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Abstract
In this paper we introduce functional discriminant analysis which is an ex-
tension of the classical method of logistic discriminant analysis to the data
where predictor variables are functions or curves. The functional discriminant
analysis approach can classify curves belong to two distinct classes effectively
by imposing smoothness constraint on the predictor functions and coefficient
function via regularized radial basis expansion. In order to select the number
of basis functions to be expanded and the value of smoothing parameter which
are essential in regularization, we derive an information criterion which enables
us to evaluate model estimated by regularization. The proposed method is il-
lustrated with the example in the analysis of yeast cell cycle microarray data.
It is shown that functional discriminant analysis performs well especially in
the sense of prediction accuracy.

1 Introduction

Classification or discrimination technique is one of the most widely used statistical tools
in various fields of natural and social sciences. In recent years, several techniques have
been proposed which include penalized discriminant analysis (Hastie et al. (1995)) and
support vector machines (Vapnik (1995)) for analyzing multivariate observations with
complex structure.

Fisher’s linear discriminant analysis (LDA) is a popular procedure for classification
problem which is based on the Mahalanobis distances. When data are functions, however,
the linear discriminant analysis cannot be applied to the discretized values directly. It
is obvious that discrete observations of functions or curves are highly correlated and this
statistically unfavorable situation degenerates covariance matrix and makes it impossible
to take inverse of the variance-covariance matrix. Hastie et al. (1995) introduced penalized
discriminant analysis to overcome the problems of high-dimensional correlated predictors.
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They also discussed the functional version of the linear discriminant analysis, pointing out
that the existence of the Mahalanobis distance in functional framework is not clear, since
an inverse of the covariance operator generally cannot be represented by a kernel.

The focus in the present paper will be on the problem of classifying functions, where
each observation can be interpreted as a discretized realization of a function evaluated at
possibly differing time points. Our motivation arises from the analysis of yeast cell cycle
gene expression data which provide inference about how gene expression levels evolve
in time and how genes are dependent during a given biological process (Spellman et al.
(1998), and Luan and Li (2003)). Classification of genes enables us to predict functions
of unknown genes and to identify the set of co-regulated genes. In the yeast cell cycle
data analysis, one wish to classify genes based on the cDNA microarray time series data.

We introduce functional discriminant analysis using Gaussian radial basis function
networks with help of regularization. It is designed to construct a decision rule based
on data given as a set of functions. We first transfer the vector valued observations to
a set of functions. Secondly, functional discriminant analysis model is constructed by
using Gaussian radial basis functions and then estimation is by regularized maximum
likelihood method. In order to select smoothing parameters, we derive model selection
criterion within the framework of functional data analysis by developing the generalized
information criterion due to Konishi and Kitagawa (1996).

This paper is organized as follows. In Section 2 we describe the radial basis expansion
smoothing technique which converts discrete raw data into underlying smooth functional
form. The new method, functional discriminant analysis, is set out in Section 3 and
the details of its implementation are described. Section 4 presents an application of the
proposed method to yeast cell cycle gene expression data collected by Spellman et al.
(1998).

2 Radial basis smoothing techniques

In the context of functional data analysis (Ramsay and Silverman (1997),(2002)), individ-
ual data should be considered to have a functional form in nature even though observed
data are usually recorded discretely. In addition, those discrete raw data which are sup-
posed to have functional form may contain observational error. Therefore, converting raw
data into underlying smooth functional form requires an efficient smoothing technique.

The typical functional data analysis approach is to fit each curve individually using
expansion of basis functions. Common basis functions for smoothing functional data are
B-spline basis and Fourier expansions. In our model, we use Gaussian radial basis function
with hyperparameter that controls the amount of overlapping among basis functions and
adopts the information of the desired outputs (Ando et al. (2002)). For background about
radial basis function networks, we refer to Moody and Darken (1989), Poggio and Girosi
(1990), Webb (1999) and references given therein.

Suppose we have N independent observations {(xi, ti); ti ∈ T , i = 1,2,· · ·, N}, where
xi are random response variables and ti are explanatory variables, assuming that they are
drawn from the Gaussian nonlinear regression model

xi = u(ti) + εi, i = 1, · · · , N, (1)
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where u(t) is a smooth function to be estimated, and the errors εi are independently,
normally distributed with mean zero and variance σ2. We consider the function u(t) that
can be expanded in the form of the radial basis function network taking the following
form;

u(t; ω) =
m∑

k=1

ωkφk(t) + ω0, (2)

where ω = (ω0, ω1, 2, · · · , ωm)T and φk(t) are a set of Gaussian radial basis functions with
hyperparameter ν given as

φk(t; ck, s
2
k) = exp

{
−(t− ck)2

2νs2
k

}
, k = 1, 2, · · · , m, (3)

where ck is a scalar determining the location of the kth basis function, sk is the width and ν
is a hyperparameter. The function û(t) ≡ x(t) which is estimated from the observed data
{(xi, ti); i = 1, 2, · · · , N} is called ‘functional data’, and is proceeded to further analysis.

The nonlinear function u(t) is estimated in two-stage procedure; position the centers
and determine the dispersions first, then calculate the weights using an appropriate opti-
mization schemes. This two stage learning is reported to solve the problem of convergence
and the identification problem. Among several strategies, k-means clustering method al-
gorithm is used to determine the centers ck and the dispersion parameters s2

k of the basis
functions. More precisely, observation points {t1, t2, · · · , tN} are grouped into m clusters
{C1, C2, · · · , Cm}, where m is a given number of radial basis functions. Then the centers
and the dispersion parameters are determined by

ck =
1

nk

∑
ti∈Ck

ti, s2
k =

1

nk

∑
ti∈Ck

(ti − ck)
2,

where nk represents the number of data which belong to the cluster Ck. We define the basis
function φk(t; ck, s

2
k) using these estimates as φk(t). Hence it follows that the nonlinear

regression model based on the radial basis function network can be written as

f(xi|ti; ω, σ2) =
1√

2πσ2
exp


−

(
xi − ωTφ(ti)

)2

2σ2


 , (4)

where φ(ti) = (1, φ1(ti), · · · , φm(ti))
T．

In fitting data with complex structure, the maximum likelihood method does not
yield satisfactory results, since it often occurs overfittng and yields unstable parameter
estimates. Therefore the unknown weights and the error variances are estimated by
regularization method. Moreover, in smoothing functional data, all individual data should
be fitted by using the common basis functions in our model. In other words, the number
of basis functions is fixed even though the amount of smoothness imposed on a set of
discrete data will be differ from each other. Regularization allows us to adjust individual
differences by a smoothing parameter. In addition, implementing the hyperparameter and
adjusting the smoothing parameter capture the structure in the data flexibly.
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The regularization method maximizes the penalized log-likelihood function

lγ(ω, σ2) =
N∑

i=1

log f(xi|ti; ω, σ2) − Nγ

2
ωTDT

2 D2ω, (5)

where DT
2 D2 is the second order difference matrix and γ is called a smoothing parameter

which adjusts the amount of smoothness and also avoids ill-posed problem. The maximum
penalized likelihood estimates are

ω̂ = (ΦT Φ + NβDT
2 D2)

−1ΦTx, σ̂2 =
1

N

N∑
i=1

{xi − ω̂T φ(ti)}2, (6)

where Φ = (φ(t1),φ(t2), · · · ,φ(tN))T , β = γσ̂2 and x = (x1, x2, · · · , xN)T . The number
of basis functions m, the adjusted parameters ν and γ are determined by using a model
selection criterion obtained by Ando et al. (2002). Thus the observed discrete data
{(xi, ti); ti ∈ T , i = 1, 2, · · · , N} are smoothed by the method described above and we
have a functional data given by x(t);

û(t) =
m∑

k=1

ω̂kφk(t) + ω̂0 ≡ x(t), t ∈ T . (7)

3 Functional logistic discrimination

Suppose we have n independent observations {(xα(t), gα); α = 1, 2, · · · , n}, where xα(t)
are functional predictor variables and gα are indicators of the group membership. For
example, we consider two-class classification, i.e. k = 1 or 2, where gα = k implies that
it belongs to class Gk. A set of functions smoothed by the Gaussian radial basis function
smoothing method are given by

xα(t) = wT
αφ(t), α = 1, 2, · · · , n, (8)

where wα are estimated parameter vectors and φ(t) is a vector of Gaussian basis functions
given in equation (3).

A Bayes rule of allocation is to assign xα(t) to group Gk(k = 1, 2) with the maxi-
mum posterior probability Pr(g = k|xα(t)). We consider the log-odds of the posterior
probability given in the following form;

log

{
Pr(g = 1|xα(t))

Pr(g = 2|xα(t))

}
= βa +

∫
T
β(t)xα(t)dt. (9)

By making use of the same Gaussian radial basis function φ(t) as in (8), we expand
the functional parameter as β(t) = β0 +

∑m
i=1 βiφi(t) = βT

t φ(t)(t ∈ T ), where βt =
(β0, β1, β2, · · · , βm)T . We denote the posterior probability Pr(g = 1|xα(t)) = π(xα(t)), so
that Pr(g = 2|xα(t)) = 1 − π(xα(t)). Then the log-odds model (9) can be expressed as

log

{
π(xα(t))

1 − π(xα(t))

}
= zT

αβ, (10)
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where β = (βa,β
T
t )T and Z is an n× (m + 2) matrix given by

ZT =

[
1 1 . . . 1

ΦT w1 ΦTw2 . . . ΦT wn

]
= (z1, z2, · · · , zn), (11)

with (m+ 1)× (m+ 1) matrix Φ having φjk =
∫
T φj(t)φk(t)dt, j, k = 0, 1, 2, · · · , m, as the

(j, k)-th element.
We define the binary variable yα coded as either 0 or 1 to indicate the group member-

ship of a sample, where yα = 1 if gα = 1 and yα = 0 if gα = 2. The log-likelihood function
is

l(β) =
n∑

α=1

[yα log π(xα(t)) + (1 − yα) log{1 − π(xα(t))}] , (12)

where π(xα(t)) = exp(zT
αβ)/{1 + exp(zT

αβ)}. We estimate the parameter vector β by
maximizing the penalized log-likelihood function

l(β) − nλ

2
βTβ. (13)

We obtain the solution β̂λ by the iterative algorithm like Newton-Raphson algorithm;

βnew = βold −
(
∂2lλ(β)

∂β∂β′

)−1
∂lλ(β)

∂β
. (14)

The crucial issue on regularization method is the choice of the optimal value of smoothing
parameter λ. We obtain an information-theoretic criterion within the framework of func-
tional data analysis. An information criterion for evaluating functional discrimination
model estimated by regularization is of the form

GICF = −2 log l(β̂λ) + 2trQR−1, (15)

where Q and R are (m + 2) × (m + 2) matrices given by the first and second derivatives
of equation (13), given by

Q =
1
n

n∑
α=1

∂{log f(yα|xα(t);β)− (λ/2)β′β}
∂β

∂ log f(yα|xα(t);β)

∂β′

∣∣∣∣∣
β=

ˆβ

R = − 1
n

n∑
α=1

∂2{log f(yα|xα(t);β) − (λ/2)β′β}
∂β∂β′

∣∣∣∣∣
β=

ˆβ

.

We choose the smoothing parameter λ to minimize GICF.
Schwarz (1978) proposed the Bayesian information criterion, BIC. However, the BIC

covers only models estimated by the maximum likelihood method. Konishi et al. (2004)
generalized BIC and derived extended BIC which enabled us to evaluate models esti-
mated by the method of regularization. They also derived the generalized BIC for radial
basis function network logistic regression model. We simply modify it to functional case,
obtaining

BICfl(λ) = 2
∑n

α=1

[
log

{
1 + exp

(
z′

αβ̂
)}

− yαz′
αβ̂
]

+ nλβ̂
′
β̂ − 2 log(2π/n) +

log |R| − (m + 1) log λ.
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4 Real data example

In this section we show the effectiveness of the proposed method through the analysis
of the yeast cell cycle gene expression data collected by Spellman et al. (1998). Gene
expressions for all 6,178 genes in the yeast genome were measured by cDNA microarrays
over time during about two cell cycles. These data contain 77 microarrays and consist of
two short time-courses (two time points) and four medium time-courses (18, 24, 17 and
14 time points). Spellman et al. (1998) identified 800 genes as cell cycle related genes
based on the clustering analysis, and also grouped these genes into five classes, G1, S, G2,
M, and M/G1, by considering peaks in the expression patterns.
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Fig. 1: Raw gene expression profiles during the yeast α factor-based synchronization
experiment.
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Figure 1 are plots of expression patterns of the 612 genes in the five classes, G1, S,
G2, M, and M/G1 for comparison. In our analysis, we concentrated on the time-course
“α factor-based synchronization experiment data” (18 time points), excluding the genes
containing missing values for simplicity. That was, the expression patterns of 612 genes
out of 800 cell cycle related genes were used in our analysis, and those expression data
were considered as a discretized realization of 612 expression curves evaluated at 18 time
points.

Note that microarray data usually contain observational noise. Therefore, the smooth-
ing performed at first had an important role to remove the observational noise from ex-
pression data. In addition, since the gene expression pattern of each cell cycle related
gene can be considered as a function of time, the proposed method is appropriate for
analyzing time course gene expression data. We carried out two-class functional discrim-
ination for all possible combinations. In order to evaluate the effectiveness of our model,
the genes in each class were randomly assigned into training data and test data. That
is, the model was estimated by using the training data, and the predictive accuracy of
the estimated model was evaluated by the test data. We first applied the Gaussian ra-
dial basis smoothing method described in Section 2 to the time-course expression data
{(xij, tj, ); i = 1, 2, ..., 612; j = 1, 2, ..., 18}, where xij is the expression value of ith gene at
time tj. As we mentioned above, the smoothing parameter and the hyperparameter are to
be adjust individual smoothness differences, and they worked efficiently here in practice.

Figure 2 shows examples of two genes from G1 class with the Gaussian radial basis
smoothing curves.
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Fig. 2: Smoothed gene expression patterns of the class G1 by the Gaussian radial basis
function networks with hyperparameter.

We succeeded in extracting the effective expression curves that are possibly close to
the real expression patterns, even though there are various types of expression patterns
in the same class. We observed that the hyperparameter allowed flexible curve fitting,
while the smoothing parameter adjusted the differences of gene expression patterns. The
linear discriminant analysis (LDA) and the quadratic discriminant analysis (QDA) are
the most popular classical method for classification. To compared functional discriminant
analysis model(FLDA) evaluated by the criterion GICF and BICp with LDA and QDA
which analyzed discretized data directly, we performed two-group classification.

Table 1 summarizes the classification results of four different methods (LDA, QDA,
FLDA with GICF and BICp). For almost all combinations of the classes, the proposed
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Training Test Training Test
G1 and S LDA 0.04 0.08 S and M LDA 0.03 0.13

QDA 0.05 0.11 QDA 0.11 0.19
FLDA GICF 0.04 0.06 FLDA GICF 0.08 0.1
FLDA BICp 0.04 0.06 FLDA BICp 0 0.14

G1 and G2 LDA 0.13 0.15 S and LDA 0.13 0.31
QDA 0.15 0.22 M/G1 QDA 0.15 0.35
FLDA GICF 0.13 0.15 FLDA GICF 0.12 0.28
FLDA BICp 0.13 0.14 FLDA BICp 0.12 0.25

G1 and M LDA 0.07 0.18 G2 and M LDA 0.04 0.1
QDA 0.12 0.13 QDA 0.05 0.19
FLDA GICF 0.08 0.13 FLDA GICF 0 0.09
FLDA BICp 0.08 0.13 FLDA BICp 0 0.1

G1 and LDA 0.04 0.1 G2 and LDA 0.01 0.09
M/G1 QDA 0.11 0.11 M/G1 QDA 0.03 0.12

FLDA GICF 0.05 0.09 FLDA GICF 0.01 0.11
FLDA BICp 0.05 0.1 FLDA BICp 0.01 0.08

S and G2 LDA 0.09 0.14 MandM/G1 LDA 0.05 0.21
QDA 0.09 0.18 QDA 0.1 0.3
FLDA GICF 0.12 0.14 FLDA GICF 0.16 0.24
FLDA BICp 0.12 0.14 FLDA BICp 0.18 0.25

Table 1: Error rates of two-group discrimination with four different methods

method yielded lower test error rates. We suggest investigating genes that were classified
in the opposite group with high posterior probability, since they possibly misclassified by
Spellman et al. (1998).

Figure 3 plot the results of FLDA of group G1 and S. We found that most of those
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Fig. 3: Group (a)G1, (b)S raw (left) and smoothed (right) gene expression data. Red lies
are plots of misclassified genes.

misclassified curves have their posterior probabilities close to 0.5, which coincide with the
curves of low magnitudes. Also there are one or two misclassified genes which have the
posterior probability to be classified to the opposite group.

Other than the parameters described so far, we found that the convergence criterion in
Newton-Raphson iteration for estimating β̂ also affect the prediction accuracy. We have
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Fig. 4: The posterior probabilities of genes for classification of class S and M/G1. Red
points represents misclassified genes.

to determine the way to define the convergence condition in Newton-Raphson iteration
in β estimation. Figure 4 compares the postserior probability for each gene when con-
vergence criterion was altered from (a)10−0.5 to (b)10−2. In this example, the test error
rate was dropped from 20.7 percent to 17.5 percent as the convergence criterion getting
smaller. However, we should have some points of convergence restriction which drop the
misclassification rate. The smaller value of restriction, 10−3, did not drop the error rate
anymore. In figure 5, we see that the strong restriction on convergence criterion seemed
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Fig. 5: The posterior probabilities when convergence criterion = 10−3

to make most of the posterior probabilities close to 0, yet the remaining ”not close to
zero” genes tend to be misclassified. We need theoretical inspection about this matter.

5 Discussion

The functional discriminant analysis model proposed in this paper appeared to be a useful
tool for classifying functions or curves. An advantage of our method is that one could
treat the samples as a set of functions, hence the problems of the observational point
difference and highly correlated data are overcome. Also the model selection criterion
GICF and BICp enables us to evaluate models subjectively. Potential research would
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be that extending our modeling strategy to the case of sampled surface for multi-group
classification.
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