A characterization of the existence of a pure－ strategy Nash equilibrium

Sato，Junichi
Graduate School of Mathematics，Kyushu University
Kawasaki，Hidefumi
Faculty of Mathematics，Kyushu University
https：／／hdl．handle．net／2324／9474

出版情報：2008－03－07．Faculty of Mathematics，Kyushu University
バージョン：
権利関係：

MHF Preprint Series

Kyushu University
21st Century COE Program
Development of Dynamic Mathematics with High Functionality

A characterization of the existence of a pure-strategy Nash equilibrium

J. Sato \& H. Kawasaki
MHF 2008-5

(Received March 7, 2008)

Faculty of Mathematics
Kyushu University
Fukuoka, JAPAN

A characterization of the existence of a pure-strategy Nash equilibrium. *

Jun-ichi $\mathrm{SATO}^{\dagger} \quad$ Hidefumi KAWASAKI ${ }^{\ddagger}$

Abstract

In this paper, we consider a non-cooperative n-person game in the strategic form. As is well known, the game has a mixed-strategy Nash equilibrium. While, it does not always have a pure-strategy Nash equilibrium. Wherein, Iimura (2003), and Sato and Kawasaki (to appear in Taiwanese J Math) provided a sufficient condition for the game to have a pure-strategy Nash equilibrium. This paper has two aims. The first is to extend the authors' sufficient condition. The second is to give a necessary condition for the existence of a pure-strategy Nash equilibrium in the case of two persons. In both sections, monotonicity of the best response correspondences plays the central role.

Keywords: pure-strategy, Nash equilibrium, non-cooperative n-person game, bimatirix game, fixed point theorem

1 Introduction

In this paper, we consider the non-cooperative n-person game $G=\left\{N,\left\{S_{i}\right\}_{i \in N},\left\{p_{i}\right\}_{i \in N}\right\}$, where

- $N:=\{1, \ldots, n\}$ is the set of players.
- For any $i \in N, S_{i}$ denotes the finite set, with a total order \leqq_{i}, of player i 's pure strategies. An element of this set is denoted by s_{i}.
- $p_{i}: S:=\prod_{j=1}^{n} S_{j} \rightarrow \mathbb{R}$ denotes the payoff function of player i.

It is well known that we can prove the existence of a mixed-strategy Nash equilibrium, originally introduced by Nash (1950, 1951), applying Kakutani's fixed point theorem (Kakutani

[^0]1941) to the best response correspondence.

On the other hand, there are few unified results proving the existence of a pure-strategy Nash equilibrium. Iimura (2003) provided a discrete fixed point theorem based on discrete convex analysis, originally proposed by Murota (2003), and Brouwer's fixed point theorem (Brouwer 1912). As an application thereof, he defined a class of non-cooperative n-person games that certainly have a pure-strategy Nash equilibrium. Sato and Kawasaki (to appear) have provided a discrete fixed point theorem based on monotonicity of the mapping, and have given a class of non-cooperative n-person games that also certainly have a pure-strategy Nash equilibrium. However, these results are concerned with only sufficiency for the existence of a pure-strategy Nash equilibrium.

This paper has two aims. The first is to extend the class of non-cooperative n-person games provided in (Sato and Kawasaki to appear), that certainly have a pure-strategy Nash equilibrium. We introduce "partial monotonicity" in Section 3. The second aim is to show that the partial monotonicity is necessary for the existence of a pure-strategy Nash equilibrium in a bimatrix game. This is discussed in Section 4. In order to achieve our goal, we use a directed graphic representation of set-valued mappings.

2 Preliminaries

Since S is the product of finite sets S_{i} 's, it is also finite, say, $S=\left\{s^{1}, \ldots, s^{m}\right\}$. For any non-empty set-valued mapping F from S to itself, we define a directed graph $D_{F}=\left(S, A_{F}\right)$ by $A_{F}=\left\{\left(s^{i}, s^{j}\right): s^{j} \in F\left(s^{i}\right), s^{i}, s^{j} \in S\right\}$. For any selection f of F, that is, $f(s) \in F(s)$ for all $s \in S$, we similarly define a directed graph D_{f}. For any $s \in S$, we denote by $\operatorname{od}(s)$ and $\operatorname{id}(s)$ the outdegree and indegree of s, respectively. Then, $\operatorname{od}(s) \geq 1$ for D_{F}, and $\operatorname{od}(s)=1$ for D_{f}.

Definition 2.1 (Cycle of length l) We say a set-valued mapping F has a directed cycle of length l if there exists l and distinct points $\left\{s^{i_{1}}, s^{i_{2}}, \ldots, s^{i_{l}}\right\}$ of S such that $s^{i_{1}} \in F\left(s^{i_{l}}\right)$ and $s^{i_{k+1}} \in F\left(s^{i_{k}}\right)$ for all $k \in\{1, \ldots, l-1\}$.

Example 2.1 Take $S=\left\{s^{1}, \ldots, s^{9}\right\}$ and define a non-empty set-valued mapping F by the following directed graph. For example, $F\left(s^{6}\right)=\left\{s^{2}, s^{3}, s^{5}, s^{8}\right\}, F\left(s^{7}\right)=\left\{s^{7}, s^{8}\right\}$ and etc. It is clear that $\left\{s^{7}\right\},\left\{s^{3}, s^{6}\right\},\left\{s^{6}, s^{8}, s^{9}\right\}$ and $\left\{s^{1}, s^{4}, s^{5}, s^{2}\right\}$ are directed cycles of length $1,2,3$ and 4 , respectively.

We now prove the following lemma required later:

Lemma 2.1 If D_{f} is connected in the sense of the undirected graph, then f has only one directed cycle.

Proof. We start with an arbitrary $s \in S$. Since S is finite, there exist $0 \leq k<l$ such that $f^{k}(s)=f^{l}(s)$, where f^{k} is the k-time composition of f. Hence, $\left\{f^{k}(s), f^{k+1}(s), \ldots, f^{l-1}(s)\right\}$

Fig. 1 The graph D_{F} has directed cycles of length $1,2,3$ and 4.
is a directed cycle. Next, suppose that there are two distinct directed cycles C_{1} and C_{2}. Since D_{f} is connected, there exists a path $\pi=\left\{s^{i_{1}}, \ldots, s^{i_{j}}\right\}$ joining C_{1} and C_{2}, where $s^{i_{1}} \in C_{1}$ and $s^{i_{j}} \in C_{2}$. Further, since any directed cycle has no outward arc, we obtain $s^{i_{1}}=f\left(s^{i_{2}}\right), s^{i_{2}}=$ $f\left(s^{i_{3}}\right), \ldots, s^{i_{j-1}}=f\left(s^{i_{j}}\right)$, which contradicts that C_{2} has no outward arc.

Fig. 2 The graph D_{f} has two cycles, and $\operatorname{od}\left(s^{i_{6}}\right)=2$.

3 A sufficient condition for the existence of a pure-strategy Nash equilibrium

In this section, we present a class of non-cooperative n-person games that have a purestrategy Nash equilibrium. We use the following notation:
For any $s \in S$, we set $s_{-i}:=\left(s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{n}\right)$, and $S_{-i}:=\prod_{j \neq i}^{n} S_{j}$. For any given $s_{-i} \in S_{-i}$, we denote by $F_{i}\left(s_{-i}\right)$ the set of best responses of player i, that is,

$$
F_{i}\left(s_{-i}\right):=\left\{s_{i} \in S_{i}: p_{i}\left(s_{i}, s_{-i}\right)=\max _{t_{i} \in S_{i}} p_{i}\left(t_{i}, s_{-i}\right)\right\} .
$$

We set $F(s):=\prod_{j \neq i}^{n} F_{j}\left(s_{-j}\right)$ and $f(s):=\left(f_{1}\left(s_{-1}\right), \ldots, f_{n}\left(s_{-n}\right)\right)$, where f_{i} is a selection of F_{i}.
An element s^{*} of S is called a pure-strategy Nash equilibrium if

$$
p_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geq p_{i}\left(s_{i}, s_{-i}^{*}\right) \quad \forall s_{i} \in S_{i} \quad(\forall i \in N) .
$$

Therefore, any pure-strategy Nash equilibrium is characterized by a fixed point of the best response correspondence F, that is, $s^{*} \in F\left(s^{*}\right)$. In other words, D_{F} has a cycle of length 1.

Our sufficient condition is based on monotonicity of a selection f. In order to define monotonicity, we need several kinds of orders.

Let T_{i} be a non-empty subset of S_{i}. For any bijection $\sigma_{i}: T_{i} \rightarrow T_{i}$, we define a total order $s_{i} \leqq \sigma_{i} t_{i}$ on T_{i} by $\sigma_{i}\left(s_{i}\right) \leqq{ }_{i} \sigma_{i}\left(t_{i}\right)$, where \leqq_{i} is the total order on S_{i}. We denote by $T_{\sigma_{i}}$ the ordered set $\left(T_{i}, \leqq \sigma_{i}\right)$. Further, $s_{i}<_{\sigma_{i}} t_{i}$ means $s_{i} \leqq \sigma_{i} t_{i}$ and $s_{i} \neq t_{i}$.

We set $T:=\prod_{i=1}^{n} T_{i}$ and $T_{-i}:=\prod_{j \neq i}^{n} T_{j}$. For any $\sigma:=\left(\sigma_{1}, \ldots, \sigma_{n}\right), T_{\sigma}$ denotes the partially ordered set $\left(T, \preceq_{\sigma}\right)$ such that $s \varliminf_{\sigma} t$ if $s_{i} \leqq_{\sigma_{i}} t_{i}$ for all $i \in N$. The symbol $s \preceq_{\sigma} t$ means $s \preceq_{\sigma} t$ and $s \neq t$. T_{-i} is also equipped with the component-wise order $\preceq_{\sigma_{-i}}$, and the partially ordered set is denoted by $T_{\sigma_{-i}}$.

Definition 3.1 We say G is a partially monotone game if there exist a selection f of F, nonempty subsets $T_{i} \subset S_{i}$, and bijections σ_{i} from T_{i} into itself $(i \in N)$ such that at least one of T_{i} 's has two or more elements, $f(T) \subset T$, and

$$
\begin{equation*}
s_{-i} \preceq t_{-i} \Rightarrow f_{i}\left(s_{-i}\right) \leqq \sigma_{i} f_{i}\left(t_{-i}\right) \tag{1}
\end{equation*}
$$

for any $i \in N$.

Theorem 3.1 Any partially monotone non-cooperative n-person game has a pure-strategy Nash equilibrium.

Proof. Since T_{σ} is the product of totally ordered sets, it has a minimum element, say t^{0}. Then $t^{0} \preceq_{\sigma} f\left(t^{0}\right)=: t^{1}$. If $t^{0}=t^{1}, t^{0}$ is a fixed point. If $t^{0} \neq t^{1}$, set

$$
N_{1}:=\left\{i \in N: t_{-i}^{0}=t_{-i}^{1}\right\}, \quad N_{2}:=\left\{i \in N: t_{-i}^{0} \preceq_{\sigma_{-i}} t_{-i}^{1}\right\} .
$$

Then $t^{0} \varliminf_{\sigma} t^{1}, 0 \leq\left|N_{1}\right| \leq 1$, and N is a disjoint union of N_{1} and N_{2}. Next, take

$$
t_{i}^{2}:= \begin{cases}t_{i}^{1}, & i \in N_{1} \\ f_{i}\left(t_{-i}^{1}\right), & i \in N_{2}\end{cases}
$$

Then, by partial monotonicity, we have $t_{i}^{1}=f_{i}\left(t_{-i}^{0}\right) \leqq \sigma_{i} f_{i}\left(t_{-i}^{1}\right)=t_{i}^{2}$ for any $i \in N_{2}$. Therefore, $t^{1} \varliminf_{\sigma} t^{2}$. Since T is finite, this procedure stops in finite steps, and we get a fixed point, which is a pure-strategy Nash equilibrium.

Here we recall the term "monotonicity" introduced by Sato and Kawasaki (to appear).

Definition 3.2 (Sato and Kawasaki to appear, Definition 3.1) We say G is a monotone game if $\varepsilon_{i}=1$ or -1 is allocated to each $i \in N$, and

$$
s_{-i}^{0} \preceq s_{-i}^{1}, t_{i}^{1} \in F_{i}\left(s_{-i}^{0}\right) \Rightarrow \exists t_{i}^{2} \in F_{i}\left(s_{-i}^{1}\right) \text { such that } \varepsilon_{i} t_{i}^{1} \leqq \varepsilon_{i} t_{i}^{2}
$$

for any $i \in N$.

When G is a monotone game, by taking $T_{i}=S_{i}, \sigma_{i}=i d$ and

$$
f_{i}\left(s_{-i}\right):= \begin{cases}\text { maximum element of } F_{i}\left(s_{-i}\right), & \text { if } \varepsilon_{i}=1, \\ \text { minimum element of } F_{i}\left(s_{-i}\right), & \text { if } \varepsilon_{i}=-1,\end{cases}
$$

we see that G is a partially monotone game.

As a specific example, let us consider the following bimatrix game:

- $A=\left(a_{i j}\right)$ is a payoff matrix of player 1 (P1), that is, $p_{1}(i, j)=a_{i j}$.
- $B=\left(b_{i j}\right)$ is a payoff matrix of player $2(\mathrm{P} 2)$, that is, $p_{2}(i, j)=b_{i j}$.
- $S_{1}:=\left\{1, \ldots, m_{1}\right\}$ is the set of pure strategies of P 1 , where $m_{1} \in \mathbb{N}$.
- $S_{2}:=\left\{1, \ldots, m_{2}\right\}$ is the set of pure strategies of P 2 , where $m_{2} \in \mathbb{N}$.
- For any $j \in S_{2}, F_{1}(j):=\left\{i^{*} \in S_{1}: a_{i^{*} j}=\max _{i \in S_{1}} a_{i j}\right\}$ is the set of best responses of P1.
- For any $i \in S_{1}, F_{2}(i):=\left\{j^{*} \in S_{2}: b_{i j^{*}}=\max _{j \in S_{2}} b_{i j}\right\}$ is the set of best responses of P2.
- $F(i, j):=F_{1}(j) \times F_{2}(i)$ denotes the set of best responses of $(i, j) \in S_{1} \times S_{2}$.
- A pair $\left(i^{*}, j^{*}\right)$ is a pure-strategy Nash equilibrium if $\left(i^{*}, j^{*}\right) \in F\left(i^{*}, j^{*}\right)$.

Example 3.1 Let $S_{1}=S_{2}=\{1,2,3\}$. The following is not a monotone bimatrix game.

$$
A=\left(\begin{array}{c|c|c}
\text { (4) } & 2 & 3 \\
2 & (5) & (4) \\
3 & 1 & (4)
\end{array}\right), \quad B=\left(\begin{array}{ccc}
2 & 1 & (3) \\
\hline 1 & (4) & 2 \\
\hline(3) & (3) & 2
\end{array}\right) .
$$

Now we exchange the second and third columns. A and B are transformed into A^{\prime} and B^{\prime}, respectively, as given below:

$$
A^{\prime}=\left(\begin{array}{c|c|c}
(4) & 3 & 2 \\
2 & (4) & (5) \\
3 & (4) & 1
\end{array}\right), \quad B^{\prime}=\left(\begin{array}{ccc}
2 & (3) & 1 \\
\hline 1 & 2 & (4) \\
\hline(3) & 2 & (3)
\end{array}\right) .
$$

However, the bimatrix game defined by A^{\prime} and B^{\prime} is not a monotone game. Next, we remove the third row. Then A^{\prime} and B^{\prime} are transformed into $A^{\prime \prime}$ and $B^{\prime \prime}$, respectively:

$$
A^{\prime \prime}=\left(\begin{array}{c|c|c}
(4) & 3 & 2 \\
2 & (4) & (5)
\end{array}\right), \quad B^{\prime \prime}=\left(\begin{array}{ccc}
2 & 3 & 1 \\
\hline 1 & 2 & (4)
\end{array}\right) .
$$

The bimatrix game defined by $A^{\prime \prime}$ and $B^{\prime \prime}$ is now a monotone game for $\left(\varepsilon_{1}, \varepsilon_{2}\right)=(1,1)$, and have a pure-strategy Nash equilibrium (3,3). In the original bimatrix game, the equilibrium is $(2,2)$.

The above procedure is equivalent to taking $T_{1}:=\{1,2\} \subset S_{1}, \sigma_{1}:=\mathrm{id}, T_{2}:=S_{2}$ and σ_{2} permutation $(2,3)$ in Definition 3.1. Therefore, the original game is a partially monotone game.

Moreover, in Figure 3 left, we plot the directed graph D_{F} corresponding to the best responses F of the original bimatrix game. Note that in the figure, we set $(1)=(1,1)$, (2) $=(1,2)$, (3) $=(1,3)$, (4) $=(2,1)$, (5) $=(2,2)$, (6) $=(2,3)$, (7) $=(3,1), 8=(3,2)$ and (9 $=(3,3)$. In Figure 3 right, we plot the directed graph corresponding to the best responses of the bimatrix game after the above procedure. It is clear that the directed graph has only one cycle of length 1.

Fig. 3 Left: The directed graph defined by A and B. Right: The directed graph defined by $A^{\prime \prime}$ and $B^{\prime \prime}$.

4 A necessary condition for the existence of a pure-strategy Nash equilibrium

In this section, we consider the bimatrix game, and show that partial monotonicity is necessary for the existence of a pure-strategy Nash equilibrium.

Theorem 4.1 Assume that a bimatrix game has a pure-strategy Nash equilibrium s*. If a sequence $s^{1}, \ldots, s^{m}=s^{*}$ in S satisfies $s^{k+1} \in F\left(s^{k}\right)$ and $F\left(s^{k}\right)$ is a singleton for all $k=1, \ldots, m-1$, then there exist non-empty subsets $T_{i}(i=1,2)$ and bijections $\sigma_{i}(i=1,2)$ from T_{i} into itself such that

$$
\begin{equation*}
s^{1} \preceq_{\sigma} s^{2} \preceq_{\sigma} \cdots \preceq_{\sigma} s^{m}=s^{*} \tag{2}
\end{equation*}
$$

In particular, the bimatrix game is a partially monotone game or s^{*} is isolated.
Proof. Since $F\left(s^{k}\right)$ is singleton, we use $f\left(s^{k}\right)$ instead of $F\left(s^{k}\right)$. First, $s^{1}, s^{2}, \ldots, s^{m}$ are different from each other. Indeed, if $s^{k}=s^{l}$ for some $1 \leq k<l \leq m$, then $\left\{s^{k}, s^{k+1}, \ldots, s^{l}\right\}$ is a directed cycle. Since s^{m} is a fixed point of f, it is another directed cycle, which contradicts Lemma 2.1. Therefore, $s^{1}, s^{2}, \ldots, s^{m}$ are different from each other. Next, assume that

$$
\begin{equation*}
s^{k-1} \npreceq s^{k} \preceq s^{k+1} \preceq \cdots \preceq s^{m} \tag{3}
\end{equation*}
$$

for some $2 \leq k \leq m$. In the case of $s_{1}^{k-1}>s_{1}^{k}, s_{1}^{k-1}$ does not coincide with any $s_{1}^{l}(k \leq l \leq m)$. Indeed, if $s_{1}^{k-1}=s_{1}^{l}$ for some $l>k, f_{2}\left(s_{1}^{k-1}\right)=f_{2}\left(s_{1}^{l}\right)$. Since $s_{2}^{k}=f_{2}\left(s_{1}^{k-1}\right)$ and $s_{2}^{l+1}=f_{2}\left(s_{1}^{l}\right)$, we have $s_{2}^{k}=s_{2}^{l+1}$. Further, we see from (3) that

$$
s_{2}^{k}=s_{2}^{k+1}=\cdots=s_{2}^{l}=s_{2}^{l+1} .
$$

Thus, $f_{1}\left(s_{2}^{k}\right)=\cdots=f_{1}\left(s_{2}^{l+1}\right)$, that is, $s_{1}^{k+1}=\cdots=s_{1}^{l+2}$, and we have $s^{k+1}=\cdots=s^{l+1}$, which contradicts (3). Therefore, s_{1}^{k+1} does not coincide with any s_{1}^{l}.

Hence, there exists $k \leq p \leq m-1$ such that $s_{1}^{p}<s_{1}^{k-1}<s_{1}^{p+1}$. Defining a bijection σ_{1} from S_{1} into itself by

$$
\sigma_{1}\left(s_{1}\right):= \begin{cases}s_{1}^{k}, & \text { if } s_{1}=s_{1}^{k-1} \tag{4}\\ s_{1}^{q+1}, & \text { if } s_{1}=s_{1}^{q} \text { for some } k \leq q \leq p-1 \\ s_{1}^{k-1}, & \text { if } s_{1}=s_{1}^{p} \\ s_{1}, & \text { otherwise }\end{cases}
$$

we obtain

$$
s_{1}^{k-1} \leqq \sigma_{1} s_{1}^{k} \leqq_{\sigma_{1}} \cdots \leqq_{\sigma_{1}} s_{1}^{m}
$$

In the case of $s_{2}^{k-1}>s_{2}^{k}$, define a bijection σ_{2} on S_{2} as well as (4) and take $\sigma=\left(\sigma_{1}, \sigma_{2}\right)$. Then we get

$$
\begin{equation*}
s^{k-1} \preceq_{\sigma} s^{k} \preceq_{\sigma} \cdots \preceq_{\sigma} s^{m} \tag{5}
\end{equation*}
$$

Repeating this procedure, we obtain (2).
Finally, we set $T_{i}:=\left\{s_{i}^{k}: 1 \leq k \leq m\right\}$, and take the restriction of σ_{i} on T_{i}. Then σ_{i} is a bijection from T_{i} into itself. Further, if $s_{-i}<_{\sigma_{-i}} t_{-i}$, there exist $1 \leq p \neq q \leq m$ such that $s_{-i}=s_{-i}^{p}$ and $t_{-i}=s_{-i}^{q}$. Since s^{k}, s are ordered by $\sigma, p<q$. Therefore

$$
f_{i}\left(s_{-i}\right)=f_{i}\left(s_{-i}^{p}\right)=s_{i}^{p+1} \leqq_{\sigma_{i}} s_{i}^{q+1}=f_{i}\left(s_{-i}^{q}\right)=f_{i}\left(t_{-i}\right)
$$

When $m \geq 2$, this fact implies that the bimatrix game is a partially monotone game. When only $m=1$ satisfies (2), we conclude that $\operatorname{id}\left(s^{*}\right)=\operatorname{od}\left(s^{*}\right)=1$, that is, s^{*} is isolated.

If the number of players is three or more, then Theorem 4.1 fails.

Example 4.1 Let P1, P2 and P3 be players; let the player's strategies be $i \in\{1,2\}, j \in\{1,2\}$ and $k \in\{1,2\}$, respectively; and let each player's best responses be the following:

P 1	$k=1$	$k=2$					
$j=1$	$i=2$	$i=1$					
$j=2$	$i=2$	$i=2$					
$i=1$	P2	$k=1$	$k=2$				
$i=2$	$j=1$	$j=2$					
$i=1$	$j=2$			\quad	P3	$j=1$	$j=2$
:---:	:---:	:---:	:---:				
$i=2$	$k=2$	$k=1$					

Then this game is not a partially monotone game. Indeed, there are only four combinations of two bijections on S_{1} and S_{2}. The above table on P3 corresponds to $\left(\sigma_{1}, \sigma_{2}\right)=(i d, i d)$. Three
tables below correspond to $((1,2), i d),(i d,(1,2))$, and $((1,2),(1,2))$, respectively. In any case, the best response does not satisfy (1).

$$
\begin{array}{|c||c|c||c|c||c|c|c|}
\hline \text { P3 } & j=1 & j=2 \\
\hline \hline i=2 & k=1 & k=2 \\
\hline i=1 & k=2 & k=1 \\
\hline \hline i=1 & \text { P3 } & j=2 & j=1 \\
\hline \hline i=2 & k=1 & k=2 \\
\hline \hline i=2 & k=1 \\
\hline \hline i=2 & k=2 & k=1 \\
\hline i=1 & k=1 & k=2 \\
\hline
\end{array}
$$

On the other hand, since $\left(f_{1}(2,2), f_{2}(2,2), f_{3}(2,2)\right)=(2,2,2),(i, j, k)=(2,2,2)$ is a purestrategy Nash equilibrium, which is not isolated, see Figure 4.

Fig. 4 Point $(2,2,2)$ is a pure-strategy Nash equilibrium, which is not isolated

5 Concluding remarks

In Section 3, we have extended the sufficient condition for the existence of a pure-strategy Nash equilibrium in two directions. One is taking a subgame and the other is reordering the pure-strategies of each player. By these extensions, we can deal with a wide range of noncooperative n-person games. Furthermore, when $n=2$, we have proved that our sufficient condition is very close to the necessary condition. In this sense, partial monotonicity of the best response characterizes the existence of a pure-strategy Nash equilibrium in the case of $n=2$. However, when the number of players is three or more, there is still room for improvement.

References

[1] Brouwer LEJ (1912) Über Jordansche Mannigfaltigkeiten. Math Ann 71:598
[2] Iimura T (2003) A discrete fixed point theorem and its applications. J Math Econom 39:725-742
[3] Kakutani S (1941) A generalization of Brouwer's fixed point theorem. Duke Math J 8:457459
[4] Murota K (2003) Discrete convex analysis. SIAM, Philadelphia PA
[5] Nash JF (1950) Equilibrium points in n-person games. Proc Nat Acad Sci U.S.A. 36:48-49
[6] Nash JF (1951) Non-cooperative games. Ann of Math (2) 54:286-295
[7] Sato J, Kawasaki H (to appear) Discrete fixed point theorems and their application to Nash equilibrium. Taiwanese J Math

List of MHF Preprint Series, Kyushu University

21st Century COE Program
Development of Dynamic Mathematics with High Functionality

MHF2005-1 Hideki KOSAKI
Matrix trace inequalities related to uncertainty principle
MHF2005-2 Masahisa TABATADiscrepancy between theory and real computation on the stability of somefinite element schemes
MHF2005-3 Yuko ARAKI \& Sadanori KONISHI
Functional regression modeling via regularized basis expansions and model selection
MHF2005-4 Yuko ARAKI \& Sadanori KONISHI
Functional discriminant analysis via regularized basis expansionsMHF2005-5 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \&Yasuhiko YAMADAPoint configurations, Cremona transformations and the elliptic difference PainlevéequationsMHF2005-6 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \&Yasuhiko YAMADAConstruction of hypergeometric solutions to the q - Painlevé equations
MHF2005-7 Hiroki MASUDASimple estimators for non-linear Markovian trend from sampled data:I. ergodic cases
MHF2005-8 Hiroki MASUDA \& Nakahiro YOSHIDAEdgeworth expansion for a class of Ornstein-Uhlenbeck-based models
MHF2005-9 Masayuki UCHIDAApproximate martingale estimating functions under small perturbations ofdynamical systems
MHF2005-10 Ryo MATSUZAKI \& Masayuki UCHIDA
One-step estimators for diffusion processes with small dispersion parameters from discrete observations
MHF2005-11 Junichi MATSUKUBO, Ryo MATSUZAKI \& Masayuki UCHIDA
Estimation for a discretely observed small diffusion process with a linear drift
MHF2005-12 Masayuki UCHIDA \& Nakahiro YOSHIDA
AIC for ergodic diffusion processes from discrete observations

MHF2005-13 Hiromichi GOTO \& Kenji KAJIWARA
Generating function related to the Okamoto polynomials for the Painlevé IV equation

MHF2005-14 Masato KIMURA \& Shin-ichi NAGATA
Precise asymptotic behaviour of the first eigenvalue of Sturm-Liouville problems with large drift

MHF2005-15 Daisuke TAGAMI \& Masahisa TABATA
Numerical computations of a melting glass convection in the furnace
MHF2005-16 Raimundas VIDŪNAS
Normalized Leonard pairs and Askey-Wilson relations
MHF2005-17 Raimundas VIDŪNAS
Askey-Wilson relations and Leonard pairs
MHF2005-18 Kenji KAJIWARA \& Atsushi MUKAIHIRA
Soliton solutions for the non-autonomous discrete-time Toda lattice equation
MHF2005-19 Yuu HARIYA
Construction of Gibbs measures for 1-dimensional continuum fields
MHF2005-20 Yuu HARIYA
Integration by parts formulae for the Wiener measure restricted to subsets in \mathbb{R}^{d}

MHF2005-21 Yuu HARIYA
A time-change approach to Kotani's extension of Yor's formula
MHF2005-22 Tadahisa FUNAKI, Yuu HARIYA \& Mark YOR
Wiener integrals for centered powers of Bessel processes, I
MHF2005-23 Masahisa TABATA \& Satoshi KAIZU
Finite element schemes for two-fluids flow problems
MHF2005-24 Ken-ichi MARUNO \& Yasuhiro OHTA
Determinant form of dark soliton solutions of the discrete nonlinear Schrödinger equation

MHF2005-25 Alexander V. KITAEV \& Raimundas VIDŪNAS
Quadratic transformations of the sixth Painlevé equation
MHF2005-26 Toru FUJII \& Sadanori KONISHI
Nonlinear regression modeling via regularized wavelets and smoothing parameter selection

MHF2005-27 Shuichi INOKUCHI, Kazumasa HONDA, Hyen Yeal LEE, Tatsuro SATO, Yoshihiro MIZOGUCHI \& Yasuo KAWAHARA
On reversible cellular automata with finite cell array
MHF2005-28 Toru KOMATSUCyclic cubic field with explicit Artin symbols
MHF2005-29 Mitsuhiro T. NAKAO, Kouji HASHIMOTO \& Kaori NAGATOUA computational approach to constructive a priori and a posteriori errorestimates for finite element approximations of bi-harmonic problems
MHF2005-30 Kaori NAGATOU, Kouji HASHIMOTO \& Mitsuhiro T. NAKAO
Numerical verification of stationary solutions for Navier-Stokes problems
MHF2005-31 Hidefumi KAWASAKI
A duality theorem for a three-phase partition problem
MHF2005-32 Hidefumi KAWASAKIA duality theorem based on triangles separating three convex sets
MHF2005-33 Takeaki FUCHIKAMI \& Hidefumi KAWASAKIAn explicit formula of the Shapley value for a cooperative game induced fromthe conjugate point
MHF2005-34 Hideki MURAKAWA
A regularization of a reaction-diffusion system approximation to the two-phase Stefan problem
MHF2006-1 Masahisa TABATANumerical simulation of Rayleigh-Taylor problems by an energy-stable finiteelement scheme
MHF2006-2 Ken-ichi MARUNO \& G R W QUISPELConstruction of integrals of higher-order mappings
MHF2006-3 Setsuo TANIGUCHIOn the Jacobi field approach to stochastic oscillatory integrals with quadraticphase function
MHF2006-4 Kouji HASHIMOTO, Kaori NAGATOU \& Mitsuhiro T. NAKAOA computational approach to constructive a priori error estimate for finiteelement approximations of bi-harmonic problems in nonconvex polygonaldomains
MHF2006-5 Hidefumi KAWASAKI
A duality theory based on triangular cylinders separating three convex sets in R^{n}
MHF2006-6 Raimundas VIDŪNAS
Uniform convergence of hypergeometric series
MHF2006-7 Yuji KODAMA \& Ken-ichi MARUNO
N-Soliton solutions to the DKP equation and Weyl group actions

MHF2006-8 Toru KOMATSU
Potentially generic polynomial
MHF2006-9 Toru KOMATSU
Generic sextic polynomial related to the subfield problem of a cubic polynomial
MHF2006-10 Shu TEZUKA \& Anargyros PAPAGEORGIOU
Exact cubature for a class of functions of maximum effective dimension
MHF2006-11 Shu TEZUKA
On high-discrepancy sequences
MHF2006-12 Raimundas VIDŪNAS
Detecting persistent regimes in the North Atlantic Oscillation time series
MHF2006-13 Toru KOMATSU
Tamely Eisenstein field with prime power discriminant
MHF2006-14 Nalini JOSHI, Kenji KAJIWARA \& Marta MAZZOCCO
Generating function associated with the Hankel determinant formula for the solutions of the Painlevé IV equation

MHF2006-15 Raimundas VIDŪNAS
Darboux evaluations of algebraic Gauss hypergeometric functions
MHF2006-16 Masato KIMURA \& Isao WAKANO
New mathematical approach to the energy release rate in crack extension
MHF2006-17 Toru KOMATSU
Arithmetic of the splitting field of Alexander polynomial
MHF2006-18 Hiroki MASUDA
Likelihood estimation of stable Lévy processes from discrete data
MHF2006-19 Hiroshi KAWABI \& Michael RÖCKNER
Essential self-adjointness of Dirichlet operators on a path space with Gibbs measures via an SPDE approach

MHF2006-20 Masahisa TABATA
Energy stable finite element schemes and their applications to two-fluid flow problems

MHF2006-21 Yuzuru INAHAMA \& Hiroshi KAWABI
Asymptotic expansions for the Laplace approximations for Itô functionals of Brownian rough paths

MHF2006-22 Yoshiyuki KAGEI
Resolvent estimates for the linearized compressible Navier-Stokes equation in an infinite layer
MHF2006-23 Yoshiyuki KAGEIAsymptotic behavior of the semigroup associated with the linearizedcompressible Navier-Stokes equation in an infinite layer
MHF2006-24 Akihiro MIKODA, Shuichi INOKUCHI, Yoshihiro MIZOGUCHI \& Mitsuhiko FUJIO
The number of orbits of box-ball systems
MHF2006-25 Toru FUJII \& Sadanori KONISHI
Multi-class logistic discrimination via wavelet-based functionalization and model selection criteria
MHF2006-26 Taro HAMAMOTO, Kenji KAJIWARA \& Nicholas S. WITTE Hypergeometric solutions to the q-Painlevé equation of type $\left(A_{1}+A_{1}^{\prime}\right)^{(1)}$
MHF2006-27 Hiroshi KAWABI \& Tomohiro MIYOKAWAThe Littlewood-Paley-Stein inequality for diffusion processes on general metricspaces
MHF2006-28 Hiroki MASUDA
Notes on estimating inverse-Gaussian and gamma subordinators under high- frequency sampling
MHF2006-29 Setsuo TANIGUCHI
The heat semigroup and kernel associated with certain non-commutative harmonic oscillators
MHF2006-30 Setsuo TANIGUCHI
Stochastic analysis and the KdV equation
MHF2006-31 Masato KIMURA, Hideki KOMURA, Masayasu MIMURA, Hidenori MIYOSHI, Takeshi TAKAISHI \& Daishin UEYAMA Quantitative study of adaptive mesh FEM with localization index of pattern
MHF2007-1 Taro HAMAMOTO \& Kenji KAJIWARAHypergeometric solutions to the q-Painlevé equation of type $A_{4}^{(1)}$
MHF2007-2 Kouji HASHIMOTO, Kenta KOBAYASHI \& Mitsuhiro T. NAKAOVerified numerical computation of solutions for the stationary Navier-Stokesequation in nonconvex polygonal domains
MHF2007-3 Kenji KAJIWARA, Marta MAZZOCCO \& Yasuhiro OHTAA remark on the Hankel determinant formula for solutions of the Toda equation
MHF2007-4 Jun-ichi SATO \& Hidefumi KAWASAKIDiscrete fixed point theorems and their application to Nash equilibrium
MHF2007-5 Mitsuhiro T. NAKAO \& Kouji HASHIMOTO
Constructive error estimates of finite element approximations for non-coercive elliptic problems and its applications

A preconditioned method for saddle point problems
MHF2007-7 Christopher MALON, Seiichi UCHIDA \& Masakazu SUZUKI
Mathematical symbol recognition with support vector machines
MHF2007-8 Kenta KOBAYASHI
On the global uniqueness of Stokes' wave of extreme form
MHF2007-9 Kenta KOBAYASHI
A constructive a priori error estimation for finite element discretizations in a non-convex domain using singular functions

MHF2007-10 Myoungnyoun KIM, Mitsuhiro T. NAKAO, Yoshitaka WATANABE \& Takaaki NISHIDA
A numerical verification method of bifurcating solutions for 3-dimensional Rayleigh-Bénard problems

MHF2007-11 Yoshiyuki KAGEI
Large time behavior of solutions to the compressible Navier-Stokes equation in an infinite layer

MHF2007-12 Takashi YANAGAWA, Satoshi AOKI and Tetsuji OHYAMA
Human finger vein images are diverse and its patterns are useful for personal identification

MHF2007-13 Masahisa TABATA
Finite element schemes based on energy-stable approximation for two-fluid flow problems with surface tension

MHF2007-14 Mitsuhiro T. NAKAO \& Takehiko KINOSHITA
Some remarks on the behaviour of the finite element solution in nonsmooth domains

MHF2007-15 Yoshiyuki KAGEI \& Takumi NUKUMIZU
Asymptotic behavior of solutions to the compressible Navier-Stokes equation in a cylindrical domain

MHF2007-16 Shuichi INOKUCHI, Yoshihiro MIZOGUCHI, Hyen Yeal LEE \& Yasuo KAWAHARA
Periodic behaviors of quantum cellular automata
MHF2007-17 Makoto HIROTA\& Yasuhide FUKUMOTO
Energy of hydrodynamic and magnetohydrodynamic waves with point and continuous spectra

MHF2007-18 Mitsunori KAYANO\& Sadanori KONISHI
Functional principal component analysis via regularized Gaussian basis expansions and its application to unbalanced data

MHF2007-19 Mitsunori KAYANO, Koji DOZONO \& Sadanori KONISHI
Functional cluster analysis via orthonormalized Gaussian basis expansions and its application

MHF2008-1 Jun-ichi SATO
An application of a discrete fixed point theorem to the Cournot model
MHF2008-2 Kei HIROSE, Shuichi KAWANO, Sadanori KONISHI \& Masanori ICHIKAWA Bayesian factor analysis and model selection

MHF2008-3 Yoshitaka WATANABE, Michael PLUM \& Mitsuhiro T. NAKAO A computer-assisted instability proof for the Orr-Sommerfeld problem with Poiseuille flow

MHF2008-4 Hirofumi NOTSU \& Masahisa TABATA
A characteristic-curve finite element scheme of single step and second order in time increment for the Navier-Stokes equations

MHF2008-5 Jun-ichi SATO \& Hidefumi KAWASAKI
A characterization of the existence of a pure-strategy Nash equilibrium

[^0]: * This research was partially supported by Kyushu University 21st Century COE Program (Development of Dynamic Mathematics with High Functionality) and by the Grant-in-Aid for General Scientific Research from the Japan Society for the Promotion of Science 18340031.
 \dagger Graduate School of Mathematics, Kyushu University, 6-10-1, Higashi-ku, Fukuoka 812-9581, JAPAN
 jun-ichi@math.kyushu-u.ac.jp
 \ddagger Faculty of Mathematics, Kyushu University
 kawasaki@math.kyushu-u.ac.jp

