<プレプリント>
TRACE JENSEN INEQUALITY AND RELATED WEAK MAJORIZATION IN SEMI-FINITE VON NEUMANN ALGEBRAS

作成者
本文言語
出版者
発行日
収録物名
出版タイプ
アクセス権
関連DOI
関連DOI
関連URI
関連ISBN
関連HDL
関連情報
概要 Abstract. Let $ M $ be a semi-finite von Neumann algebra equipped with a faithful semi-finite normal trace $ \tau $, and we assume that f(t) is a convex function with f(0) = 0. The trace Jensen inequa...lity $ \tau $(f(a*xa)) . $ \tau $(a*f(x)a) is proved for a contraction a ∈ $ M $ and a self adjoint operator x ∈ $ M $ (or more generally for a semi-bounded -measurable operator) together with an abundance of related weak majorizationtype inequalities. Notions of generalized singular numbers and spectral scales are used to express our results. Monotonicity properties for the map: x ∈ $ M $sa → $ \tau $(f(x)) are also investigated for an increasing function f(t) with f(0) = 0.続きを見る

本文ファイル

pdf 2008-3 pdf 200 KB 532  

詳細

レコードID
査読有無
主題
タイプ
登録日 2009.04.22
更新日 2018.02.19