimation

3.1. Heuristic for construction. To motivate our quasi-likelihood, we here present a formal heuristic

argument. In what follows we will abbreviate
∫
j
as

∫
j
. In view of the Euler approximation, we have

under Pθ

Xtj = Xtj−1 +

∫
j

a(Xs, α)ds+

∫
j

c(Xs−, γ)dJs

≈ Xtj−1 + aj−1(α)h+ cj−1(γ)∆jJ,

from which we may expect that

(3.1) ϵj(θ) = ϵn,j(θ) :=
∆jX − haj−1(α)

h1/βcj−1(γ)
≈ h−1/β∆jJ

in an appropriate sense. Then it follows from (2.1) that for each n the sequence {ϵj(θ)}j≤n under Pθ will

approximately form a Sβ-i.i.d. random variables.

Assume that the process X admits the time-homogeneous transition Lebesgue density under Pθ, say

ph(x, y; θ)dy = Pθ(Xh ∈ dy|X0 = x), and let Ej−1
θ denote the expectation operator under Pθ conditional

on Ftj−1 . Then, we proceed with the following twofold approximation of the conditional distribution

L(Xtj |Xtj−1) under Pθ:

ph(Xtj−1 , Xtj ; θ) =
1

2π

∫
exp(−iuXtj )E

j−1
θ {exp(iuXtj )}du

≈ 1

2π

∫
exp(−iuXtj )E

j−1
θ

[
exp

{
iu(Xtj−1 + aj−1(α)h+ cj−1(γ)∆jJ)

}]
du(3.2)

=
1

2π

∫
exp {−iu(∆jX − aj−1(α)h)}φh−1/βJh

(cj−1(γ)h
1/βu)du

=
1

cj−1(γ)h1/β
1

2π

∫
exp{−iuϵj(θ)}φh−1/βJh

(u)du

=
1

cj−1(γ)h1/β
fh (ϵj(θ))

≈ 1

cj−1(γ)h1/β
ϕβ (ϵj(θ)) ,(3.3)

where, concerning the two approximations, we note that:

• (3.2) becomes exact if and only if both a and c are constant (i.e. X is a Lévy process);

• (3.3), where the locally stable property comes into the picture, becomes exact if L(J1) = Sβ .

Since the genuine likelihood function equals θ 7→
∑n

j=1 log ph(Xtj−1 , Xtj ; θ), the last observation suggests

to estimate θ0 by a maximizer of the random function (ignoring the known factor “log(h−1/β)”)

(3.4) Hn(θ) :=
n∑

j=1

(
− log cj−1(γ) + log ϕβ (ϵj(θ))

)
,
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which is a.s. well-defined thanks to the positivity of ϕβ . We call this Hn the stable quasi-likelihood

function, and then define the stable quasi-maximum likelihood estimator (SQMLE) by any

(3.5) θ̂n = (α̂n, γ̂n) ∈ argmax
θ∈Θ

Hn(θ),

where Θ denotes the closure of Θ, hence there always exists at least one such θ̂n; obviously, the SQMLE

is the non-Gaussian-stable counterpart to the Gaussian quasi-likelihood.

Our contrast function involves, in addition to the activity index β, the computationally demanding

β-stable density ϕβ . In a subsequent versions, we will discuss about a possibility of how to handle the

case of unknown β and more tractable variants of Hn.

Remark 3.1. It may happen that the density fh is explicit for each h > 0 for some J not exactly

β-stable. Then we could sidestep the β-stable approximation (3.3), considering instead

ph(Xtj−1 , Xtj ; θ) ≈
1

cj−1(γ)h1/β
fh (ϵj(θ)) .

The normal-inverse Gaussian J (Example 2.3) is such an example: if L(J1) = NIG(α, 0, δ, 0), then fh
is the explicit density of the NIG(αh, 0, δ, 0)-distribution. Nevertheless and obviously, such an “exact

L(h−1/βJh)-case” consideration much diminishes the class of admissible J , and going in this direction

entails individual case studies. □

3.2. Asymptotics of SQMLE: main results. Building on what we have seen above, we now state

the asymptotic behavior of the SQMLE defined through (3.4) and (3.5). Recall that we are assuming

that β ∈ [1, 2) and that the terminal sampling time Tn ≡ T . For F-measurable random variables

µ = µ(ω) ∈ Rp and Σ = Σ(ω) ∈ Rp ⊗ Rp, we denote by MNp(µ,Σ) the p-dimensional mixed-normal

distribution corresponding to the characteristic function v 7→ E[exp{iµ[v] − (1/2)Σ[v, v]}]. That is to

say, when Y ∼ MNp(µ,Σ), Y is defined on an appropriate extension of the original probability space

(Ω,F ,P) and is equivalent in distribution to a random variable µ+Σ1/2Z for Z ∼ Np(0, Ip) independent

of F .

We let

gβ(y) :=
∂

∂y
log ϕβ(y) =

∂ϕβ
ϕβ

(y), kβ(y) := 1 + ygβ(y),

both being finite as gβ and kβ are bounded. Note that
∫
gβ(y)ϕβ(y)dy =

∫
kβ(y)ϕβ(y)dy = 0, and also

that
∫
gβ(y)fh(y)dy = 0 because of the symmetry of fh. Let further

(3.6) bβ,n(ν) :=
√
n

∫
kβ(z){fh(y)− ϕβ(y)}dy =

∫
kβ(z)fh(y)dy, bβ(ν) := lim

n→∞
bβ,n(ν).

We also write:

Cα(β) =

∫
g2β(y)ϕβ(y)dy, Cγ(β) =

∫
k2β(y)ϕβ(y)dy,

µT,γ(θ0;β) = − 1

T

∫ T

0

∂γc(Xt, γ0)

c(Xt, γ0)
dt,(3.7)

ΣT,α(θ0) =
1

T

∫ T

0

{∂αa(Xt, α0)}⊗2

c2(Xt, γ0)
dt,(3.8)

ΣT,γ(γ0) =
1

T

∫ T

0

{∂γc(Xt, γ0)}⊗2

c2(Xt, γ0)
dt.(3.9)

The next theorem shows the asymptotic mixed normality of the SMQLE, the main claim of this paper.

Theorem 3.2. Suppose that Assumptions 2.1, 2.8, and 2.9 hold. Then we have

(3.10)
(√

nh1−1/β
n (α̂n − α0),

√
n(γ̂n − γ0)

)
L−→MNp

(
mT (θ0;β), ΓT (θ0;β)

−1
)
,

where

mT (θ0;β) :=
(
0, {Cγ(β)ΣT,γ(γ0)}−1µT,γ(θ0;β)bβ(ν)

)
,

ΓT (θ0;β) := diag {Cα(β)ΣT,α(θ0), Cγ(β)ΣT,γ(γ0)} .
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We gave some sufficient conditions for bβ(ν) = 0 in Section 2.2. Unfortunately, we do not know how

we can evaluate bβ(ν) in a unified manner. Indeed, precise estimation of fh may generally require not

only the locally stable property but also the full information of the Lévy measure ν. It should be noted

that even when we have a full parametric form of ν, it may contain a parameter which can be consistently

estimated only when Tn → ∞; see [37] for several such examples.

According to the continuity of the random mapping θ 7→ (ΣT,α(θ),ΣT,γ(γ)), we can readily deduce by

applying the uniform law of large numbers presented in Lemma 4.4 that

µ̂T,γ,n := − 1

n

n∑
j=1

∂γcj−1(γ̂n)

cj−1(γ̂n)

p−→ µT,γ(θ0;β),

Σ̂T,α,n :=
1

n

n∑
j=1

{∂αaj−1(α̂n)}⊗2

c2j−1(γ̂n)

p−→ ΣT,α(θ0),

Σ̂T,γ,n :=
1

n

n∑
j=1

{∂γcj−1(γ̂n)}⊗2

c2j−1(γ̂n)

p−→ ΣT,γ(γ0).

It turns out that the quasi-score function (F-)stably converges in distribution, so that the Studentiza-

tion via the continuous-mapping theorem is straightforward, making the asymptotic distributional result

feasible:

Corollary 3.3. Under the assumptions of Theorem 3.2, we have

(3.11)
(
Γ̂
1/2
T,α,n

√
nh1−1/β

n (α̂n − α0), Γ̂
1/2
T,γ,n

{√
n(γ̂n − γ0)− m̂T,γ,n

}) L−→ Np(0, Ip),

where m̂T,γ,n :=
{
Cγ(β)Σ̂T,γ,n

}−1
µ̂T,γ,nbβ,n(ν), Γ̂T,α,n := Cα(β)Σ̂T,α,n and Γ̂T,γ,n := Cγ(β)Σ̂T,γ,n.

Especially if bβ(ν) = 0, then(
Γ̂
1/2
T,α,n

√
nh1−1/β

n (µ̂n − µ0), Γ̂
1/2
T,γ,n

√
n(σ̂n − σ0)

)
L−→ Np(0, Ip).

Again we emphasize that the SQMLE is consistent and asymptotically mixed normal for any fixed

terminal sampling time T , while, of course, finite-sample performances of the SQMLE depends on the

value T . We may deduce a large-time counterpart of Theorem 3.2 and Corollary 3.3 under the the

ergodicity, resulting in a asymptotic (never “mixed-”) normality with completely analogous form. The

details will be given elsewhere.

3.3. Remarks and discussion. Theorem 3.2 reveals several interesting phenomena, including some

essential difference between the Gaussian and non-Gaussian stable quasi-likelihood estimators. 7

(1) The asymptotic distribution of γ̂n (resp. α̂n) is normal if the mapping x 7→ ∂γc(x,γ0)
c(x,γ0)

(resp.

x 7→ ∂αa(x,α0)
c(x,γ0)

) is constant; in particular, this is the case if X is a Lévy process.

(2) The estimators α̂n and γ̂n are asymptotically orthogonal whereas not necessarily independent

due possible non-Gaussianity in the limit. The orthogonality is theoretically beneficial in view of

adaptive estimation (cf. [9] and [25]).

(3) Let bβ(ν) = 0 for simplicity, and consider the case of β ∈ (1, 2). We can rewrite (3.10) as

(3.12)
(
n1/β−1/2(α̂n − α0),

√
n(γ̂n − γ0)

)
L−→MNp

(
0, diag

(
T−2(1−1/β)Σ−1

T,α(θ0;β), Σ
−1
T,γ(γ0;β)

))
.

If fluctuation of X is virtually stable along time in the sense that both of ΣT,α(θ0;β) and

ΣT,γ(γ0;β) do not vary so much with the terminal sampling time T , then the asymptotic co-

variance matrix of α̂n will tend to get smaller (resp. larger) in magnitude for a larger (resp.

smaller) T . We emphasize that this feature with respect to T is non-asymptotic.

(4) Taking β = 2 in the factors Cα(β)ΣT,α(θ0) and Cγ(β)ΣT,γ(γ0) results in those of the diffusion

case [27], also [55]. In this respect, our locally stable approximation methodology formally gen-

eralizes the local-Gauss approximation. Since the latter one for the diffusion case is known to be

asymptotically efficient (see [13]), it is expected that the stable quasi-likelihood is asymptotically

efficient as well for general locally stable SDE; it is the case for some particular cases, see [8],

[18], and the references therein.

7We remark that some of the items below go for the ergodic case as well.
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(5) The locally Cauchy case, where β = 1 and Hn is fully explicit, may be of special interest:(√
n(α̂n − α0),

√
n(γ̂n − γ0)

)
L−→MNp

(
0, 2 diag

(
1

T

∫ T

0

{∂αa(Xt, α0)}⊗2

c(Xt, γ0)2
dt,

1

T

∫ T

0

{∂γc(Xt, γ0)}⊗2

c(Xt, γ0)2
dt

)−1)
.

This formally extends the i.i.d. model from the Cauchy population. The Cauchy quasi-likelihood

has been also investigated in the robust-regression literature; see e.g. [38] and [39] for a breakdown-

point result in some relevant models. It would be interesting to study their SDE-model counter-

parts.

(6) Table 1 summarizes the rates of convergence concerning the three quasi-likelihood functions when

the SDE is

(3.13) dXt = a(Xt, α)dt+ c(Xt−, γ)dZt,

for a driving Lévy process Z, where the coefficient (a, c) is correctly specified.

Quasi-likelihood Driving Lévy process Z Rates of convergence
α̂n γ̂n

(i) Gauss Wiener process
√
nhn

√
n Ref. [27]

(ii) Gauss Lévy process with jumps
√
nhn

√
nhn Ref. [35]

(iii) Non-Gaussian stable Locally β-stable (β < 2)
√
nh

1−1/β
n

√
n

Table 1. A comparison of the Gaussian and non-Gaussian stable quasi-likelihood func-
tions for the SDE (3.13), where the coefficient (a, c) is correctly specified.

We refer to [34] for a handy test statistic for distinguishing the cases (i) and (ii) in Table 1.

The statistics is constructed through partial sums of the self-normalized powered residuals and

possesses the desirable asymptotic properties: asymptotically distribution-free under the null

model with no jumps, and consistent against the presence of arbitrary jump part.

(7) Taking higher-order increments in the time-series literature is a simple classical device to remove

the trend effect. It will be also beneficial in high-frequency data models. We refer to [50] for some

asymptotics of the power variation statistics for a pure-jump Itô semimartingale, and also to [6]

for the multipower-variation statistics for a Brownian semi-stationary process. In the present

context, we may make use of the second-order increments

∆
(2)
j X := ∆jX −∆j−1X, j = 2, . . . , n,

in order to diminish the small-time trend effect, resulting in a broader admissible range of the

value of the activity index β, which we are assuming to be equal to or greater than one 8; in the

case β ∈ (0, 1), the naive Euler scheme spoils because small-time variation of X is governed by

that of the trend coefficient a(x, α). Further, by using (∆
(2)
j X)j we may effectively get rid of the

asymmetry of L(J1). Very roughly, since we have

h−1/β∆
(2)
j X = h−1/β

(∫
tj−1

a(Xs, α0)ds−
∫
tj−2

a(Xs, α0)ds

)
+ h−1/β

(∫
tj−1

c(Xs−, γ0)dJs −
∫
tj−2

c(Xs−, γ0)dJs

)
,

the drift-part fluctuation of h−1/β∆
(2)
j X is of order op(h

1−1/β), while the noise-part fluctuation

is of order Op(1); also, the principal part of the latter is cj−2(γ0)h
−1/β(∆j−1J −∆j−2J), which

has (after the localization if necessary; see Section 4.1) the Ftj−2 -conditional mean zero. The

resulting asymptotic behavior of the corresponding SQMLE will be almost the same as in the

8Another possibility is to use the trajectory-fitting type contrast function as in [31].
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case of first-order increments, the only price we have to pay being a (slightly) more complicated

forms of the asymptotic random covariance matrix.

(8) In case of β > 1, the following stepwise-estimation strategy may be used 9:

(a) First, we estimate γ via the SQMLE γ̂n with regarding a(x, α) ≡ 0;

(b) Second, we estimate α by the modified quasi-likelihood function α 7→ Hn(α, γ̂n).

The resulting asymptotic distribution of the two-step SMQLE would be the same. It is expected

that this strategy will enable us to handle the mixed-parameter-coefficient case, by which we

mean the SDE model having the parametric form slightly more general than (1.1):

dXt = a(Xt, α, γ)dt+ c(Xt−, γ)dJt.

This strategy is the non-Gaussian counterpart of (the first two steps of) the adaptive estimation

developed by [55] for diffusions. 10

(9) Sometimes it is possible to refine and/or modify the Euler-approximation in construction of the

SQMLE. It could be possible to follow the proof of the main claims with placing the Euler-type

residual ϵj(θ) by

ϵj(θ;β) :=
Xtj − µn

j−1(α)

h1/βσj−1(γ)
,

for some functions µn(x, α) and σn(x, γ) on R × Θα; here, the random functions µn
j−1(α) and

σn
j−1(γ) are roughly ofOp(1) and will serve as instantaneous location and scale ofXtj , respectively.

Then, we would look at the f -quasi-likelihood function

(3.14) Hn(θ;β) :=

n∑
j=1

log

{
1

σn
j−1(γ)

f (ϵj(θ;β))

}
.

Trivially, the naive Euler-type residual mentioned before corresponds to the choices µn(x, α) =

x + hna(x, α) and σn(x, γ) = c(x, γ), but adopting (3.14) allows us to encompass some formal

modifications:

• We can make a martingale in a directly when linear-in-state drift, such as µn(x, α) = e−αx

when a(x, α) = −αx.
• We may take σ(x, γ) ≡ 1 with regarding γ as a nuisance parameter, as was done for the

lease-squares type estimation in [31].

• As was mentioned in the previous item, we would take µn ≡ 0 in case of β > 1; in this case,

we may regard the trend coefficient as an infinite-dimensional nuisance parameter, and of

course even may set it to be non-Markovian type. For example, the point-delay SDE model

studied in [43] and [49] would be covered.

Although the generic f enables us to take quasi-likelihoods other than ϕβ into account, we have

to be careful about how asymptotic behaviors get changed accordingly.

(10) Because of the bounded-domain asymptotics, we may deal with without essential change the

following more general setting: we observe a possibly non-Markovian sample {(Xtj , Ytj )}nj=0

from the (Ft)-adapted process described by the SDE

(3.15) dXt = a(Xt, Yt;α)dt+ c(Xt−, Yt−; γ)dJt,

where Y = (Y k) is a multivariate covariate process. If, for example, Y is driven by J plus

another Lévy process J ′ independent of J , then the martingale-representation argument used

in Sections 4.2 and 4.4.1 may remain valid with trivial modifications (even when J ′ has non-

null Gaussian part, of course). The presence of the process Y makes it possible to incorporate

both exogenous- and endogenous-random effect. Then we may obtain a new class of non-ergodic

stochastic-regression models, for which it seems worth studying associated covariate-process se-

lection problems.

(11) We may consider even more general class than (3.15): the driving noise may be no longer a Lévy

process as long as the locally stable structure stays valid. It can be vary as n increases, say

9It seems to be the case also for β = 1, when making use of the second-order increments.
10The stepwise estimation for a class of general Lévy driven SDE can be done based on the Gaussian quasi-likelihood

function: Masuda, H. and Uehara, Y. (2016), On stepwise estimation of Lévy driven stochastic differential equation. In
preparation.
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Jn, with a slight formal extension of the underlying statistical experiments which varies along n,

denoted by (Ωn,An, {Pn
θ ; θ ∈ Θ}). Then, the locally stable property is read as the convergence

L(h−1/β
n Jn

hn
) ⇒ Sβ(1), n→ ∞.

For example, this allows us to consider Jn
t = ϵnwt + Jt with h

−1/β
n ϵn

√
hn → 0. Even more

generally, Jn may be no longer a Lévy process. For example, it may be a semimartingale, the

local characteristic of h
−1/β
n Jn being possibly (X,Y )-dependent, say

(Bn(Xt−, Yt−), C
n(Xt−, Yt−), ν

n(Xt−, Yt−; dz)) ,

where, in order to derive the Sβ-distribution in small time, we should have both

h−1/β
n |Bn(x·, y·)|+ h−2/β

n |Cn(x·, y·)| → 0,

νn(x·, y·; dz) → cβ |z|−(1+β)dz.

in an appropriate sense. For example: many types of point-processes noise with randomly per-

turbed intensity can be considered; also, one can consider a randomly perturbed “Ornstein-

Uhlenbeck” type processes given by the SDE dXt = {−αXt+ ϵ
α
nµ(Xt−)}dt+{γ+ ϵγnσ(Xt−)}dJt,

where J is a locally β-stable Lévy process and where |ϵαn| ∨ |ϵγn| → 0 as n → ∞ at a speed fast

enough, so that we can suitably approximate the statistical experiment by the “skeleton” model

dXt = −αXtdt+ γdJt.

(12) We here focus on cases of correctly specified coefficient. If we remove this constraint, the asymp-

totic result might drastically get changed; this issue of misspecified coefficients will be studied

elsewhere. See [54] for the case of diffusion: if the model for diffusion coefficient is truly misspec-

ified in their sense, the rate of convergence of the GQMLE is no longer
√
n but the slower

√
nhn,

thereby implying that the usual infill asymptotics for estimating diffusion coefficient over a fixed

time domain breaks down.

(13) The uniform tail-probability estimate of the form

sup
n

P
{ ∣∣∣(√nh1−1/β

n (α̂n − α0),
√
n(γ̂n − γ0)

)∣∣∣ > r

}
≤ Cδ(r), r > 0,

for some sequence δ(r) → 0 as r → ∞ is a very important tool for various statistical analyses

including prediction, higher-order statistics, and model assessment such as AIC-type (convergence

of moments) and BIC-type (expansion of the marginal quasi-likelihood). In this respect, analysis

of the statistical random fields associated with the stable quasi-likelihood is one of important

future works. We refer to [56] for the detailed Gaussian quasi-likelihood analysis for volatility

estimation of a class of continuous stochastic-regression models; see also [57] and [59] for related

previous studies.

4. Proofs

Throughout this section, Assumptions 2.1, 2.8, and 2.9 are in force.

4.1. Localization: elimination of big jumps. Most of the key moment estimates involved in the

proofs, such as Burkholder’s inequality, fail to hold if L(J1) is heavy-tailed. We begin with a localization

of the underlying probability space by eliminating possible big jumps of J , enabling us to proceed as

if E(|J1|q) < ∞ for every q > 0. This is a simple yet very powerful technique to sidestep a series

of probability and/or moment estimates when dealing with cases of fixed T . The point here is that,

since our main results are concerned with the weak properties we may conveniently focus on a subset

ΩK,T (∈ F) ⊂ Ω if we can control the probability P(ΩK,T ) to be arbitrarily close to 1. This “localization”

procedure is nowadays standard in the context of limit theory for (multi)power-variation statistics, and

has been considered for quite general semimartingale models. We refer the interested reader to [21,

Section 4.4.1].

We here proceed without resorting to the general localization result. Recall the Lévy-Khintchine

representation (1.2). Let µ(dt, dz) denote the Poisson random measure having the intensity measure

dt⊗ ν(dz), and µ̃(dt, dz) its compensated version. Fix any K > 0. Then,
∫
1<|z|≤K

zν(dz) = 0 since ν is

assumed to be symmetric, and the Lévy-Itô decomposition of J takes the form

Jt =

∫
|z|≤K

zµ̃(ds, dz) +

∫
|z|>K

zµ(ds, dz) =:MK
t +AK

t ,
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where MK is a purely-discontinuous martingale and AK the compound-Poisson process independent of

MK ; that is to say, the symmetry assumption of ν makes the parametric form of the drift coefficient

unaffected by elimination of big jumps of J . Since supt |∆MK
t | ≤ K, we have E(|MK

t |q) < ∞ for any

t ∈ R+ and q > 0; more precisely, if we have K = inf{a > 0; supp(ν) ⊂ {z; |z| ≤ a}}, then by [46,

Thm.26.1] we have E{exp(r|Jt| log |Jt|)} <∞ for each t > 0 and r ∈ (0,K−1). 11 Further, the event

ΩK,T :=
{
ω ∈ Ω; µ

(
(0, T ], {z; |z| > K}

)
= 0

}
∩ {ω ∈ Ω; |X0| ≤ K}

has the probability exp{−T
∫
|z|>K

ν(dz)}, which gets arbitrarily close to 1 with K large enough. Let

(XK
t )t∈[0,T ] be given by a solution process to the SDE

dXK = a(XK
t , α0)dt+ c(XK

t−, γ0)dM
K
t ,

which obviously admits a strong solution as a functional of (X0,M
K). We have Xt(ω) = XK

t (ω) for

t ∈ [0, T ] and ω ∈ ΩK,T .

To state the localization lemma, we need further notation. Let ζn : Θ → R be FX
T := σ(Xt : t ≤ T )-

measurable random functions. For clarity we write ζn(θ;X), specifying the dependence on X. We

introduce the extended probability space of the form(
Ω̃, F̃ , P̃(dω, dω′)

)
=

(
Ω× Ω′,F ⊗ F ′,P(dω)Q(ω, dω′)

)
with Q denoting a transition probability from (Ω,F) to (Ω′,F ′); see [21, Section 2.1.4] for details. Let

ξn(X) ∈ Rk be FX
T -measurable random variables defined on (Ω,F), and ξ0(X, η) ∈ Rk a random variable

defined on (Ω̃, F̃ , P̃) where η is a random element independent of F : more specifically, ξ0(X, η)(ω, ω
′) =

ξ0(X(ω), η(ω′)).

Finally, let us recall that, given random variables Gn and G∞ taking their values in a some metric

space E, where the latter is defined on (Ω̃, F̃ , P̃), we say that Gn converges stably in law to G∞, denoted

by Gn
Ls−−→ G∞, if E{f(Gn)U} → Ẽ{f(G∞)U} for every bounded F-measurable random variable U ∈ R

and every continuous function f : E → R; see [22, Chapter VI] for details. This mode of convergence

entails that (Gn,Hn)
L−→ (G∞,H∞) for every random variables Hn and H∞ such that Hn

p−→ H∞. We

refer to [20], [21], [22], and also [17] for comprehensive accounts of the stable convergence.

Lemma 4.1. With the aforementioned setting, we have the following.

(i) If supθ |ζn(θ;XK)| p−→ 0 for every K > 0 large enough, then supθ |ζn(θ;X)| p−→ 0.

(ii) If ξn(X
K)

Ls−−→ ξ0(X
K , η) for every K > 0 large enough, then ξn(X)

L−→ ξ0(X, η).

Proof. (i) Suppose that supθ |ζn(θ;XK)| p−→ 0 for any K > 0. Given any ϵ, ϵ′ > 0 we may take a K > 0

so large that P(Ωc
K,T ) < ϵ′, so that lim supn P{supθ |ζn(θ;X)| > ϵ} ≤ ϵ′ + lim supn P{supθ |ζn(θ;XK)| >

ϵ} ≤ ϵ′ and the convergence supθ |ζn(θ;X)| p−→ 0 follows.

(ii) Supposing that ξn(X
K)

Ls−−→ ξ0(X
K , η) for every K > 0, we want to deduce that ξn(X)

L−→ ξ0(X, η).

Pick any ϵ > 0 and continuous bounded function f , and then take sufficiently large K > 0 so that

P(Ωc
K,T ) < ϵ/(2∥f∥∞). The term |E{f(ξn(X))} − Ẽ{f(ξ0(X, η))}| is bounded by∣∣E{f(ξn(X)); ΩK,T } − Ẽ{f(ξ0(X, η)); ΩK,T }

∣∣+ ∣∣E{f(ξn(X)); Ωc
K,T }

∣∣+ ∣∣Ẽ{f(ξ0(X, η)); Ωc
K,T }

∣∣
≤

∣∣E{f(ξn(XK)); ΩK,T } − Ẽ{f(ξ0(XK , η)); ΩK,T }
∣∣+ 2∥f∥∞P(ΩK,T ),

hence lim supn |E{f(ξn(X))} − Ẽ{f(ξ0(X, η))}| ≤ ϵ as required. □

Based on Lemma 4.1, we may and do suppose that

(4.1) ∃K > 0, P (∀t ∈ [0, T ], |∆Jt| ≤ K) = 1

in what follows. For notational convenience, we keep using the notation X instead of XK .

11The moment estimate for Lévy processes in small time is interesting in its own right. Several authors have studied

asymptotic behavior of the moment E{f(Jh)} as h→ 0 for a suitable function f , for which we refer to the following recent
papers as well as the references therein for recent developments on this subject: Deng, C. S. and Schilling, R. L. On shift
Harnack inequalities for subordinate semigroups and moment estimates for Lévy processes. Stochastic Process. Appl., to
appear; Kühn, F. (2015), Existence and estimates of moments for Lévy-type processes. arXiv:1507.07907.
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Following the argument [21, Section 2.1.5] together with Gronwall’s inequality under the global Lips-

chitz condition of (a(·, α0), c(·, γ0)), we see that for any q ≥ 2 and s ∈ [0, T ],

(4.2) E
(
sup
t≤T

|Xt|q
)

≤ C(T,K, q), sup
t∈[s,s+h]∩[0,T ]

E(|Xt −Xs|q|Fs) ≲ h(1 + |Xs|C).

In particular, lim supδ→0 sup|t−s|≤δ E (|Xt −Xs|q) = 0.

4.2. Preliminary asymptotics. Throughout this section, we focus on the random function

Un(θ) :=
n∑

j=1

πj−1(θ)η(ϵj(θ)),

where π : R×Θ → Rk ⊗Rm and η : R → Rm are measurable functions; this form of Un(θ) will appear in

common in the proofs of the consistency and asymptotic mixed normality of the SQMLE, and the results

in this section will be repeatedly used later.

We abbreviate E(·|Ftj−1) as Ej−1(·). Write Un(θ) as the sum of

U1,n(θ) :=
n∑

j=1

πj−1(θ)
(
η(ϵj(θ))− Ej−1{η(ϵj(θ))}

)
,

U2,n(θ) :=

n∑
j=1

πj−1(θ)Ej−1{η(ϵj(θ))}.

Given a doubly indexed random function Fnj(θ) on Θ and a positive sequence (an) we write:

Fnj(θ) =



o∗p(an) if sup
j≤n

sup
θ

|Fnj(θ)| = op(an);

O∗
p(an) if sup

j≤n
sup
θ

|Fnj(θ)| = Op(an);

O∗
Lq (an) if sup

n
sup
j≤n

E
(
sup
θ

|a−1
n Fnj(θ)|q

)
<∞.

4.2.1. Uniform estimate of the martingale part. We begin with the martingale part U1,n.

Lemma 4.2. Suppose that:

(i) π ∈ C1(R×Θ) and supθ (|π(x, θ)|+ |∂θπ(x, θ)|) ≲ 1 + |x|C for every x ∈ R;
(ii) η ∈ C1(R) and |η(y)|+ |y||∂η(y)| ≲ 1 + log(1 + |y|).

Then we have U1,n(θ) = O∗
Lq (

√
n) for every q > 0, hence in particular U1,n(θ) = O∗

p(
√
n).

Proof. Since we are assuming that the parameter space Θ is a bounded convex domain, the Sobolev in-

equality [1, p.415] is in force: for each q > p, we have E
(
supθ |n−1/2U1,n(θ)|q

)
≲ supθ E

(
|n−1/2U1,n(θ)|q

)
+

supθ E
(
|n−1/2∂θU1,n(θ)|q

)
. To achieve the proof, it therefore suffices to show that both {n−1/2U1,n(θ)}

and {n−1/2∂θU1,n(θ)} are Lq-bounded for each θ and q > 0. We fix any q > 0 and θ in the rest of this

proof.

Put χj(θ) = πj−1(θ)
(
η(ϵj(θ))− Ej−1{η(ϵj(θ))}

)
, so that U1,n(θ) =

∑n
j=1 χj(θ). Under the present

regularity conditions we may pass the differentiation χj with respect to θ under the operator Ej−1:

∂θχj(θ) = ∂θπj−1(θ)
(
η(ϵj(θ))− Ej−1{η(ϵj(θ))}

)
+ πj−1(θ)

(
∂η(ϵj(θ))∂θϵj(θ)− Ej−1{∂η(ϵj(θ))∂θϵj(θ)}

)
.(4.3)

For each n the sequences {χj(θ)}j and {∂θχj(θ)}j form a martingale difference array with respect

to (Ftj ), hence, in view of Burkholder’s inequality for martingale difference arrays, the required Lq-

boundedness of {n−1/2U1,n(θ)} and {n−1/2∂θU1,n(θ)} follows on showing that supj≤n E(|χj(θ)|q) ≲ 1

and supj≤n E(|∂θχj(θ)|q) ≲ 1.

Observe that for β ≥ 1,

|ϵj(θ)|r =
∣∣∣h−1/βc−1

j−1(γ){∆jX − haj−1(α)}
∣∣∣r

≲ (1 + |Xtj−1 |C)
{
|h−1/β∆jX|r + hr

′(1−1/β)(1 + |Xtj−1 |C)
}

≲ (1 + |Xtj−1 |C)
(
|h−1/β∆jX|r + 1

)
.(4.4)
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Pick an r ∈ (0, β). Under the local β-stable property L(h−1/βJh) ⇒ Sβ the family (|h−1/βJh|r)h∈(0,1] for

each r ∈ (0, β) is uniformly integrable, so that suph∈(0,1] E(|h−1/βJh|r) < ∞. Then it follows from (4.2)

and the last estimate combined with the linear growth property of a(·, α0), Burkholder’s inequality for

the stochastic integral with respect to J , and the global Lipschitz property of c(·, γ0) that

Ej−1
(
|h−1/β∆jX|r

)
≲ hr(1−1/β)

(
1

h

∫
j

Ej−1{|a(Xs, α0)|2}ds
)r/2

+ h−r/βEj−1

(∣∣∣∣ ∫
j

(c(Xs, γ0)− cj−1(γ0))dJs

∣∣∣∣r)
+ (1 + |Xtj−1 |C)E(|h−1/βJh|r)

≲ (1 + hr(1−1/β))(1 + |Xtj−1 |C) + h−r/β

(∫
j

Ej−1(|Xs −Xtj−1 |2)ds
)r/2

≲ (1 + hr(1−1/β))(1 + |Xtj−1 |C) + h−r/β
{
h2(1 + |Xtj−1 |C)

}r/2

≲ 1 + |Xtj−1 |C .(4.5)

Using (4.4) and (4.5) together with the disintegration, we arrive at the estimate E{(1+|Xtj−1 |C)|ϵj(θ)|r} ≲
1+supt≤T E(|Xt|C) ≲ 1 valid for r ∈ (0, β). Now it is easy to deduce the estimate supj≤n E(|χj(θ)|q) ≲ 1.

Turning to the proof of supj≤n E(|∂θχj(θ)|q) ≲ 1, we note that ∂αϵj(θ) = −h1−1/β ∂αaj−1(α)
cj−1(γ)

and

∂γϵj(θ) = −∂γcj−1(γ)
cj−1(γ)

ϵj(θ). By (4.3) that the components of ∂θχj(θ) consists of the terms

π
(1)
j−1(θ)

(
η(ϵj(θ))− Ej−1{η(ϵj(θ))}

)
,

π
(2)
j−1(θ)

(
∂η(ϵj(θ))− Ej−1{∂η(ϵj(θ))}

)
,

π
(3)
j−1(θ)

(
ϵj(θ)∂η(ϵj(θ))− Ej−1{ϵj(θ)∂η(ϵj(θ))}

)
for some π(i)(x, θ), i = 1, 2, 3, all satisfying the conditions imposed on π(x, θ). Also taking the conditions

on η into account, we can exactly follow the previous proof to deduce the estimate supj≤n E(|∂θχj(θ)|q) ≲
1. The proof is complete. □

Under the assumptions of Lemma 4.2 we have

(4.6)
1

nh1−1/β
U1,n(θ) = O∗

p

(
(
√
nh1−1/β)−1

)
= o∗p(1).

4.2.2. Uniform moment-order estimate of the predictable part. Next we turn to the predictable (compen-

sator) part U2,n. Let us introduce the notation:

δ′j(γ) =
cj−1(γ0)

cj−1(γ)
h−1/β∆jJ, b(x, θ) = c−1(x, γ){a(x, α0)− a(x, α)},

a∆j−1(s) = a(Xs, α0)− aj−1(α0), c∆j−1(s) = c(Xs, α0)− cj−1(α0),

rj(γ) =
h−1/β

cj−1(γ)

∫
j

a∆j−1(s)ds+
h−1/β

cj−1(γ)

∫
j

c∆j−1(s)dJs,

so that

ϵj(θ) = δ′j(γ) + h1−1/βbj−1(θ) + rj(γ).

By the Taylor expansion we can write

(4.7) U2,n(θ) = U0
2,n(θ) + U ′

2,n(θ) + U ′′
2,n(θ),

where, with rj(θ; η) :=
∫ 1

0
∂η(δ′j(γ) + h1−1/βbj−1(θ) + srj(γ))ds and π′(x, θ) := π(x, θ)c−1(x, γ),

U0
2,n(θ) =

n∑
j=1

πj−1(θ)Ej−1
{
η
(
δ′j(γ) + h1−1/βbj−1(θ)

)}
,

U ′
2,n(θ) = h−1/β

n∑
j=1

π′
j−1(θ)Ej−1

(
rj(θ; η)

∫
j

a∆j−1(s)ds

)
,
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U ′′
2,n(θ) = h−1/β

n∑
j=1

π′
j−1(θ)Ej−1

(
rj(θ; η)

∫
j

c∆j−1(s−)dJs

)
.

One of the key ingredients in the proofs of the main results is a uniform law of large numbers for

(nh1−1/β)−1U2,n(θ); Lemma 4.3 below reveals that the terms U ′
2,n(θ) and U

′′
2,n(θ) have no contribution.

For later reference, let us state Itô’s formula for t > s:

ψ(Xt) = ψ(Xs) +

∫ t

s

∂ψ(Xu−)dXu

+

∫ t

s

∫
{ψ(Xu− + c(Xu−, γ0)z)− ψ(Xu−)− ∂ψ(Xu−)c(Xu−, γ0)z}µ(du, dz),(4.8)

which is valid for any Cβ-function 12 ψ; see [21, Theorems 3.2.1b) and 3.2.2a)] for details. Let A denote

the (formal) infinitesimal generator of X given by

Aψ(x) = ∂ψ(x)a(x, α0) +

∫
{ψ(x+ c(x, γ0)z)− ψ(x)− ∂ψ(x)c(x, γ0)z} ν(dz),

where the second term in the right-hand side is well-defined. It follows from (4.8) that

(4.9) ψ(Xt) = ψ(Xs) +

∫ t

s

Aψ(Xu)du+

∫ t

s

∫
{ψ(Xu− + c(Xu−, γ0)z)− ψ(Xu−)} µ̃(du, dz).

Obviously, we have |Aψ(x)| ≲ 1 + |x|C for ψ such that the derivatives ∂kψ for k ∈ {0, 1, 2} exist and are

bounded by a polynomial.

Lemma 4.3. Suppose that:

(i) π ∈ C1(R×Θ) and supθ{|π(x, θ)|+ |∂θπ(x, θ)|} ≲ 1 + |x|C for every x ∈ R;
(ii) η ∈ C1(R) with bounded first derivative.

Then we have U ′
2,n(θ) = O∗

Lq (nh2−1/β) and U ′′
2,n(θ) = O∗

Lq (nh2−1/β) for every q > 0. In particular, if

β > 2/3 we have both U ′
2,n(θ) = o∗p(

√
n) and U ′′

2,n(θ) = o∗p(
√
n).

Proof. We begin with U ′
2,n(θ). Applying (4.9) with ψ(x) = a(x, α0) and then taking the conditional

expectation, we get ∣∣∣∣Ej−1

(∫
j

a∆j−1(s)ds

)∣∣∣∣ = ∣∣∣∣ ∫
j

Ej−1{a∆j−1(s)}ds
∣∣∣∣

≤
∫
j

∫ s

tj−1

Ej−1 {|Aa(Xu, α0)|} duds

≲
∫
j

∫ s

tj−1

{
1 + Ej−1(|Xu|C)

}
duds

≲
∫
j

∫ s

tj−1

(1 + |Xtj−1 |C)duds = O∗
Lq (h2).(4.10)

Write mj(θ; η) = rj(θ; η) − Ej−1{rj(θ; η)} and ã∆j−1(s) = a∆j−1(s) − Ej−1{a∆j−1(s)}. Then, using (4.10)

and noting that rj(θ; η) is essentially bounded, we get

U ′
2,n(θ) = h−1/β

n∑
j=1

π′
j−1(θ)Ej−1

(
mj(θ; η)

∫
j

ã∆j−1(s)ds

)
+O∗

Lq (nh2−1/β)

= h−1/β
n∑

j=1

π′
j−1(θ)

∫
j

Ej−1
(
mj(θ; η)ã

∆
j−1(s)

)
ds+O∗

Lq (nh2−1/β).(4.11)

In view of the expression (4.11) and Jensen’s inequality, the claim U ′
2,n(θ) = O∗

Lq (nh2−1/β) follows from

(4.12)
1

h
Ej−1

{
mj(θ; η)ã

∆
j−1(s)

}
= O∗

Lq (1), s ∈ [tj−1, tj ].

By (4.9) we may write

(4.13) ã∆j−1(s) =

∫ s

tj−1

f(Xtj−1 , Xu)du+

∫ s

tj−1

∫
g(Xu−, z)µ̃(du, dz),

12In case of β ∈ (1, 2), this means that ψ is C1 and the derivative ∂ψ is locally Hölder continuous with index β − [β].
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where Ej−1{f(Xtj−1 , Xu)} = 0 with f(x, x′) being at most polynomial-growth in (x, x′), and where

g(x, z) := a(x + zc(x, γ0), α0) − a(x, α0); by the regularity conditions on a(x, α0), we have |g(x, z)| ≲
|z|(1 + |z|C)(1 + |x|C). Hence, (4.12) follows upon showing that

(4.14)
1

h
Ej−1

(
mj(θ; η)

∫ s

tj−1

∫
g(Xu−, z)µ̃(du, dz)

)
= O∗

Lq (1).

Let Hj,t(θ; η) := E {mj(θ; η)| Ft} for t ∈ [tj−1, tj ]; then we have Hj,tj (θ; η) = mj(θ; η). Since Ft =

σ(X0) ∨ σ(Js; s ≤ t), invoking [41, Theorem I.32] we see that {Hj,t(θ; η),Ftj−1 ∨ σ(Jt); t ∈ [tj−1, tj ]} is

a (essentially bounded) martingale. According to the martingale representation theorem [22, Theorem

III.4.34], the process Hj,t(θ) can be represented as a stochastic integral of the from

(4.15) Hj,t(θ; η) =

∫ t

tj−1

∫
ξj(s, z; θ)µ̃(ds, dz), t ∈ [tj−1, tj ],

with a bounded predictable process s 7→ ξj(s, z; θ) such that
∫
j

∫
|ξj(s, z; θ)|2ν(dz)ds ≲ 1. Then, sub-

stituting the last expressions into (4.14), using the martingale property of the stochastic integrals (take

the conditioning with respect to Fs inside the sign “Ej−1”), and then applying the integration-by-parts

formula, we see that the left-hand side of (4.14) equals

1

h
Ej−1

(∫ s

tj−1

∫
ξj(u, z; θ)g(Xu−, z)ν(dz)du

)
.

By Jensen and Cauchy-Schwarz inequalities and the upper bounded of |g(x, z)| mentioned before, we can

bound the qth-absolute moment of the last quantity as follows:

E
{
sup
θ

∣∣∣∣ 1hEj−1

(∫ s

tj−1

∫
ξj(u, z; θ)g(Xu−, z)ν(dz)du

)∣∣∣∣q}
≲ 1

h

∫ s

tj−1

E
{
sup
θ

Ej−1

(∣∣∣∣ ∫ ξj(u, z; θ)g(Xu−, z)ν(dz)

∣∣∣∣)q}
du

≲ 1

h

∫ s

tj−1

E
(
1 + |Xu|C

)
du ≲ 1.

Thus we obtain (4.14), concluding that U ′
2,n(θ) = O∗

Lq (nh2−1/β).

Next we consider U ′′
2,n(θ). Using the martingale representation (4.11) again,

U ′′
2,n(θ) = h−1/β

n∑
j=1

π′
j−1(θ)Ej−1

(
mj(θ; η)

∫
j

c∆j−1(s−)dJs

)

+ h−1/β
n∑

j=1

π′
j−1(θ)Ej−1{rj(θ; η)}Ej−1

(∫
j

c∆j−1(s−)dJs

)

= h−1/β
n∑

j=1

π′
j−1(θ)Ej−1

(
∆jHj(θ; η)

∫
j

c∆j−1(s−)dJs

)

= h−1/β
n∑

j=1

π′
j−1(θ)Ej−1

(∫
j

∫
ξj(s, z; θ)µ̃(ds, dz)

∫
j

∫
c∆j−1(s−)zµ̃(ds, dz)

)

= h−1/β
n∑

j=1

π′
j−1(θ)Ej−1

(∫
j

∫
ξj(s, z; θ)zc

∆
j−1(s)ν(dz)ds

)
.(4.16)

As in the case of a∆j−1 we have |Ej−1{c∆j−1(s)}| ≤
∫ s

tj−1
Ej−1{|Ac(Xu, γ0)|}du = O∗

Lq (h).

The process Ξ̃j,s(θ) :=
∫
ξj(s, z; θ)zν(dz) − Ej−1{

∫
ξj(s, z; θ)zν(dz)} for s ∈ [tj−1, tj ] satisfies that

|Ξ̃j,s(θ)|2 ≤
∫
|z|2ν(dz)

∫
|ξj(s, z; θ)|2ν(dz) ≲ 1. By (4.16), we then have

U ′′
2,n(θ) = h−1/β

n∑
j=1

π′
j−1(θ)

∫
j

Ej−1
(
Ξ̃j,s(θ)c̃

∆
j−1(s)

)
ds+O∗

Lq (nh2−1/β),(4.17)

with c̃∆j−1(s) := c∆j−1(s) − Ej−1{c∆j−1(s)}; trivially, c̃∆j−1(s) admits a similar representation to (4.13).

Now we make a further application of the representation theorem for (4.17). For each j, the pro-

cesses M ′j
u (θ) := Ej−1{Ξj

s(θ)|Fu} and M ′′j
u := Ej−1{c̃∆j−1(s)|Fu} for u ∈ [tj−1, s] are martingales

with respect to the filtration {Ftj−1 ∨ σ(Ju) : u ∈ [tj−1, s]}. Hence there correspond predictable
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processes m′j
u (z; θ) and m′′j

u (z) bounded for each z, such that M ′j
s (θ) =

∫ s

tj−1

∫
m′j

u (z; θ)µ̃(du, dz) and

M ′′j
s =

∫ s

tj−1

∫
m′′j

u (z)µ̃(du, dz). Thus, applying the integration by parts formula as before we can con-

tinue (4.17) as follows:

U ′′
2,n(θ) = h−1/β

n∑
j=1

π′
j−1(θ)

∫
j

∫ s

tj−1

Ej−1

(∫
m′j

u (z; θ)m
′′j
u (z)ν(dz)

)
duds+O∗

Lq (nh2−1/β).

We see that the first term in the right-hand side is O∗
Lq (nh2−1/β), hence so is U ′′

2,n(θ).

Since
√
nh2−1/β ≲ h3/2−1/β , the last part of the lemma is trivial. The proof is complete. □

4.2.3. Uniform law of large numbers. Building on the above arguments, we now look at uniform asymp-

totic behavior of Un(θ). To this end we first note the following basic law of large numbers:

Lemma 4.4. For any measurable function f : R × Θ → R such that supθ (|f(x, θ)|+ |∂θf(x, θ)|) ≲
1 + |x|C , we have

sup
θ

sup
t≤T

∣∣∣∣ 1n
[nt/T ]∑
j=1

f(Xtj−1 , θ)−
1

T

∫ t

0

f(Xs, θ)ds

∣∣∣∣ p−→ 0.

Proof. The target quantity can be bounded by

sup
t≤T

1

n

[nt/T ]∑
j=1

1

h

∫
j

sup
θ

|f(Xs, θ)− fj−1(θ)|ds+
h

T
sup
θ

sup
t≤T

|f(Xt, θ)|

≲ 1

n

n∑
j=1

1

h

∫
j

(1 + |Xtj−1
|C + |Xs|C)|Xs −Xtj−1

|ds+ h

T

(
1 + sup

t≤T
|Xt|C

)
.

By (4.2) the expectation of the right-most side is o(1), hence the claim follows. □

Proposition 4.5. Assume that the conditions (i) and (ii) in Lemma 4.2 hold.

(1) For β = 1, we have

1

n
Un(θ) =

1

T

∫ T

0

π(Xt, θ)

∫
η

(
c(Xt, γ0)

c(Xt, γ)
z + b(Xt, θ)

)
ϕ1(z)dzdt+ o∗p(1).

(2) For β ∈ (1, 2), we have

1

n
Un(θ) =

1

T

∫ T

0

π(Xt, θ)η

(
c(Xt, γ0)

c(Xt, γ)
z

)
ϕβ(dz)dzdt+ o∗p(1).

(3) For β ∈ (1, 2), if further η is odd, then we have

1

nh1−1/β
Un(θ) = O∗

p(1).

Proof. Let

U
0

2,n(θ) :=
1

nh1−1/β
U0
2,n(θ) =

1

n

n∑
j=1

πj−1(θ)
1

h1−1/β
Ej−1

{
η
(
δ′j(γ) + h1−1/βbj−1(θ)

)}
.

(1) Write U
0

2,n(θ) as the sum of

1

n

n∑
j=1

f1j−1(θ) :=
1

n

n∑
j=1

πj−1(θ)

∫
η

(
cj−1(γ0)

cj−1(γ)
z + bj−1(θ)

)
ϕ1(z)dz,

1

n

n∑
j=1

f2j−1(θ) :=
1

n

n∑
j=1

πj−1(θ)

∫
η

(
cj−1(γ0)

cj−1(γ)
z + bj−1(θ)

)
{fh(z)− ϕ1(z)}dz.

Pick any κ ∈ (0, 1) small enough to make (2.6) valid, and observe that |η(y)| ≲ 1 + |y|κ. Then,

(4.18) sup
θ

∣∣∣∣η(cj−1(γ0)

cj−1(γ)
z + h1−1/βbj−1(θ)

)∣∣∣∣ ≲ (1 + |Xtj−1
|C)(1 + |z|κ).
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Hence we have the bounds: |f1j−1(θ)| ≲ (1 + |Xtj−1 |C)
∫
(1 + |z|κ)ϕ1(y)dy ≲ 1 + |Xtj−1 |C and |f2j−1(θ)| ≲

(1 + |Xtj−1 |C)
∫
(1 + |z|κ)|fh(y)− ϕ1(y)|dy = o∗p(1); in particular,

1

n

n∑
j=1

f2j−1(θ) = o∗p(1).

Likewise, noting that the same upper bound as in (4.18) is available for the function y 7→ y∂η(y), we see

that ∂θf
1
j−1(θ) can by bounded by a sum of constant multiples of the terms 1 + |Xtj−1 |C (coming from

the term involving ∂θπj−1(θ)) and∣∣∣∣πj−1(θ)

∫
∂η

(
cj−1(γ0)

cj−1(γ)
z + bj−1(θ)

){
− ∂γcj−1(γ)

cj−1(γ)

(
cj−1(γ0)

cj−1(γ)
z

)
+ ∂θbj−1(θ)

}
ϕ1(z)dz

∣∣∣∣
≲ (1 + |Xtj−1

|C)
∫ {∣∣∣∣(cj−1(γ0)

cj−1(γ)
z + bj−1(θ)

)
∂η

(
cj−1(γ0)

cj−1(γ)
z + bj−1(θ)

)∣∣∣∣+ ∥∂η∥∞
}
ϕ1(z)dz

≲ 1 + |Xtj−1 |C .

The claim now follows on applying Lemmas 4.2, 4.3, and 4.4.

(2) For β ∈ (1, 2), the Taylor expansion gives

h1−1/βU
0

2,n(θ)

=
1

n

n∑
j=1

πj−1(θ)Ej−1
{
η
(
δ′j(γ) + h1−1/βbj−1(θ)

)}
=

1

n

n∑
j=1

πj−1(θ)

∫
η

(
cj−1(γ0)

cj−1(γ)
z

)
fh(z)dz

+ h1−1/β 1

n

n∑
j=1

πj−1(θ)bj−1(θ)

∫ 1

0

Ej−1
{
∂η

(
δ′j(γ) + sh1−1/βbj−1(θ)

)}
ds.(4.19)

Following a similar line to the case of β = 1, we see that the first term in the rightmost side of

(4.19) equals 1
T

∫ T

0
π(Xt, θ)η(

c(Xt,γ0)
c(Xt,γ)

z)ϕβ(dz)dzdt + o∗p(1). By the boundedness of ∂η and the estimate

|πj−1(θ)bj−1(θ)| ≲ 1 + |Xtj−1 |C , the last term on the right-hand side is O∗
p(h

1−1/β) = o∗p(1). Hence the

claim follows from Lemmas 4.2 and 4.3.

(3) Recalling (4.7), under the conditions in Lemma 4.3 we have

1

nh1−1/β
U2,n(θ) = U

0

2,n(θ) +O∗
p(h).

If further η is odd in addition to β ∈ (1, 2), then by the symmetry of L(h−1/β∆jJ) we have Ej−1{η(δ′j(γ))} =∫
η(

cj−1(γ0)
cj−1(γ)

z)fh(z)dz = 0 a.s. and the identity (4.19) becomes U
0

2,n(θ) = O∗
p(1). □

The next corollary, which will be used in the proof of the consistency of α̂n, is obvious from the first

identity in (4.19) and the fact bj−1(α0, γ) ≡ 0 (also recall (4.6)).

Corollary 4.6. Assume that the conditions (i) and (ii) in Lemma 4.2 hold, and let β ∈ (1, 2) and η be

odd. Then we have

1

nh1−1/β

n∑
j=1

πj−1(θ)Ej−1 {η(ϵj (α0, γ))} = o∗p(1),

hence we also have

1

nh1−1/β

n∑
j=1

πj−1(θ)η(ϵj (α0, γ)) = o∗p(1).
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4.3. Proof of the consistency. The statistical random field associated with the stable quasi-likelihood

has a multi-scaling structure. We first prove the following lemma13.

Lemma 4.7 (Consistency under possible multi-scaling). Let K1 ⊂ Rp1 and K2 ⊂ Rp2 be compact sets,

and let Hn : K1 ×K2 → R be a random function of the form

Hn(u1, u2) = k1,nH1,n(u1) + k2,nH2,n(u1, u2)

for some positive non-random sequences (k1,n) and (k2,n) and some continuous random functions H1,n :

K1 → R and H2,n : K1 × K2 → R. Let (u1,0, u2,0) ∈ K◦
1 × K◦

2 be a non-random vector. Assume the

following conditions:

• k2,n = o(k1,n);

• supu1
|H1,n(u1)−H1,0(u1)|

p−→ 0 and sup(u1,u2) |H2,n(u1, u2)−H2,0(u1, u2)|
p−→ 0 for some contin-

uous random functions H1,0 and H2,0;

• {u1,0} = argmaxH1,0 and {u2,0} = argmaxH2,0(u1,0, ·) a.s.
Then, for any (û1,n, û2,n) ∈ K1 × K2 such that Hn(û1,n, û2,n) ≥ supHn − op(k2,n) a.s. we have

(û1,n, û2,n)
p−→ (u1,0, u2,0).

Proof. The claim is a special case of [42, Theorem 1]; in our setting we do not need the a.s. representation

theorem. For convenience, we sketch the proof.

The assumption implies that (H1,n, H2,n)
L−→ (H1,0,H2,0) in C(K1×K2). LetH

′
n(u1) := k−1

1,nHn(u1, û2,n) =

H1,n(u1) + k2,nk
−1
1,nH2,n(u1, û2,n). The second term in the rightmost side is op(1) uniformly in u1 ∈ K1,

so that H ′
n(·)

L−→ H1,0(·) in C(K1) with the limit a.s. uniquely maximized at û1,0. Since H ′
n(û1,n) ≥

supu1
k−1
1,nHn(u1, û2,n) − op(k2,nk

−1
1,n) = supH ′

n − op(1), the argmax theorem gives û1,n
p−→ u1,0. We can

follow a similar way to deduce û2,n
p−→ u2,0 along with replacing H ′

n by H ′′
n(u2) := k−1

2,n{Hn(û1,n, u2) −
Hn(û1,n, u2,0)} = H2,n(û1,n, u2) − H2,n(û1,n, u2,0); H

′′
n has the continuous limit process H2,0(u1,0, ·) −

H2,0(u1,0, u2,0) in C(K2), which is a.s. uniquely maximized at û2,0. □

Before proceeding, we make a couple of remarks concerning Assumption 2.9. For β > 1, we introduce

the random functions Yβ,1(·) = Yβ,1(·; γ0) : Θγ → R and Yβ,2(·) = Yβ,2(·; θ0) : Θ → R be given by

Yβ,1(γ) =
1

T

∫ T

0

∫ [
log

{
c(Xt, γ0)

c(Xt, γ)
ϕβ

(
c(Xt, γ0)

c(Xt, γ)
z

)}
− log ϕβ(z)

]
ϕβ(z)dzdt,(4.20)

Yβ,2(θ) =
1

2T

∫ T

0

b2(Xt, θ)

∫
∂gβ

(
c(Xt, γ0)

c(Xt, γ)
z

)
ϕβ(z)dzdt.(4.21)

We also define Y1(·) = Y1(·; θ0) : Θ → R by

Y1(θ) =
1

T

∫ T

0

∫ [
log

{
c(Xt, γ0)

c(Xt, γ)
ϕ1

(
c(Xt, γ0)

c(Xt, γ)
z + b(Xt, θ)

)}
− log ϕ1(z)

]
ϕ1(z)dzdt.

These three functions are a.s. continuous in θ. Assumptions 2.8 and 2.9 together with Jensen’s inequality

(applied ω-wise) imply that both Yβ,1 and Y1 are non-negative functions with {γ0} = argmaxYβ,1 and

{θ0} = argmaxY1 a.s. Moreover,

Yβ,2(α, γ0) = −1

2

∫
{∂ϕβ(z)}2

ϕβ(z)
dz · 1

T

∫ T

0

b2(Xt, θ)dt ≤ 0,

the maximum 0 being attained if and only if α = α0.

4.3.1. Case of β = 1. Let

(4.22) Y1,n(θ) :=
1

n

(
Hn(θ)−Hn(θ0)

)
=

1

n

n∑
j=1

(
log

cj−1(γ0)

cj−1(γ)
+ log ϕ1(ϵj(θ))− log ϕ1(ϵj)

)
.

Under Assumption 2.9 Jensen’s inequality implies that {θ0} = Y1 a.s. Hence, by means of Lemma 4.7

the consistency of θ̂n (∈ argmaxY1,n) follows on showing that supθ |Y1,n(θ) − Y1(θ)|
p−→ 0. This readily

follows from Lemma 4.4 and Proposition 4.5(1) with π(x, θ) ≡ 1 and η = log ϕ1.

13A formal extension to multi-scaling of more than two factors is trivial.
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4.3.2. Case of β ∈ (1, 2). Observe that Hn(θ) − Hn(θ0) = knYβ,1,n(γ) + lnYβ,2,n(α, γ), where kn := n,

kn := nh2(1−1/β), and

Yβ,1,n(γ) :=
1

n
{Hn(α0, γ)−Hn(α0, γ0)},

Yβ,2,n(α, γ) :=
1

nh2(1−1/β)
{Hn(α, γ)−Hn(α0, γ)}.

Recall the definitions (4.20) and (4.21) of Yβ,1 and Yβ,2, respectively. By applying Lemma 4.7 under

Assumption 2.9, the consistency of the SQMLE follows from the uniform convergences:

sup
γ

|Yβ,1,n(γ)− Yβ,1(γ; γ0)|
p−→ 0,(4.23)

sup
θ

|Yβ,2,n(θ)− Yβ,2(θ; θ0)|
p−→ 0.(4.24)

The proof of (4.23) is much the same as in the case of β = 1, hence we only prove (4.24).

Recall the notation gβ(y) =
∂ϕβ(y)
ϕβ(y)

, which is bounded smooth and satisfies that

(4.25) sup
y

|y|k+1
∣∣∂kgβ(y)∣∣ <∞, k ∈ Z+.

Since we are now having the vanishing factor “h2(1−1/β)” in the denominator, a slightly different care

than the case of (4.23) is necessary.

Observe that

Yβ,2,n(θ) =
1

nh2(1−1/β)

n∑
j=1

(
log ϕβ(ϵj(θ))− log ϕβ(ϵj(α0, γ))

)

=
1

nh1−1/β

n∑
j=1

bj−1(θ)gβ(ϵj(α0, γ)) +
1

2n

n∑
j=1

b2j−1(θ)∂gβ(ϵj(α0, γ))

+
1

2n

n∑
j=1

b2j−1(θ) {∂gβ(ϵ̃j(θ))− ∂gβ(ϵj(α0, γ))}

=: Y′
β,2,n(θ) + Y0

β,2,n(θ) + Y′′
β,2,n(θ),(4.26)

where ϵ̃j(θ) is a random point on the segment connecting ϵj(θ) and ϵj(α0, γ). We have Y′
β,2,n(θ) = o∗p(1) by

Corollary 4.6. Since |ϵ̃j(θ)− ϵj(α0, γ)| ≤ |ϵj(θ)− ϵj(α0, γ)| ≲ (1+ |Xtj−1 |C)h1−1/β = O∗
p(h

1−1/β) = o∗p(1),

we also have Y′′
β,2,n(θ) = o∗p(1). To deduce that Y0

β,2,n(θ) =
1
T

∫ T

0
b2(Xt, θ)

∫
∂gβ

(
c(Xt,γ0)
c(Xt,γ)

z
)
ϕβ(z)dzdt+

o∗p(1), we can apply Proposition 4.5(2) with π(x, θ) = 1
2b

2(x, θ) and η = ∂gβ under the quite trivial

modification that we have “ϵj(α0, γ)” instead of “ϵj(θ)” inside the η.

4.4. Proof of the asymptotic mixed normality. Having verified the consistency of the SQMLE θ̂n,

we turn to the proof of the asymptotic mixed normality. For convenience we introduce the rate matrix:

Dn = (Dn,k)
p
k=1 = diag

(√
nh1−1/βIpα ,

√
nIpγ

)
∈ Rp ⊗ Rp.

We also write ûn =
(√
nh1−1/β(α̂n − α0),

√
n(γ̂n − γ0)

)
. The consistency allows us to focus on the event

{∂θHn(θ̂n) = 0}, on which the Taylor formula gives

(4.27)

(
−D−1

n ∂2θHn(θ0)D
−1
n + r̂n

)
[ûn] = D−1

n ∂θHn(θ0),

where r̂n = {r̂kln }k,l is a bilinear form such that

(4.28) |r̂n| ≤
p∑

k,l,m=1

(
D−1

n,kD
−1
n,l sup

θ=(θi)
p
i=1

|∂θk∂θl∂θmHn(θ)|
)
|θ̂m,n − θ0,m|.

If we have

(∆n,T , Γn,T )
L−→ (∆T , ΓT (θ0;β)) where ∆T ∼MNp (µT (θ0;β), ΓT (θ0;β)),(4.29)

r∗n,T := max
1≤k,l,m≤p

D−1
n,kD

−1
n,l sup

θ=(θi)
p
i=1

|∂θk∂θk∂θmHn(θ)| = Op(1),(4.30)
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then r̂n = op(1) and hence

ûn =

(
ΓT (θ0;β) + op(1)

)−1

∆n,T

= Γ−1
T (θ0;β)∆n,T + op(1)

L−→ Γ−1
T (θ0;β)∆T ∼MNp

(
Γ−1
T (θ0;β)µT (θ0;β), Γ

−1
T (θ0;β)

)
,

concluding the proof. Since ΓT (θ0;β) is random, the joint weak convergence (4.29) is far from being

obvious and we cannot deduce it from a direct application of the usual martingale central limit theorem

for triangular arrays of random variables (e.g. [10]).

The stable convergence is the right mode of convergence to deduce (4.29). In order to complete the

proof it suffices to prove (4.30) and the following two convergences:

∆n,T := D−1
n ∂θHn(θ0)

Ls−−→ ∆T ∼MNp(µT (θ0;β),ΣT (θ0;β));(4.31)

Γn,T := −D−1
n ∂2θHn(θ̃n)D

−1
n

p−→ ΓT (θ0;β).(4.32)

4.4.1. Proof of (4.30). We may and do let pα = pγ = 1. Let R(x, θ) denote any matrix-valued function on

R such that supθ |R(x, θ)| ≲ 1+|x|C ; it may change at each appearance. By straightforward computations,

1

nh2(1−1/β)
∂3αHn(θ) =

1

nh1−1/β

n∑
j=1

Rj−1(θ)gβ(ϵj(θ))

+
1

n

n∑
j=1

(
Rj−1(θ)∂gβ(ϵj(θ)) + h1−1/βRj−1(θ)∂

2gβ(ϵj(θ))

)
,

1

nh2(1−1/β)
∂2α∂γHn(θ) =

1

nh1−1/β

n∑
j=1

(
Rj−1(θ)gβ(ϵj(θ)) +Rj−1(θ)ϵj(θ)∂gβ(ϵj(θ))

)

+
1

n

n∑
j=1

(
Rj−1(θ)ϵj(θ)∂

2gβ(ϵj(θ)) +Rj−1(θ)∂gβ(ϵj(θ))

)
,

1

n
∂3γHn(θ) =

1

n

n∑
j=1

(
Rj−1(θ) +Rj−1(θ)ϵj(θ)gβ(ϵj(θ))

+Rj−1(θ)ϵ
2
j (θ)∂gβ(ϵj(θ)) +Rj−1(θ)ϵ

3
j (θ)∂

2gβ(ϵj(θ))

)
,

1

nh1−1/β
∂α∂

2
γHn(θ) =

1

n

n∑
j=1

(
Rj−1(θ)gβ(ϵj(θ)) +Rj−1(θ)ϵj(θ)∂gβ(ϵj(θ))

+Rj−1(θ)ϵ
2
j (θ)∂

2gβ(ϵj(θ))

)
.

Because of (4.25), all the terms having the factor “1/n” in front of the summation sign in the above right-

hand sides are O∗
p(1). Hence we only need to take care of the remaining terms. But the functions y 7→

gβ(y) and y 7→ y∂gβ(y) are odd, so that Proposition 4.5(3) concludes that both 1
nh1−1/β

∑n
j=1Rj−1(θ)gβ(ϵj(θ))

and 1
nh1−1/β

∑n
j=1Rj−1(θ)ϵj(θ)∂gβ(ϵj(θ)) are O

∗
p(1). These observations are enough to deduce (4.30).

4.4.2. Proof of (4.31). We will apply the general stable central limit theorem due to Jacod [19], the crucial

finding in which is the characterization result for conditionally Gaussian continuous-time martingales

defined on an extended probability space. Nowadays it is one of established fundamental tools to derive

asymptotic distributional results for high-frequency over a fixed time period, the technique essentially

dating back to [12] and later formulated by [19] for a much more general model. The foremost important

point is that Jacod’s results not only can deal with very general triangular arrays of random variables,

but also do not require the nesting condition on the underlying filtration, which is assumed in most of

the existing stable convergence results, and fails to hold for high-frequency data models.

Let ϵj := ϵj(θ0). We have

∆n,T =

(
1√

nh1−1/β
∂αHn(θ0),

1√
n
∂γHn(θ0)

)
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=

(
− 1√

n

n∑
j=1

∂αaj−1(α0)

cj−1(γ0)
gβ(ϵj), −

1√
n

n∑
j=1

∂γcj−1(γ0)

cj−1(γ0)
{1 + ϵjgβ(ϵj)}

)
.

For t ∈ [0, T ] we introduce the partial sum process in D([0, T ];Rp):

∆n,t :=

(
− 1√

n

[nt/T ]∑
j=1

∂αaj−1(α0)

cj−1(γ0)
gβ(ϵj), −

1√
n

[nt/T ]∑
j=1

∂γcj−1(γ0)

cj−1(γ0)
{1 + ϵjgβ(ϵj)}

)
.

We set

π(x) = diag

(
− ∂αaj−1(α0)

cj−1(γ0)
, −∂γcj−1(γ0)

cj−1(γ0)

)
∈ Rp ⊗ R2,

η(y) = (gβ(y), 1 + ygβ(y)) = (gβ(y), kβ(y)) ∈ R2,

so that ∆n,t = n−1/2
∑n

j=1 πj−1η(ϵj). Write Γt(θ0;β) for ΓT (θ0;β) with the integral sign “
∫ T

0
” replaced

by “
∫ t

0
”. By means of [19, Theorem 3-2] (or [22, Theorem IX.7.28]), the stable convergence (4.31) is

implied by the following statements: for each t ∈ [0, T ] and for any bounded (Ft)-adapted martingale M ,

[nt/T ]∑
j=1

Ej−1

(∣∣∣∣ 1√
n
πj−1η(ϵj)

∣∣∣∣4) p−→ 0,(4.33)

1

n

[nt/T ]∑
j=1

πj−1Ej−1
{(
η(ϵj)− Ej−1{η(ϵj)}

)⊗2}
π⊤
j−1

p−→ Γt(θ0;β),(4.34)

sup
t∈[0,T ]

∣∣∣∣ 1√
n

[nt/T ]∑
j=1

πj−1Ej−1{η(ϵj)} −
(
0, µT,γ(θ0;β)bβ(ν)

)∣∣∣∣ p−→ 0,(4.35)

[nt/T ]∑
j=1

Ej−1

(
1√
n
πj−1η(ϵj)∆jM

)
p−→ 0.(4.36)

The Lyapunov condition (4.33) trivially holds since η is bounded and |π(x)| ≲ 1 + |x|C . For (4.34),

arguing as in the proof of Lemma 4.3 with
∫
η(z)ϕβ(z)dz = 0 and |

∫
η(z){fh(z)−ϕβ(z)}dz| = O(n−1/2),

we see that

Ej−1{η(ϵj)} =

∫
η(z)fh(z)dz +O∗

p(h
2−1/β)(4.37)

=

∫
η(z)ϕβ(z)dz +O∗

p(n
−1/2) = O∗

p(n
−1/2),

Ej−1
{
η⊗2(ϵj)

}
=

∫
η⊗2(z)fh(z)dz +O∗

p(h
2−1/β)

=

∫
η⊗2(z)ϕβ(z)dz +O∗

p(n
−1/2).

Then the left-hand side of (4.34) equals

1

n

[nt/T ]∑
j=1

πj−1

(∫
η⊗2(z)ϕβ(z)dz

)
π⊤
j−1 +Op(n

−1/2),

and by means of Lemma 4.4 the first term converges in probability to Γt(θ0;β).

The uniform convergence (4.35) follows on applying (4.37) and Lemma 4.4:

1√
n

[nt/T ]∑
j=1

πj−1Ej−1{η(ϵj)} =
1

n

[nt/T ]∑
j=1

πj−1

(√
n

∫
η(z)fh(z)dz

)
+Op(

√
nh2−1/β)

=
1

n

[nt/T ]∑
j=1

πj−1 {(0, bβ(ν)) + o(1)}+Op(h
3/2−1/β)

=

(
0,

1

T

∫ t

0

π(Xs, θ0)dsbβ(ν)

)
+ op(1)

p−→
(
0, µT,γ(θ0;β)bβ(ν)

)
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uniformly in t ∈ [0, T ].

Finally we turn to (4.36). Recall that we are assuming that Ft = σ(X0) ∨ σ(Js; s ≤ t). By means

of the decomposition theorem [22, Theorem I.4.18] for local martingales, we may write M = M c +Md

for a continuous part M c and the associated purely discontinuous part Md. Our underlying probability

space supports no Wiener process, hence in view of the martingale representation theorem [22, Theorem

III.4.34] for M , we may set M c = 0. To show (4.35) we will follow a similar way to [52] with successive

use of general theory of martingales convergence.

It suffices to prove the claim when both π and η are real-valued. The jumps of M over [0, T ] are

bounded, and we have Mn
t :=

∑[nt/T ]
j=1 ∆jM

a.s.−−→Mt in D([0, T ];R). Let

Nn
t :=

[nt/T ]∑
j=1

1√
n
πj−1η(ϵj),

then for each n, Nn is a local martingale with respect to (Ft); then (4.36) equals that ⟨Mn, Nn⟩t → 0

for each t ≤ T . Following the same route as in the proof of (4.34), we see that the angle-bracket process

⟨Nn⟩t =
1

n

[nt/T ]∑
j=1

π2
j−1Ej−1{η(ϵj)}

is C-tight, that is, it is tight in D([0, T ];R) and any weak limit process has a.s. continuous sample paths.

By means of [22, Theorem VI.4.13] we then deduce that (Nn) is tight in D([0, T ];R). We also observe

that limn P(supt≤T |∆Nn
t | > ϵ) = 0 for every ϵ > 0, which automatically holds under the Lyapunov

condition: (4.33) remains valid also for Ej−1 replaced by E, and hence

P
(
sup
t≤T

|∆Nn
t | > ϵ

)
≤ ϵ−4

[nt/T ]∑
j=1

E
(
|∆jN

n|4
)
≲ 1

n
.

Thus we conclude from [22, Theorem VI.3.26(iii)] that (Nn) is C-tight.

Fix any {n′} ⊂ N. By [22, Theorem VI.3.33] the process Hn := (Mn, Nn) is tight in D([0, T ];R), so
that by Prokhorov’s theorem we can pick a subsequence {n′′} ⊂ {n′} for which there exists a process

H = (M,N) such thatM and N are purely discontinuous and continuous, respectively, and that Hn′′ L−→
H along {n′′} in D([0, T ];R). We have

sup
n

E
(
max
j≤n

|∆jN
n|
)

≲ sup
n

1√
n
E
(
1 + sup

t≤T
|Xt|C

)
<∞,

hence it follows from [22, Corollary VI.6.30] that the sequence (Hn′′
) is predictably uniformly tight,

in particular, (Hn′′
, [Hn′′

])
L−→ (H, [H]), with the limit quadratic-variation process [H] = [M,N ] =

⟨M c, N c⟩ +
∑

s≤·(∆Ms)(∆Ns) = 0 a.s. identically. We have seen that given any {n′} ⊂ N we can find

{n′′} ⊂ {n′} for which [Hn′′
]

L−→ 0 along {n′′}, from which we conclude that

(4.38) [Hn]t = [Mn, Nn]t =

[nt/T ]∑
j=1

1√
n
πj−1η(ϵj)∆jM

p−→ 0

in D([0, T ];R). It remains to show that [Mn, Nn]t and ⟨Mn, Nn⟩t are asymptotically equivalent for each

t ≤ T ; then, (4.38) yields that ⟨Mn, Nn⟩t
p−→ 0, hence (4.36). This can be seen as follows: since the

function η and the squared-jump sum process
∑

0<s≤t(∆M
n
s )

2 are bounded,

E
{(

[Mn, Nn]t − ⟨Mn, Nn⟩t
)2} ≲ E

( ∑
0<s≤t

(∆Mn
s ∆N

n
s )

2

)

≲ 1

n
E
{(

1 + sup
t≤T

|Xt|C
) ∑

0<s≤t

(∆Mn
s )

2

}

≲ 1

n
E
(
1 + sup

t≤T
|Xt|C

)
≲ 1

n
→ 0.
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Remark 4.8. The present setting of Ft is not essential. We may enlarge it as long as the martingale-

representation arguments stay valid. Even when we have a Wiener process in our model, we can still

follow the martingale-representation argument as in [52]. □

4.4.3. Proof of (4.32). The components of Γn,T consist of

− 1

nh2(1−1/β)
∂2αHn(θ0) =

1

nh1−1/β

n∑
j=1

∂2αaj−1(α0)

cj−1(γ0)
gβ(ϵj)−

1

n

n∑
j=1

{∂αaj−1(α0)}⊗2

c2j−1(γ0)
∂gβ(ϵj),(4.39)

− 1

n
∂2γHn(θ0) = − 1

n

n∑
j=1

∂2γcj−1(γ0)

cj−1(γ0)
{1 + ϵjgβ(ϵj)}(4.40)

− 1

n

n∑
j=1

{∂γcj−1(γ0)}⊗2

c2j−1(γ0)

{
1 + 2ϵjgβ(ϵj) + ϵ2j∂gβ(ϵj)

}
,

− 1

nh1−1/β
∂α∂γHn(θ0) = − 1

n

n∑
j=1

{∂αaj−1(α0)} ⊗ {∂γcj−1(γ0)}
c2j−1(γ0)

{gβ(ϵj) + ϵj∂gβ(ϵj)} .(4.41)

By (4.6) and Corollary 4.6, the first term in the right-hand side of (4.39) is op(1). It follows from

Proposition 4.5 that the second term equals

− 1

nh2(1−1/β)
∂2αHn(θ0) = − 1

n

n∑
j=1

{∂αaj−1(α0)}⊗2

c2j−1(γ0)

∫
∂gβ(z)ϕβ(z)dz + op(1)

=
1

n

n∑
j=1

{∂αaj−1(α0)}⊗2

c2j−1(γ0)

∫
g2β(y)ϕβ(z)dz + op(1)

= Cα(β)ΣT,α(θ0) + op(1).

For −n−1∂2γHn(θ0), by Proposition 4.5 and
∫
kβ(y)ϕβ(y)dy = 0 we see that the first term in the right-

hand side of (4.40) is op(1). As for the second term, noting the function lβ(y) := 1 + 2ygβ(y) + y2∂gβ(y)

satisfies that
∫
lβ(y)ϕβ(y)dy = −

∫
k2β(y)ϕβ(y)dy = −Cγ(β), we get

− 1

n
∂2γHn(θ0) = − 1

n

n∑
j=1

{∂γcj−1(γ0)}⊗2

c2j−1(γ0)

∫
lβ(z)ϕβ(z)dz + op(1)

= Cγ(β)ΣT,γ(γ0) + op(1).

Finally, since y 7→ gβ(y)+y∂gβ(y) = gβ(y)kβ(y) is odd, Corollary 4.6 concludes that−(nh1−1/β)−1∂α∂γHn(θ0) =

op(1), completing the proof of (4.32).

4.4.4. Proof of Corollary 3.3. The convergence (3.11) follows from (4.27), (4.29), and (4.30).
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