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Abstract

We give fairly easy conditions under which a multidimensional diffusion with jumps of
compound-Poisson type possess several global-stability properties: (exponential) ergodicity,
(exponential) β-mixing property, and also boundedness of moments. These are important
to statistical inference under long-time asymptotics. The underlying technique used in this
article is based on Masuda (2007), but we here utilize an explicit “T -chain”, which enables
us to include almost arbitrary finite-jump parts under nondegeneracy of the diffusion part
without reference to topological continuity of the original transition semigroup.

AMS mathematics subject classification (2000) : 37A25, 60J25, 65C30.

Keywords : boundedness of moments, diffusion with compound-Poisson jumps, (exponential)
ergodicity, (exponential) β-mixing property.

1 Introduction and statement of results

When attempting statistical inference for a continuous-time stochastic process X = (Xt)t∈[0,T ]

based on “long-time asymptotics”, that is, T → ∞, most often (but not always!) required are
a law of large numbers, typically referred to as ergodicity. Moreover, in case of higher-order
inference a fast decay of a mixing coefficient (see Section 1.3) is indispensable; of course, this
is also the case for discrete-time time series, see Liebscher (2005) and the references therein.
Previously, for general multidimensional diffusions with possibly infinitely many jumps, Masuda
(2007), henceforth referred to as [M] (with the corrections to as [M-Corrections]), derived suffi-
cient conditions for such global stabilities. Although the results in [M] and [M-Corrections] are
sufficiently general to cover a wide range of diffusions with jumps, the conditions include a kind
of topological continuity of the transition semigroup (see [M, Assumption 2] and [M-Corrections,
Assumption 2(a)′]), for which one may be forced to consult some advanced results on existence
and smoothness of a transition density: this may cause some inconvenience to readers unfamiliar
with such results.

The purpose of this article is to provide fairly easy conditions for the above-mentioned global
stabilities of X when the diffusion coefficient is non-degenerate and the jump intensity is finite.
Our emphasize here is put on ease of verification of the conditions rather than pursuing the
greatest generality. The scenario of the proofs we will take here is in parallel with that in [M],
except that we will utilize the “T -chain property” of a skeleton chain of X in an explicit way:
actually, this enables us to pick out a nice property of the diffusion coefficient with leaving the
finite-jump part almost arbitrary.

In the rest of this section we describe our objective and results, part of which are applicable
to much more general diffusions with jumps than our main objective (1) below. The proofs are
given in Section 2.
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1.1 Objective

Let X = (Xt)t∈R+ be a d-dimensional càdlàg 1 Markov process given by the time-homogeneous
Itô’s stochastic differential equation

dXt = b(Xt)dt + σ(Xt)dwt +
∫ t

0

∫
ζ(Xt−, z)µ(dt, dz), (1)

where X is defined on some filtered probability space (Ω,F , (Ft)t∈R+ , P) and:

• the coefficients b : Rd → Rd, σ : Rd → Rd ⊗ Rd, and ζ : Rd × Rr → Rd are measurable;

• w is a d-dimensional standard Wiener process;

• µ is a time-homogeneous Poisson random measure on R×Rr\{0} with Lévy measure ν(dz);
and,

• the initial variable X0 is F0-measurable and independent of (w, µ).

We will suppose that ν(Rr) < ∞, which implies that the number of jumps of X is a.s. locally
finite, and that the stochastic integral with respect to µ in the right-hand side of (1) is well defined.
The process X is called diffusion with compound-Poisson jumps, which extends the diffusion
process (where ζ ≡ 0) and constitutes a broad class of stochastic processes accommodating
accidental large variation in addition to diffusive small fluctuation; consult the references in [M]
for a comprehensive account for theory of general diffusion with jumps.

We will write E for the expectation operator and η for the law of X0, and denote by (Pt)t∈R+

the transition semigroup of X, namely, Pt(x, dy) = P[Xt ∈ dy|X0 = x]. Also, we will write
Pη (resp. Eη) instead of P (resp. E) when emphasizing the dependence on η. The symbol Px

corresponds to the case of η = δx for some x ∈ Rd, where δx stands for the Dirac delta measure
at x.

1.2 Assumptions

For a matrix M = (M ij), let |M | := {
∑

i,j(M
ij)2}1/2 and M⊗2 := MM>. Let ∂xi (resp. ∂2

xixj
)

stand for the partial derivations with respect to xi (resp. xj and then xi). Write a . a′ if a ≤ ca′

for some generic constant c > 0.
We introduce the following conditions on X given by (1).

[C1] For every x1, x2 ∈ Rd and z1, z2 ∈ Rr, we have ζ(x1, 0) = 0 and

|b(x1) − b(x2)| + |σ(x1) − σ(x2)| . |x1 − x2|,
|ζ(x1, z1) − ζ(x2, z1)| . |z1||x1 − x2|,
|ζ(x1, z1) − ζ(x1, z2)| . ρ(x1)|z1 − z2|,

where ρ : Rd → R+ is a locally bounded function such that |ζ(x, z)| ≤ ρ(x)|z| for every (x, z)
and that lim|x|→∞ ρ(x)/|x| = 0.

[C2] ν is nonnull and satisfies that ν(Rr) < ∞.

[C3] The functions x 7→ b(x) and x 7→ σ(x) are of class C2, and satisfy:

• sup
x∈Rd

max
1≤i≤d

{|∂xib(x)| + |∂xiσ(x)|} < ∞;

• ∃r > 0 s.t. ∀x ∈ Rd max
1≤i,j≤d

{|∂2
xixj

b(x)| + |∂2
xixj

σ(x)|} . (1 + |x|r); and

• ∃R ≥ 1 s.t. ∀x ∈ Rd R−1Id ≤ σ⊗2(x) ≤ RId, with Id denoting the d-dimensional identity
matrix.

1A function t 7→ xt on R+ is called càdlg̀ if it is right-continuous and if lims↑t,s<t xs exists for each t > 0.
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Recall that under [C1] the stochastic differential equation (1) admits a unique solution, which
is (Ft)-adapted, non-explosive, càdlàg, strong-Markov, and weak-Feller.

We need two more conditions. For q > 0 and x = (xi)d
i=1 ∈ Rd\{0}, we write

Bq(x) = q|x|q−2x>b(x),

Dq(x) =
1
2
q|x|q−2trace

{(
(q − 2)[xixj ]di,j=1|x|−2 + Id

)
σ(x)σ(x)>

}
,

Gq(x) = Bq(x) + Dq(x),

Jq(x) = {ρ(x)}2|x|q−2 + {ρ(x)}q + |x|q−1ρ(x)1(1,∞)(q),

where 1(1,∞)(q) is defined to be 0 or 1 according as q ∈ (0, 1] or q ∈ (1,∞): note that x 7→ Gq(x)
is formally the diffusion part of the generator of X applied to the function x 7→ |x|q.

[E] At least one of the following two holds true.

• There exists a constant q > 0 such that
∫
|z|>1

|z|qν(dz) < ∞ and that:

(i) ∃c > 0 s.t. Gq(x) ≤ −c for every |x| large enough; and
(ii) lim

|x|→∞
Jq(x) = 0.

• There exists a constant q > 0 such that
∫
|z|>1

|z|qν(dz) < ∞ and that:

(i’) Bq(x) → −∞ as |x| → ∞; and
(ii’) lim

|x|→∞
{Dq(x) ∨ Jq(x)}/Bq(x) = 0.

[EE] There exist constants q > 0 and c′ > 0 such that
∫
|z|>1

|z|qν(dz) < ∞ and that

Gp(x) ≤ −c′|x|q

for every |x| large enough.

Of course, we can simplify the conditions if (σ, ρ) does not become so large for |x| → ∞.
Clearly, we can replace “Gq(x)” with “Bq(x)” in [E](i) if σ(x) = o(|x|1−q/2). Also, as∣∣∣∣Dq(x) ∨ Jq(x)

Bq(x)

∣∣∣∣ . {|σ(x)| ∨ ρ(x)}2

|x>b(x)|
+

{(
ρ(x)
|x|

)q

+ 1(1,∞)(q)
ρ(x)
|x|

}
|x|2

|x>b(x)|
,

the condition [E](ii’) is fulfilled as soon as {|σ(x)| ∨ ρ(x)}2/|x>b(x)| → 0 and |x|2/|x>b(x)| → 0.
Moreover, we can replace “Gq(x) ≤ −c′|x|q” with “x>b(x)/|x|2 ≤ −c′” in [EE] if σ(x) = o(|x|).

1.3 Main results

The β-mixing (absolute-regular) coefficient of X say βX(t) is given by

βX(t) = sup
s∈R+

∫
‖Pt(x, ·) − ηPs+t(·)‖ηPs(dx),

where ηPt = L(Xt) and ‖m‖ stands for the total variation norm of a signed measure m. Then
X is called:

• β-mixing if βX(t) = o(1) for t → ∞;
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• exponentially β-mixing if there exists a constant γ > 0 such that βX(t) = O(e−γt) for
t → ∞.

Now we can state our main result of this article.

Theorem 1.1. Suppose [C1], [C2], and [C3].

(a) Suppose additionally [E]. Then (Pt) admits a unique invariant law π for which

‖Pt(x, ·) − π(·)‖ → 0

as t → ∞ for every x ∈ Rd, and X is β-mixing for any η.

(b) Suppose additionally [EE]. Then (Pt) admits a unique invariant law π fulfilling∫
|x|qπ(dx) < ∞, (2)

for which there exist constants a, c > 0 such that

‖Pt(x, ·) − π(·)‖ ≤ c(1 + |x|q)e−at

for every x ∈ Rd and t ∈ R+. If moreover
∫
|x|qη(dx) < ∞, then there exist constants a′ > 0

and c′ > 0 such that βX(t) ≤ c′e−a′t for each t ∈ R+, hence exponentially β-mixing.

In both cases we have the ergodic theorem: for every π-integrable F

1
T

∫ T

0

F (Xt)dt →
∫

F (x)π(dx) (3)

as T → ∞ in Pη-probability whatever η is.

Remark 1.2. We can also consult the preceding Kulik (2007) for an exponential β-mixing result
for σ ≡ 0; in this case, we inevitably need some nondegeneracy conditions on the jump part.

Remark 1.3. Even in the first-order inference (such as M -estimation) concerning X, the bound-
edness of moments in the sense that, e.g.,

sup
t∈R+

Eη[|Xt|k] < ∞ (4)

for sufficiently large k > 0, may be also crucial in order to deduce suitable limit theorems for
estimating functions. We note that (4) can be readily verified by using [M, Theorem 2.2 (i)]
without any topological continuity condition of (Pt). The tail behavior of ν determines possible
range of k in (4); specifically, one can take k ≤ q with q appearing in [E] or [EE], so that we
have (4) for every k > 0 as soon as

∫
|z|>1

|z|qν(dz) < ∞ for every q > 0.

Finally, let us mention that it is possible to deduce the (exponential) β-mixing property and
variants of the uniform boundedness (4) under different sets of conditions. Among others, we here
focus on the case where the drift function b is bounded and ν admits an exponential moments
outside a neighborhood of the origin. In this instance we can derive the same conclusion as
in Theorem 1.1(b), and moreover an exponential-moment version of (4) as was done by a part
of Gobet (2002) for diffusions. Before stating the result, we introduce new sets of (stronger)
conditions.

[C1b] In addition to [C1], b and ρ are bounded.

[C3b] ∃R ≥ 1 s.t. ∀x ∈ Rd R−1Id ≤ σ⊗2(x) ≤ RId.
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[EEb] There exist constants r > 0 and c0 > 0 such that
∫
|z|>1

exp(r|z|)ν(dz) < ∞ and that

x>b(x) ≤ −c0|x|

for every |x| large enough.

Then we have:

Theorem 1.4. Suppose [C1b], [C2], [C3b], and [EEb]. Then the same statement as in Theo-
rem 1.1(b) with “[EE]” replaced by “[EEb]” holds true. Moreover, there exists a constant r0 > 0
such that:

• for any r1 ∈ [0, r0) we have
∫

exp(r1|x|)π(dx) < ∞; and that

• for any r2 ∈ [0, r0) meeting
∫

exp(r2|x|)η(dx) < ∞ we have

sup
t∈R+

Eη[exp(r2|Xt|)] < ∞. (5)

We proceed to some useful lemmas.

1.4 Some lemmas applicable to more general setup

Here we prepare some lemmas, part of which will be used in the proof of Theorem 1.1. The
following Lemma 1.5, 1.6, and 1.7 are slight refinements of Lemma 2.4, 2.5(i), and 3.9 of [M],
respectively, and they can actually work on much more general diffusions with jumps than (1).

In Lemmas 1.5 and 1.6 below, we forget the objective (1), and instead deal with the general
diffusion with jumps given by

dX ′
t = b(X ′

t)dt + σ(X ′
t)dwt

+
∫ t

0

∫
|z|≤1

ζ(X ′
t−, z)µ̃(dt, dz) +

∫ t

0

∫
|z|>1

ζ(X ′
t−, z)µ(dt, dz), (6)

where µ̃(dt, dz) = µ(dt, dz) − ν(dz)dt denotes the compensated Poisson random measure; note
that X ′ is much more general than X. We used the same notation as in (1) for the coefficient of
the stochastic differential equation (6) just for the convenience; for X ′, we will consistently put
the descriptions of [C1], [E], and [EE] to use.

To state the lemmas we need some more notation. As in [M], let Q denote the set of all C2

functions f : Rd → R+ such that there exists a locally bounded measurable function f̄ for which∫
|z|>1

f(x + ζ(x, z))ν(dz) ≤ f̄(x)

for every x ∈ Rd, and put Q∗ = Q∩{f : Rd → R+| f(x) → ∞ as |x| → ∞}. Define the extended
generator A of X ′ by

Af = Gf + J∗f + J ∗f (7)

for f ∈ Q, where

Gf(x) = ∇f(x)b(x) +
1
2
trace{∇2f(x)σ(x)σ(x)>},

J∗f(x) =
∫
|z|≤1

(
f(x + ζ(x, z)) − f(x) −∇f(x)ζ(x, z)

)
ν(dz),

J ∗f(x) =
∫
|z|>1

(
f(x + ζ(x, z)) − f(x)

)
ν(dz).

The function x 7→ Af(x) is actually well defined and locally bounded as soon as f ∈ Q (see [M,
Section 3.1.2] for details). Now let us recall the drift conditions used in [M] (the conditions [D]
and [D∗] below are termed Assumption 3 and Assumption 3∗ in [M], respectively):
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[D] There exist f ∈ Q and a constant c > 0 such that Af(x) ≤ −c for every |x| large enough.

[D∗] There exist f ∈ Q∗ and a constant c′ > 0 such that Af(x) ≤ −c′f(x) for every |x| large
enough.

In [M], we have seen that the β-mixing property (resp. the exponential β-mixing property)
can be derived under the following three kinds of conditions (see Section 2.1 for more detail):
[C1], a kind of irreducibility and continuity of the transition semigroup (cf. Assumption 2 of
[M]), and drift conditions [D] (resp. [D∗]). The next lemma serves as a tool for verification of
the last one.

Lemma 1.5. Under [C1] there exists an f ∈ Q∗ for which [D] (resp. [D∗]) holds true, if [E]
(resp. [EE]) is additionally fulfilled;

The scenario of the proof is equal to Kulik (2007, Proposition 4.1), which previously obtained
[D∗] in case of σ ≡ 0. However, in Section 2.3 we will give a full proof in order to clarify how to
derive [D].

The next one is a refinement of [M, Lemma 2.5(i)] dealing with a very heavy-tailed ν, but we
do not use it in this article.

Lemma 1.6. Suppose [C1] and ∫
|z|>1

log(1 + |z|)ν(dz) < ∞, (8)

and that |σ(x)| = o(|x|) for |x| → ∞. Furthermore, suppose that

lim sup
|x|→∞

x>b(x)
|x|(1 + |x|)

< 0. (9)

Then there exists an f ∈ Q∗ for which [D] holds true.

We end with the following lemma, which can apply to general continuous-time Markov pro-
cesses.

Lemma 1.7. Let Y = (Yt)t∈R+ be a Markov process taking its values in a locally compact
separable metric space (Y,B(Y)), B(Y) denoting the Borel field on Y. Let η, (Pt)t∈R+ , and
βY (t) respectively denote initial distribution, transition semigroup, and β-mixing coefficient of
Y . Suppose that there exists a probability measure π on (Y,B(Y)) for which

Vt(y) := ‖Pt(y, ·) − π(·)‖ → 0

as t → ∞ for every y ∈ Y. Then, for each t ∈ R+ and u ∈ (0, t) we have

βY (t) ≤ η(Vt) + 2η(Vu) + π(Vt−u). (10)

Especially:

(a) Y is β-mixing for any η;

(b) βY (t) . δ(t/2) for each t ∈ R+ if Vt(y) ≤ h(y)δ(t) for a finite measurable function
h : Y → R+ and a nonincreasing function δ : R+ → R+ and if π(h) ∨ η(h) < ∞.
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2 Proofs

2.1 Proof of Theorem 1.1

The scenario of the proof is essentially based on [M, Theorems 2.1 and 2.2] for the most part,
that is, we will achieve the proof through “weak-Feller property”, “open-set irreducibility and
T -chain property of some skeleton chain”, and “Foster-Lyapunov drift conditions”. However, as
mentioned in Introduction, differently from [M] we will here utilize an explicit T -chain kernel
given by (12) below.

As in [M], we will apply Meyn and Tweedie (1993b, Theorems 5.1 and 6.1) for the ergodic
properties, i.e., ‖Pt(x, ·) − π(·)‖ → 0 or ‖Pt(x, ·) − π(·)‖ ≤ c(1 + |x|q)e−at mentioned in the
statement; see also [M, Corrections]. There one of the crucial steps is to prove that

every compact sets are petite for some skeleton chain (X∆m)m∈Z+ , (?)

where Z+ := N∪ {0}, and ∆ > 0 is some constant: see Meyn and Tweedie (1993a) for a detailed
account for the notion of petite sets. X is a non-explosive right process under [C1], so that, in
order to prove Theorem 1.1 it is sufficient to show:

• “(?) and [D]” for (a);

• “(?) and [D∗]” for (b).

(see Section 1.4 for the definitions of [D] and [D∗].) This sufficiency follows from the argument
in the fist paragraph of [M, Section 3.1.1]. The drift conditions [D] and [D∗] can be verified by
means of Lemma 1.5. Also, under [EE] we immediately get

∫
|x|qπ(dx) < ∞; see [M, the last

paragraph in p.50]. Furthermore, the ergodic theorem (3) is a direct consequence of [E]; see [M,
Theorem 2.1].

On the other hand, the property (?) is not straightforward to verify as such. Let us first
describe the outline of the proof. We will make use of the fact that (?) is implied by the following
two conditions (at least for one ∆ > 0):

[T1] (Open-set irreducibility) For every open set O ⊂ Rd and every x ∈ Rd, there exists a
constant m = m(x,O) ∈ N for which Px[Xm∆ ∈ O] > 0;

[T2] (T -chain property with sampling distribution being δ∆) there exists a kernel T∆ : Rd ×
B(Rd) → [0, 1] such that

(i) x 7→ T∆(x,A) is lower semicontinuous for every A ∈ B(Rd), that

(ii) P∆(x,A) ≥ T∆(x,A) for every x ∈ Rd and A ∈ B(Rd), and that

(iii) T∆(x, Rd) > 0 for every x ∈ Rd.

Actually, if [T1] and [T2] are fulfilled for some ∆ > 0, then (?) follows from Meyn and Tweedie
(1993a, the last half of Theorem 6.2.5(ii)). This together with direct applications of Lemmas 1.5
and 1.7 yields the claims of Theorem 1.1; we need to verify (2) when applying Lemma 1.7(b),
but this readily follows from Meyn and Tweedie (1993b) under the conditions, see [M, Theorem
2.2(ii)] for details.

Building on the observations above, we see that it suffices to prove [T1] and [T2].

Proof of [T1]. Take any x ∈ Rd, and define a diffusion Y = (Yt)t∈R+ by

Yt = x +
∫ t

b(Ys)ds +
∫ t

0

σ(Ys)dws. (11)

In view of [M, the proof of Claim 1 under Assumption 2(a) in Proposition 3.1] (see also [M-
Corrections]), we see that it suffices to show that Px[Y∆ ∈ O′] > 0 for any open O′ ⊂ Rd; for any
∆ > 0, the event E∆ := {ω ∈ Ω|µ((0, ∆], Rr\{0}) = 0} on which X and Y coincide over [0, ∆]
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has positive probability as P[E∆] = e−λ∆ > 0 under [C2], where λ := ν(Rr) > 0. Now, on the
event E∆ we can apply Gobet (2002, Proposition 1.2), see also Azencott (1984), under [C1] and
[C3] to conclude the existence of an everywhere positive transition density (t, x, y) 7→ pt(x, y)
fulfilling supy∈Rd supx∈K pt(x, y) for each t > 0 and compact K ⊂ Rd. Thus [T1] holds true for
any ∆ > 0 under [C1], [C2], and [C3].

Proof of [T2]. Again fix any x ∈ Rd. In [M], the existence of a bounded transition density of
the “original X” was supposed. We will weaken this point by reducing the situation to Y given
by (11). Specifically, we set T∆(x,A) = Px[{X∆ ∈ A} ∩E∆]. Since on the event E∆ the original
X agrees with Y over the time interval [0, ∆] (Px-a.s.), by means of the independence between
w and µ we have

T∆(x,A) = Px[Y∆ ∈ A]P[E∆] (12)

for every x ∈ Rd and A ∈ B(Rd). Obviously we have [T2](ii). Reminding that P[E∆] > 0 under
[C2], we also get [T2](iii). So it remains to prove [T2](i), and to this end we will utilize Cline
and Pu (1998, Lemma 3.1) as in [M].

Fix any ε > 0 and compact K1,K2 ⊂ Rd. Now take any δ > 0 such that

δ < ε

(
P[N∆] sup

y∈Rd

sup
x∈K1

p∆(x, y)
)−1

, (13)

and then fix any A ⊂ K2 such that `(A) < δ, where ` stands for the Lebesgue measure on Rd.
According to (12) and (13) we have

sup
x∈K1

T∆(x,A) = P[N∆] sup
x∈K1

Px[Y∆ ∈ A]

= P[N∆] sup
x∈K1

∫
A

p∆(x, y)dy

≤ `(A)
(

P[N∆] sup
y∈Rd

sup
x∈K1

p∆(x, y)
)

< δ

(
P[N∆] sup

y∈Rd

sup
x∈K1

p∆(x, y)
)

< ε,

verifying the condition (i) of Cline and Pu (1998, Lemma 3.1). On the other hand, since the
diffusion Y is weak-Feller under [C1], the lower semicontinuity of x 7→ T∆(x,O′) for every open
O′ ⊂ Rd follows on account of (12), cf. Meyn and Tweedie (1993a, Proposition 6.1.1(i)):

lim inf
y→x

T∆(y,O′) =
(

lim inf
y→x

Py[Y∆ ∈ O′]
)

P[E∆] ≥ Px[Y∆ ∈ O′]P[E∆] = T∆(x,O′).

This verifies the condition (ii) of Cline and Pu (1998, Lemma 3.1), thereby yielding the lower
semicontinuity of x 7→ T∆(x,A) for any A ∈ B(Rd). Thus the proof of [T2] is complete.

2.2 Proof of Theorem 1.4

This can be achieved in much the same way as in the proof of Theorem 1.1, so we will only
mention the points.

We note that in the proof of Theorem 1.1 the condition [C3] is used in order to the existence of
an everywhere positive bounded transition density of the diffusion Y given by (11), which leads to
(?). Under the present situation the existence can be verified by invoking Stroock and Varadhan
(1979, Theorem 3.2.1). Therefore, it remains to look at the drift condition [D∗] and (5); as in
Theorem 1.1, that “for any r1 ∈ [0, r0) we have

∫
exp(r1|x|)π(dx) < ∞” in the statement follows

from [D∗].
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Let f : Rd → R+ be a C2 function such that f(x) = exp(α|x|) for |x| ≥ 1, where α > 0
is a constant, and that f(x) ≤ exp(α|x|) for every x ∈ Rd. Suppose α ∈ (0, r/m), then, since
m := supx |b(x)| ∨ supx ρ(x) is finite under [C1b], we have∫

|z|>1

f(x + ζ(x, z))ν(dz) ≤ exp(α|x|)
∫
|z|>1

exp(αm|z|)ν(dz) . exp(α|x|),

so that f ∈ Q∗. Below we will control α ∈ (0, r/m) in order to verify [D∗] and (5).
Let us recall (7), which here reads (X is given by (1))

Af(x) = Gf(x) +
∫ (

f(x + ζ(x, z)) − f(x)
)
ν(dz). (14)

Let |x| ≥ 1 in the sequel. Simple algebra leads to

∇f(x) =
α

|x|
x, (15)

∇2f(x) = αf(x)
(

α

|x|2
[xixj ]di,j=1 +

1
|x|

Id − 1
|x|3

[xixj ]di,j=1

)
. (16)

First, for the jump part Taylor’s formula gives∣∣∣∣ ∫ (
f(x + ζ(x, z)) − f(x)

)
ν(dz)

∣∣∣∣ ≤ αρ(x)
∫ {

sup
0≤u≤1

|∇f(x + uζ(x, z))|
}
|z|ν(dz)

≤ αmf(x)
∫

|z| exp(αm|z|)ν(dz),

. αf(x). (17)

Also, it follows from [C3b], (15), and (16) that Gf(x) takes the form of

Gf(x) = αf(x)
{

x>b(x)
|x|

+ Dα(x)
}

, (18)

where |Dα(x)| . α+o(1) for |x| → ∞. Substituting (17) and (18) together with [EEb] into (14),
we arrive at the relation

Af(x) ≤ αf(x){−c0 + c1α + o(1)} (19)

for some constant c1 > 0 and for |x| → ∞. Hence [D∗] follows on letting α be sufficiently
small. Once [D∗] is verified, we can readily derive the moment bound (5) as in [M, pp.50–51]
and [M-Corrections, Remark 3]. The proof of Theorem 1.4 is thus complete.

2.3 Proof of Lemma 1.5

Let q > 0 be as given in [E] or [EE]. In analogy with [M] and [M-Corrections], we will target
at a C2 function f : Rd → R+ such that f(x) = |x|q for |x| ≥ 1, and that f(x) ≤ |x|q for every
x ∈ Rd: we know that f ∈ Q∗, see [M, Lemma 2.3]. We are going to show that this kind of f
serves as the required function.

First we look at [D]. For every |x| ≥ 1 we have

Gf(x) = Gq(x). (20)

By means of [C1] we can find a constant K ′ ≥ 1 such that

1
2
|x| ≤ inf

|z|≤1,u∈[0,1]
|x + uζ(x, z)| ≤ sup

|z|≤1,u∈[0,1]

|x + uζ(x, z)| ≤ 3
2
|x|

9



as soon as |x| ≥ K ′, since we have

1 − ρ(x)
|x|

≤ |x + uζ(x, z)|
|x|

≤ 1 +
ρ(x)
|x|

for every x ∈ Rd, z ∈ Rr such that |z| ≤ 1, and u ∈ [0, 1]. Therefore Taylor’s formula yields that

J∗f(x) . |x|q−2{ρ(x)}2

∫
|z|≤1

|z|2ν(dz) . |x|q−2{ρ(x)}2 (21)

for every |x| ≥ 2K ′. As for J ∗f , first we consider q ∈ (0, 1]. we can apply the inequality
|A + B|q ≤ |A|q + |B|q valid for q ∈ (0, 1] to get

J ∗f(x) ≤
∫
|z|>1

(|x + ζ(x, z)|q − |x|q)ν(dz) ≤ {ρ(x)}q

∫
|z|>1

|z|qν(dz) . {ρ(x)}q, (22)

using the presupposed property f(x) ≤ |x|q for every x ∈ Rd. In case of q > 1 we similarly obtain

J ∗f(x) . |x|q−1ρ(x)
∫
|z|>1

|z|ν(dz) + {ρ(x)}q

∫
|z|>1

|z|qν(dz)

. |x|q−1ρ(x) + {ρ(x)}q (23)

Putting (21), (22) and (23) together, we have

J∗f(x) + J ∗f(x) . Jq(x) (24)

for every |x| ≥ 2K ′. It follows from (20) and (24) that there exists a constant c0 > 0 such that

Af(x) ≤ Gq(x) + c0Jq(x) = Bq(x) + Dq(x) + c0Jq(x) (25)

for every |x| large enough, from which [D] follows on [E].

As for [D∗], in view of (25), [C1], and [EE] we see that

Af(x) ≤ |x|q
[
Gq(x)
|x|q

+ c0

{(
ρ(x)
|x|

)2

+
(

ρ(x)
|x|

)q

+ 1(1,∞)(q)
ρ(x)
|x|

}]
. |x|q{−c′ + o(1)}

for |x| → ∞, yielding [D∗]. The proof of Lemma 2.3 is thus complete.

2.4 Proof of Lemma 1.6

The proof is analogous to [M-Corrections], so we only give a sketch.
Let f : Rd → R+ fulfil that f(x) = log(1 + |x|) for |x| ≥ 1, and that f(x) ≤ log(1 + |x|) for

every x ∈ Rd. In this case we have f ∈ Q∗ (cf. [M, Lemma 2.3]), and

∇f(x) =
1

|x|(1 + |x|)
x>, |x| ≥ 1,

|∇2f(x)| = O(|x|−2), |x| → ∞.

Therefore Taylor’s formula and [C1] give J∗f(x) . (ρ(x)/|x|)2 = o(1). Further, in view of the
choice of f made above we get

J ∗f(x) ≤
∫
|z|>1

log
(

1 +
ρ(x)

1 + |x|
|z|

)
ν(dz)

for |x| large enough, the upper bound tending to 0 as |x| → ∞ by means of the condition (8),
the dominated convergence theorem, and [C1]. Thus, taking the condition on σ into account we
have

Af(x) ≤ x>b(x)
|x|(1 + |x|)

+ o(1),

and accordingly Lemma 1.6 follows on (9).

10



2.5 Proof of Lemma 1.7

The proof consists of a modification of Liebscher (2005, Proposition 3). By triangular inequality
we see that βY (t) ≤ βY,1(t) + βY,2(t), where

βY,1(t) := sup
s∈R+

‖ηPt+s(y, ·) − π(·)‖,

βY,2(t) := sup
s∈R+

∫
‖Pt(y, ·) − π(·)‖ηPs(dy).

Since t 7→ Vt(y) is nonincreasing for each y ∈ Y, we have

βY,1(t) ≤
∫

sup
s∈R+

‖Pt+s(y, ·) − π(·)‖η(dy) ≤
∫

‖Pt(y, ·) − π(·)‖η(dy) = η(Vt). (26)

Next, fix any u ∈ (0, t). Using the Chapman-Kolmogorov relation Pt1+t2 = Pt2Pt1 for any
t1, t2 ∈ R+, and using the fact supt∈R+,y∈Y |Vt(y)| ≤ 2, we get

βy,2(t) ≤ sup
s∈R+

∫∫
Vt−u(x)Pu(y, dx)ηPs(dy)

= sup
s∈R+

∫∫
Vt−u(x)Ps+u(z, dx)η(dz)

≤ 2 sup
s∈R+

∫
Vs+u(z)η(dz) + π(Vt−u)

≤ 2η(Vu) + π(Vt−u). (27)

Combining (26) and (27) thus yields (10). Now (a) is obvious by taking u = t/2 in (10) and then
applying the dominated convergence theorem. Also, under the assumptions it directly follows
from (10) that βY (t) . δ(u ∧ (t − u)), leading to (b) again by taking u = t/2. The proof of
Lemma 1.7 is complete.
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