<会議発表論文>
Functional discriminant analysis for gene expression data via radial basis expansion

作成者
本文言語
出版者
発行日
収録物名
開始ページ
終了ページ
出版タイプ
アクセス権
関連DOI
関連DOI
関連URI
関連情報
概要 In this paper we introduce functional discriminant analysis which is an extension of the classical method of logistic discriminant analysis to the data where predictor variables are functions or curve...s. The functional discriminant analysis approach can classify curves belong to two distinct classes effectively by imposing smoothness constraint on the predictor functions and coefficient function via regularized radial basis expansion. In order to select the number of basis functions to be expanded and the value of smoothing parameter which are essential in regularization, we derive an information criterion which enables us to evaluate model estimated by regularization. The proposed method is illustrated with the example in the analysis of yeast cell cycle microarray data. It is shown that functional discriminant analysis performs well especially in the sense of prediction accuracy.続きを見る

本文ファイル

pdf 2004-8 pdf 372 KB 130 Preprint

詳細

レコードID
査読有無
ISBN
注記
タイプ
登録日 2009.04.22
更新日 2020.11.27