
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Instruction Scheduling for Variation-originated
Variable Latencies

Sato, Toshinori
System LSI Research Center, Kyushu University

Watanabe, Shingo
Kyushu Institute of Technology

https://hdl.handle.net/2324/9486

出版情報：9th International Symposium on Quality Electronic Design, pp.361-364, 2008-03-18
バージョン：
権利関係：

Instruction Scheduling for Variation-originated Variable Latencies

Toshinori Sato
Kyushu University

toshinori.sato@computer.org

Shingo Watanabe
Kyushu Institute of Technology

s-watanabe@klab.ai.kyutech.ac.jp

Abstract
The advance in semiconductor technologies presents the

serious problem of parameter variations. They affect threshold
voltage of transistors and thus circuit delay also has variations.
Recently, variable latency adders and long latency adders are
proposed to manage the variation problem. Unfortunately,
replacing a variation-affected adder with the long latency one
has severe impact on processor performance. In order to
maintain performance, the present paper proposes an
instruction scheduling technique considering instruction
criticality. By issuing and executing only uncritical instructions
in the long latency ALU, we can maintain processor
performance. From detailed simulations, we find that the
proposed scheduling technique improves processor performance
by 12.5% on average over the conventional scheduling and that
performance degradation from a variation-free processor is
only 4.0% on average, when 2 of 4 ALU’s are affected by
variations.

1. Introduction

The advanced semiconductor technologies increase
parameter variations [1]. Parameter variations affect threshold
voltage of transistors and therefore circuit delay also has
variations. This reduces parameter yield and thus is serious for
profitability of semiconductor companies. Fortunately, all
circuits on a single chip are not affected by variations. Hence,
by replacing the variation-affected circuits with variation-
resilience ones, the variation-affected chips can be shipped.
Examples of the variation resilient circuits based on such the
strategy are variable latency and long latency adders [2, 3].
They are simple and clever techniques to manage parameter
variations. Unfortunately, our evaluations show severe
performance degradation. Considering the problem, we propose
an instruction scheduling technique that is aware of variable
latencies. There are a lot of related works regarding instruction
criticality [4, 5, 6]. However, none of them achieves both high
accuracy for identifying critical instructions and simple and
small hardware [7]. This paper proposes the uncriticality-
directed scheduling and the solitary table in order to achieve the
two requirements.

The rest of the present paper is organized as follows.
Section2 summarizes the criticality-directed instruction
scheduling technique, which is previously proposed. Section 3
introduces an instruction scheduling technique directed by
instruction uncriticality. Section 4 introduces evaluation
methodology. Section 5 presents simulation results. Section 6
concludes the paper.

2. Criticality-directed Scheduling

The execution time is determined by the processor’s
computing capability and by dependences between instructions

I0 I2

I3 I4 I6

I5I1

I7I0 I2

I3 I4 I6

I5I1

I7

Figure 1. DFG and Critical Path

Instructions

Short-latency units

Long-latency units

Identified as critical

Otherwise
Instructions

Short-latency units

Long-latency units

Identified as critical

Otherwise

Figure 2. Criticality-directed Scheduling

executed on the processor. The critical path is the longest path
in a data flow graph (DFG), where each node represents an
instruction and each arc represents a dependency between
instructions, and it limits performance of processors with
instruction level parallelism. Figure 1 shows an example of the
DFG, where its critical path consists of instructions I0 -> I3 ->
I4 -> I6 -> I7 if every instruction’s latency is one cycle.

We proposed that a microprocessor has fast functional units
with short latency and slow ones with long latency [6].
Instructions on critical path, which determine the execution time
of the program, are executed in the fast units and the otherwise
are executed in the slow ones, as shown in Figure 2. Using this
scheduling strategy, it is expected that microprocessor
performance is maintained. Since even embedded processors
currently execute instructions in an out-of-order fashion to attain
high performance [8, 9], they can enjoy the strategy. In order to
benefit from the criticality-directed instruction scheduling, some
mechanisms to identify critical path is required.

2.1. Previous work

The critical path is a chain of dependent instructions, which
determines the number of cycles executing the program.
Processor performance is limited by the speed at which it
executes the instructions along the critical path. If we can
identify which instructions are critical, we can accelerate their
execution by any means.

Critical path predictor (CPP) [4, 5, 6] is a technique for
identifying critical instructions dynamically. Exploiting
information regarding instruction criticality is effective for
improving processor performance. While CPP’s can be utilized
for identifying critical path, none of them achieves both

Instructions

Long-latency units

Short-latency units

Identified as uncritical

Otherwise
Instructions

Long-latency units

Short-latency units

Identified as uncritical

Otherwise

Figure 3. Uncriticality-directed Scheduling

simplicity in circuit and accuracy in identification [7]. Complex
circuit consumes additional power and low accuracy seriously
diminishes processor performance.

3. Uncriticality-directed Scheduling
3.1. Architecture overview

While we have studied several techniques to identify critical
instructions for years, we have not yet found any technique that
achieves both simplicity in circuit and high accuracy in
identification [7]. In order to reduce the performance loss due to
poor accuracy in identification, we propose to exploit
instruction uncriticality rather than instruction criticality. Only
uncritical instructions are executed in the slow units, as shown
in Figure 3.

While we have CPP’s to identify critical instructions, there
are not any mechanisms to identify uncritical instructions. Since
the mechanism for identifying critical instructions does not
achieve both simplicity and accuracy [7], it seems difficult to
construct such a mechanism for identifying uncritical
instructions that achieves the both. However, it is not correct.
We can easily identify uncritical instructions.

Out-of-order execution processors have the instruction
scheduling window, where instructions wait for their input
operands. Every instruction can be issued to a functional unit
where it is executed, only when its operands become available.
Here, we call such instructions ready instructions. In the
instruction window, there are two types of ready instructions.
One is instructions that have their dependent instructions in the
instruction window. The other is instructions that do not have
any dependent instructions there. Here, we call the latter ones
solitary instructions. It is not necessary to execute solitary
instructions in hurry, since their execution results will not be
immediately used. They can be executed on the slow units. In
other words, solitary instructions are uncritical.

Figure 4 explains how uncriticality-directed instruction
scheduling works. We use the DFG shown in Figure 1. At time
#0, it is supposed that four instructions, I0 - I3, are in the
instruction window. The dashed box indicates the instruction
window and gray nodes indicate the future instructions, which
have not been dispatched yet. You can see that instructions I0
and I1 are ready instructions. I0 has two dependent instructions,
I2 and I3, while I1 does not have any. That is, I1 is a solitary
instruction and is issued to the slow unit. In contrast, I0 is issued
to the fast unit. At time #1, I0 and I1 have already left the
window, and I4 and I5 are dispatched into the window. Now, I2
and I3 are ready instructions and only I2 is a solitary instruction.
Hence, I3 is issued to the fast unit and I2 is issued to the slow
one. From this example, you can understand how uncriticality-
based scheduling works.

3.2. Identifying solitary instructions

Next, we propose a mechanism to identify solitary

I0 I2

I3 I4 I6

I5I1

I7

Instruction Window

I0 I2

I3 I4 I6

I5I1

I7

Instruction WindowInstruction Window

I0 I2

I3 I4 I6

I5I1

I7

Instruction Window

I0 I2

I3 I4 I6

I5I1

I7

Instruction WindowInstruction Window

time

(a) time #0

(b) time #1

I0 I2

I3 I4 I6

I5I1

I7

Instruction Window

I0 I2

I3 I4 I6

I5I1

I7

Instruction WindowInstruction Window

I0 I2

I3 I4 I6

I5I1

I7

Instruction Window

I0 I2

I3 I4 I6

I5I1

I7

Instruction WindowInstruction Window

time

(a) time #0

(b) time #1

Figure 4. Example of Uncriticality-directed Scheduling

instructions. Before describing its details, we explain register
renaming mechanism.

In order to eliminate anti- and output- dependences, out-of-
order execution processors perform register renaming before
they dispatch instructions into the instruction window. There are
two common ways to implement register renaming. One is using
a separated renaming registers which are usually constructed by
reorder buffer. The other combines the renaming registers with
architected registers in a single register file. We focus on the
latter one. The register renaming mechanism requires a register
mapping hardware, which mainly consists of three structures;
map table, active list, and free list. By means of the map table,
every logical register is mapped into a physical register. The
destination register is mapped to a free physical register which
is supplied by the free list, while operand registers are translated
into the last mapping assigned to them. The old destination
register is kept in the active list. When an instruction is retired,
the old destination register that is allocated by the previous
instruction with the same logical register is freed and placed in
the free list. We utilize the map table in order to identify solitary
instructions.

Figure 5 shows the mechanism to identify solitary
instructions. A small table is attached to the map table. We call
the table solitary table. The solitary table is 1-bit wide and its
entry size is equal to the number of physical registers. Since
conventional processors have only tens of registers, its hardware
budget is very small. In a different view, every register file entry
has an additional 1-bit field. The solitary table works as follows.
(1) When a new physical register is allocated as a destination, its
associated entry in the solitary table is set. (2) When every
instruction refers the map table by its logical source register
number (Ln in the figure) and obtains the corresponding physical
register number (Pm in the figure), its associated entry in the

Ln: logical register#

Pm: physical register#

Pm

0

map table

solitary
table

Ln: logical register#

Pm: physical register#

PmPm

00

map table

solitary
table

Figure 5. Solitary Table

solitary table is reset. (3) Whenever an instruction is issued, it
refers the solitary table by its physical destination register
number. If its associated entry is still set, it is a solitary
instruction.

This mechanism is 100% accurate in identifying solitary
instructions, because all instructions in the instruction window
have updated the solitary table when they are dispatched into
the window. From these observations, we can see that the
solitary table achieves both simplicity in circuit and accuracy in
identification, when it is utilized for uncriticality-based
instruction scheduling.

3.3. Uncriticality-directed Scheduling for Variation-
aware Units

In order to maintain processor performance under process
variations, we propose to combine the variable latency or long
latency ALU with the uncriticality-directed instruction
scheduling. Only uncritical instructions are issued into and
executed on the variable latency or long latency ALU’s.

4. Evaluation Methodology

We implemented our simulator using SimpleScalar/PISA
tool set [10]. Table 1 summarizes processor configurations. In
the rest of this paper, functional unit means integer ALU (iALU).

Six programs from SPEC2000 CINT and six programs from
MediaBench [11] are used. For SPEC programs, 200 million
instructions are skipped before actual simulation begins. After
that each program is executed for 100 million instructions. For
MediaBench, each program is executed from beginning to end.
We do not count NOP instructions.

We consider three cases, where 1, 2, and 3 iALU’s are
affected by variations, respectively, and thus they are replaced
with 2-latency iALU’s. We compare the proposed scheduling
with the conventional one.

Table 1. Processor Configurations

Fetch width 8 instructions
L1 instruction cache 16K, 2 way, 1 cycle

Branch predictor gshare + bimodal
gshare predictor 4K entries, 12 histories

bimodal predictor 4K entries
Branch target buffer 1K sets, 4 way

Dispatch width 4 instructions
Instruction window size 32 entries

Issue width 4 instructions
Integer ALUs 4 units

Integer multipliers 2 units
Floating ALU 1 unit

Floating multiplier 1 unit
L1 data cache ports 2 ports

L1 data cache 16K, 4 way, 2 cycles
Unified L2 cache 8M, 8 way, 10 cycles

Memory Infinite, 100 cycles
Commit width 8 instructions

-10%

0%

10%

20%

30%

gzi vp
r

gc
c pa

r
vo

r bzi ep
c

un
ep

ic jpd jpe mpd mpe

R
ed

uc
tio

n
in

 C
yc

le

1 2 3

Figure 6. Performance Improvement

0%

10%

20%

30%

40%

gzi vp
r

gc
c pa

r
vo

r bzi ep
c

un
ep

ic jpd jpe mpd mpe

In
cr

ea
se

 in
 C

yc
le

s

Conv:1 Conv:2 Conv:3 UCB:1 UCB:2 UCB:3

Figure 7. Increase in Execution Cycles

5. Results

Figure 6 presents how the uncriticality-directed scheduling
improves processor performance over the conventional one. We
use the percentage reduction in execution cycles as a metric. For
each group of three bars, the left one indicates the percentage
reduction for the case where one iALU is affected by variations
and is replaced by a 2-latency iALU. The middle and the right
bars are for the cases where 2 and 3 iALU’s are replaced by the

0

1

2

3

gzi vp
r

gc
c pa

r
vo

r bzi ep
c

un
ep

ic jpd jpe mpd mpe

IP
C

Figure 8. Baseline Performance

2-latency iALU’s, respectively. Only in the case of epic with
one 2-latenct iALU, the uncriticality-directed scheduling
degrades performance. It reduce the execution cycles by 9.9%,
12.5%, and 11.1% for one, two, and three 2-latency iALU
situations, respectively, on average. An interesting observation
is that the effectiveness is largest for two 2-latency iALU case.

Figure 7 explains how the uncriticality-directed instruction
scheduling maintains processor performance under parameter
variations. We use the percentage increase in execution cycles
as a metric. For each group of six bars, the left three bars
(Conv:X) are for the conventional scheduling, and the right
three bars (UCB:X) are for the uncriticality-directed scheduling.
For each group of three bars, the left one indicates the
percentage reduction for the case where one iALU is affected by
variations and is replaced by the 2-latency iALU. The middle
and the right bars are for the cases where 2 and 3 iALU’s are
replaced by the 2-latency iALU’s, respectively.

As you can see, the conventional scheduling degrades
processor performance seriously, especially for the case where
the impact of variations is large. When 3 iALU’s have to be
replaced with the 2-latency iALU’s, processor performance is
decreased by as much as 32.6% with an average of 21.8%. In
contrast, the uncriticality-directed scheduling efficiently
maintains performance. It reduces performance only by 7.9% on
average. Especially in the case of the replacement with one
iALU, performance degradation is negligible and is 2.5% on
average.

From these observations, we found that the uncriticality-
directed instruction scheduling effectively exploit variable
latency iALU’s and thus has variation resilience.

Figure 8 presents the baseline processor performance. We
use instructions per cycle (IPC) as a metric. As you can see, the
shape of the graphs follows the performance improvement
shown in Figure 6. The noticeable exceptions are vortex and
epic. This explains that the more the baseline performance is the
larger the gain from the uncriticality-directed scheduling is.

6. Conclusions

The advanced semiconductor technologies increase
parameter variations, which seriously affect circuit delay.
Recent proposals of variable latency iALU and long latency one
are one solution for managing variations, however, the impact
on processor performance is severe. This paper proposed the

uncriticality-directed instruction scheduling. Only uncritical
instructions are issued to and executed on the long-latency
iALU’s. When 2 of 4 iALU’s are affected by variations, it
improves processor performance by 12.5% on average over the
conventional scheduling, and performance degradation from a
variation-free processor is only 4.0% on average. The
uncriticality-directed instruction scheduling effectively exploit
variable latency iALU’s and thus has variation resilience.

Acknowledgements

This work is partially supported by Grant-in-Aid for
Scientific Research (KAKENHI) (A) # 19200004 from Japan
Society for the Promotion of Science, and by the CREST
program of Japan Science and Technology Agency.

References
[1] S. Borker, “Designing Reliable Systems from Unreliable

Components: The Challenges of Transistor Variability
and Degradation,” IEEE Micro, Vol. 25, No. 6, 2005.

[2] Y. Chen, H. Li, J. Li, and C.-K. Koh, "Variable-latency
Adder (VL-adder): New Arithmetic Circuit Design
Practice to Overcome NBTI," International Symposium
on Low Power Electronics and Design, 2007.

[3] D. Mohapatra, G. Karakonstantis, and K. Roy, "Low-
power Process-variation Tolerant Arithmetic Units Using
Input-based Elastic Clocking," International Symposium
on Low Power Electronics and Design, 2007.

[4] E. Tune, D. Liang, D. M. Tullsen, and B. Calder,
"Dynamic Prediction of Critical Path Instructions," 7th
International Symposium on High Performance Computer
Architecture, 2001.

[5] B. Fields, S. Rubin, and R. Bodik, "Focusing Processor
Policies via Critical-Path Prediction," 28th International
Symposium on Computer Architecture, 2001.

[6] A. Chiyonobu, T. Sato, and I. Arita, “Correlation-based
Critical Path Predictors for Low Power Microprocessors”,
6th International Workshop on Innovative Architecture for
Future Generation High-Performance Processors and
Systems, 2003.

[7] A. Chiyonobu and T. Sato, “Evaluating the Critical Path
Predictors Using Critical Path Detection Criteria”, IPSJ
SIG Technical Report, 2006-ARC-169, Vol. 2006, No. 88,
2006 (in Japanese).

[8] V. Rajagopalan, “New Area and Power - Efficient MIPS
Processors Achieve High Performance”, Microprocessor
Forum, 2007.

[9] T. Sartorius, “The Scorpion Mobile Application
Microprocessor”, Microprocessor Forum, 2007.

[10] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: an
Infrastructure for Computer System Modeling”, IEEE
Computer, Vol. 35, No. 2, 2002.

[11] C. Lee, M. Potkonjak, and W. H. Mangione-Smith,
“MediaBench: a Tool for Evaluating and Synthesizing
Multimedia and Communications Systems”, 30th
International Symposium on Microarchitecture, 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

