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A characterization of the existence of a pure-strategy

Nash equilibrium. ∗

Jun-ichi SATO† Hidefumi KAWASAKI‡

Abstract

In this paper, we consider a non-cooperative n-person game in the strategic form. As

is well known, the game has a mixed-strategy Nash equilibrium. While, it does not

always have a pure-strategy Nash equilibrium. Wherein, Iimura (2003), and Sato and

Kawasaki (to appear in Taiwanese J Math) provided a sufficient condition for the game

to have a pure-strategy Nash equilibrium. This paper has two aims. The first is to

extend the authors’ sufficient condition. The second is to give a necessary condition for

the existence of a pure-strategy Nash equilibrium in the case of two persons. In both

sections, monotonicity of the best response correspondences plays the central role.

Keywords: pure-strategy, Nash equilibrium, non-cooperative n-person game, bimatirix

game, fixed point theorem

1 Introduction

In this paper, we consider the non-cooperative n-person game G = {N, {Si}i∈N , {pi}i∈N},
where

• N := {1, . . . , n} is the set of players.
• For any i ∈ N , Si denotes the finite set, with a total order 5i, of player i’s pure

strategies. An element of this set is denoted by si.
• pi : S :=

∏n
j=1 Sj → R denotes the payoff function of player i.

It is well known that we can prove the existence of a mixed-strategy Nash equilibrium, orig-
inally introduced by Nash (1950, 1951), applying Kakutani’s fixed point theorem (Kakutani
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1941) to the best response correspondence.
On the other hand, there are few unified results proving the existence of a pure-strategy

Nash equilibrium. Iimura (2003) provided a discrete fixed point theorem based on discrete
convex analysis, originally proposed by Murota (2003), and Brouwer’s fixed point theorem
(Brouwer 1912). As an application thereof, he defined a class of non-cooperative n-person
games that certainly have a pure-strategy Nash equilibrium. Sato and Kawasaki (to appear)
have provided a discrete fixed point theorem based on monotonicity of the mapping, and have
given a class of non-cooperative n-person games that also certainly have a pure-strategy Nash
equilibrium. However, these results are concerned with only sufficiency for the existence of a
pure-strategy Nash equilibrium.

This paper has two aims. The first is to extend the class of non-cooperative n-person
games provided in (Sato and Kawasaki to appear), that certainly have a pure-strategy Nash
equilibrium. We introduce “partial monotonicity” in Section 3. The second aim is to show
that the partial monotonicity is necessary for the existence of a pure-strategy Nash equilibrium
in a bimatrix game. This is discussed in Section 4. In order to achieve our goal, we use a
directed graphic representation of set-valued mappings.

2 Preliminaries

Since S is the product of finite sets Si’s, it is also finite, say, S = {s1, . . . , sm}. For any
non-empty set-valued mapping F from S to itself, we define a directed graph DF = (S,AF )
by AF = {(si, sj) : sj ∈ F (si), si, sj ∈ S}. For any selection f of F , that is, f(s) ∈ F (s) for
all s ∈ S, we similarly define a directed graph Df . For any s ∈ S, we denote by od(s) and
id(s) the outdegree and indegree of s, respectively. Then, od(s) ≥ 1 for DF , and od(s) = 1
for Df .

Definition 2.1 (Cycle of length l) We say a set-valued mapping F has a directed cycle of
length l if there exists l and distinct points {si1 , si2 , . . . , sil} of S such that si1 ∈ F (sil) and
sik+1 ∈ F (sik) for all k ∈ {1, . . . , l − 1}.

Example 2.1 Take S = {s1, . . . , s9} and define a non-empty set-valued mapping F by the
following directed graph. For example, F (s6) = {s2, s3, s5, s8}, F (s7) = {s7, s8} and etc. It
is clear that {s7}, {s3, s6}, {s6, s8, s9} and {s1, s4, s5, s2} are directed cycles of length 1, 2, 3
and 4, respectively.

We now prove the following lemma required later:

Lemma 2.1 If Df is connected in the sense of the undirected graph, then f has only one
directed cycle.

Proof. We start with an arbitrary s ∈ S. Since S is finite, there exist 0 ≤ k < l such that
fk(s) = f l(s), where fk is the k-time composition of f . Hence, {fk(s), fk+1(s), . . . , f l−1(s)}

2



C1

C2

s
1

C3

C4

s
2

s
5

s
4

s
7

s
8

s
9

s
3

s
6

Fig. 1 The graph DF has directed cycles of length 1, 2, 3 and 4.

is a directed cycle. Next, suppose that there are two distinct directed cycles C1 and C2. Since
Df is connected, there exists a path π = {si1 , . . . , sij} joining C1 and C2, where si1 ∈ C1 and
sij ∈ C2. Further, since any directed cycle has no outward arc, we obtain si1 = f(si2), si2 =
f(si3), . . . , sij−1 = f(sij ), which contradicts that C2 has no outward arc. ¤

C1

C2s
i1

s
i2

s
i3

s
i4 s

i5

s
i6

Fig. 2 The graph Df has two cycles, and od(si6) = 2.

3 A sufficient condition for the existence of a pure-strategy Nash

equilibrium

In this section, we present a class of non-cooperative n-person games that have a pure-
strategy Nash equilibrium. We use the following notation:

For any s ∈ S, we set s−i := (s1, . . . , si−1, si+1, . . . , sn), and S−i :=
∏n

j 6=i Sj . For any given
s−i ∈ S−i, we denote by Fi(s−i) the set of best responses of player i, that is,

Fi(s−i) :=
{

si ∈ Si : pi(si, s−i) = max
ti∈Si

pi(ti, s−i)
}

.

We set F (s) :=
∏n

j 6=i Fj(s−j) and f(s) := (f1(s−1), . . . , fn(s−n)), where fi is a selection of Fi.
An element s∗ of S is called a pure-strategy Nash equilibrium if

pi(s∗i , s
∗
−i) ≥ pi(si, s

∗
−i) ∀si ∈ Si (∀i ∈ N).
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Therefore, any pure-strategy Nash equilibrium is characterized by a fixed point of the best
response correspondence F , that is, s∗ ∈ F (s∗). In other words, DF has a cycle of length 1.

Our sufficient condition is based on monotonicity of a selection f . In order to define mono-
tonicity, we need several kinds of orders.

Let Ti be a non-empty subset of Si. For any bijection σi : Ti → Ti, we define a total order
si 5σi ti on Ti by σi(si) 5i σi(ti), where 5i is the total order on Si. We denote by Tσi the
ordered set (Ti,5σi

). Further, si <σi
ti means si 5σi

ti and si 6= ti.
We set T :=

∏n
i=1 Ti and T−i :=

∏n
j 6=i Tj . For any σ := (σ1, . . . , σn), Tσ denotes the

partially ordered set (T,≺=σ) such that s ≺=σ t if si 5σi
ti for all i ∈ N . The symbol s ¹σ t

means s ≺=σ t and s 6= t. T−i is also equipped with the component-wise order ≺=σ−i
, and the

partially ordered set is denoted by Tσ−i
.

Definition 3.1 We say G is a partially monotone game if there exist a selection f of F , non-
empty subsets Ti ⊂ Si, and bijections σi from Ti into itself (i ∈ N) such that at least one of
Ti’s has two or more elements, f(T ) ⊂ T , and

s−i ¹ t−i ⇒ fi(s−i) 5σi
fi(t−i) (1)

for any i ∈ N .

Theorem 3.1 Any partially monotone non-cooperative n-person game has a pure-strategy
Nash equilibrium.

Proof. Since Tσ is the product of totally ordered sets, it has a minimum element, say t0.
Then t0 ≺=σ f(t0) =: t1. If t0 = t1, t0 is a fixed point. If t0 6= t1, set

N1 := {i ∈ N : t0−i = t1−i}, N2 := {i ∈ N : t0−i ¹σ−i
t1−i}.

Then t0 ≺=σ t1, 0 ≤ |N1| ≤ 1, and N is a disjoint union of N1 and N2. Next, take

t2i :=

{
t1i , i ∈ N1,

fi(t1−i), i ∈ N2.

Then, by partial monotonicity, we have t1i = fi(t0−i) 5σi fi(t1−i) = t2i for any i ∈ N2. Therefore,
t1 ≺=σ

t2. Since T is finite, this procedure stops in finite steps, and we get a fixed point, which
is a pure-strategy Nash equilibrium. ¤

Here we recall the term “monotonicity” introduced by Sato and Kawasaki (to appear).

Definition 3.2 (Sato and Kawasaki to appear, Definition 3.1) We say G is a monotone game
if εi = 1 or −1 is allocated to each i ∈ N , and

s0
−i ¹ s1

−i, t1i ∈ Fi(s0
−i) ⇒ ∃t2i ∈ Fi(s1

−i) such that εit
1
i 5 εit

2
i

for any i ∈ N .
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When G is a monotone game, by taking Ti = Si, σi = id and

fi(s−i) :=

{
maximum element of Fi(s−i), if εi = 1,

minimum element of Fi(s−i), if εi = −1,

we see that G is a partially monotone game.

As a specific example, let us consider the following bimatrix game:

• A = (aij) is a payoff matrix of player 1 (P1), that is, p1(i, j) = aij .
• B = (bij) is a payoff matrix of player 2 (P2), that is, p2(i, j) = bij .
• S1 := {1, . . . , m1} is the set of pure strategies of P1, where m1 ∈ N.
• S2 := {1, . . . , m2} is the set of pure strategies of P2, where m2 ∈ N.
• For any j ∈ S2, F1(j) := {i∗ ∈ S1 : ai∗j = maxi∈S1 aij} is the set of best responses of

P1.
• For any i ∈ S1, F2(i) := {j∗ ∈ S2 : bij∗ = maxj∈S2 bij} is the set of best responses of

P2.
• F (i, j) := F1(j)× F2(i) denotes the set of best responses of (i, j) ∈ S1 × S2.
• A pair (i∗, j∗) is a pure-strategy Nash equilibrium if (i∗, j∗) ∈ F (i∗, j∗).

Example 3.1 Let S1 = S2 = {1, 2, 3}. The following is not a monotone bimatrix game.

A =




4© 2 3
2 5© 4©
3 1 4©


 , B =




2 1 3©
1 4© 2
3© 3© 2


 .

Now we exchange the second and third columns. A and B are transformed into A′ and B′,
respectively, as given below:

A′ =




4© 3 2
2 4© 5©
3 4© 1


 , B′ =




2 3© 1
1 2 4©
3© 2 3©


 .

However, the bimatrix game defined by A′ and B′ is not a monotone game. Next, we remove
the third row. Then A′ and B′ are transformed into A′′ and B′′, respectively:

A′′ =

(
4© 3 2
2 4© 5©

)
, B′′ =

(
2 3© 1
1 2 4©

)
.

The bimatrix game defined by A′′ and B′′ is now a monotone game for (ε1, ε2) = (1, 1), and
have a pure-strategy Nash equilibrium (3, 3). In the original bimatrix game, the equilibrium
is (2, 2).

The above procedure is equivalent to taking T1 := {1, 2} ⊂ S1, σ1 := id, T2 := S2 and
σ2 permutation (2, 3) in Definition 3.1. Therefore, the original game is a partially monotone
game.

5



Moreover, in Figure 3 left, we plot the directed graph DF corresponding to the best responses
F of the original bimatrix game. Note that in the figure, we set 1© = (1, 1), 2© = (1, 2),
3© = (1, 3), 4© = (2, 1), 5© = (2, 2), 6© = (2, 3), 7© = (3, 1), 8© = (3, 2) and 9© = (3, 3). In
Figure 3 right, we plot the directed graph corresponding to the best responses of the bimatrix
game after the above procedure. It is clear that the directed graph has only one cycle of length
1.

Fig. 3 Left: The directed graph defined by A and B. Right: The directed graph defined

by A′′ and B′′.

4 A necessary condition for the existence of a pure-strategy Nash

equilibrium

In this section, we consider the bimatrix game, and show that partial monotonicity is nec-
essary for the existence of a pure-strategy Nash equilibrium.

Theorem 4.1 Assume that a bimatrix game has a pure-strategy Nash equilibrium s∗. If
a sequence s1, . . . , sm = s∗ in S satisfies sk+1 ∈ F (sk) and F (sk) is a singleton for all
k = 1, . . . , m− 1, then there exist non-empty subsets Ti (i = 1, 2) and bijections σi (i = 1, 2)
from Ti into itself such that

s1 ¹σ s2 ¹σ · · · ¹σ sm = s∗. (2)

In particular, the bimatrix game is a partially monotone game or s∗ is isolated.

Proof. Since F (sk) is singleton, we use f(sk) instead of F (sk). First, s1, s2, . . . , sm are
different from each other. Indeed, if sk = sl for some 1 ≤ k < l ≤ m, then {sk, sk+1, . . . , sl} is
a directed cycle. Since sm is a fixed point of f , it is another directed cycle, which contradicts
Lemma 2.1. Therefore, s1, s2, . . . , sm are different from each other. Next, assume that

sk−1 6≺= sk ¹ sk+1 ¹ · · · ¹ sm (3)
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for some 2 ≤ k ≤ m. In the case of sk−1
1 > sk

1 , sk−1
1 does not coincide with any sl

1 (k ≤ l ≤ m).
Indeed, if sk−1

1 = sl
1 for some l > k, f2(sk−1

1 ) = f2(sl
1). Since sk

2 = f2(sk−1
1 ) and sl+1

2 = f2(sl
1),

we have sk
2 = sl+1

2 . Further, we see from (3) that

sk
2 = sk+1

2 = · · · = sl
2 = sl+1

2 .

Thus, f1(sk
2) = · · · = f1(sl+1

2 ), that is, sk+1
1 = · · · = sl+2

1 , and we have sk+1 = · · · = sl+1,
which contradicts (3). Therefore, sk+1

1 does not coincide with any sl
1.

Hence, there exists k ≤ p ≤ m− 1 such that sp
1 < sk−1

1 < sp+1
1 . Defining a bijection σ1 from

S1 into itself by

σ1(s1) :=





sk
1 , if s1 = sk−1

1

sq+1
1 , if s1 = sq

1 for some k ≤ q ≤ p− 1
sk−1
1 , if s1 = sp

1

s1, otherwise,

(4)

we obtain
sk−1
1 5σ1 sk

1 5σ1 · · · 5σ1 sm
1 .

In the case of sk−1
2 > sk

2 , define a bijection σ2 on S2 as well as (4) and take σ = (σ1, σ2). Then
we get

sk−1 ¹σ sk ¹σ · · · ¹σ sm. (5)

Repeating this procedure, we obtain (2).
Finally, we set Ti := {sk

i : 1 ≤ k ≤ m}, and take the restriction of σi on Ti. Then σi is a
bijection from Ti into itself. Further, if s−i <σ−i

t−i, there exist 1 ≤ p 6= q ≤ m such that
s−i = sp

−i and t−i = sq
−i. Since sk’s are ordered by σ, p < q. Therefore

fi(s−i) = fi(s
p
−i) = sp+1

i 5σi
sq+1

i = fi(s
q
−i) = fi(t−i).

When m ≥ 2, this fact implies that the bimatrix game is a partially monotone game. When
only m = 1 satisfies (2), we conclude that id(s∗) = od(s∗) = 1, that is, s∗ is isolated. ¤

If the number of players is three or more, then Theorem 4.1 fails.

Example 4.1 Let P1, P2 and P3 be players; let the player’s strategies be i ∈ {1, 2}, j ∈ {1, 2}
and k ∈ {1, 2}, respectively; and let each player’s best responses be the following:

P1 k = 1 k = 2

j = 1 i = 2 i = 1
j = 2 i = 2 i = 2

P2 k = 1 k = 2

i = 1 j = 2 j = 2
i = 2 j = 1 j = 2

P3 j = 1 j = 2

i = 1 k = 2 k = 1
i = 2 k = 1 k = 2

Then this game is not a partially monotone game. Indeed, there are only four combinations of
two bijections on S1 and S2. The above table on P3 corresponds to (σ1, σ2) = (id, id). Three
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tables below correspond to ((1, 2), id), (id, (1, 2)), and ((1, 2), (1, 2)), respectively. In any case,
the best response does not satisfy (1).

P3 j = 1 j = 2

i = 2 k = 1 k = 2
i = 1 k = 2 k = 1

P3 j = 2 j = 1

i = 1 k = 1 k = 2
i = 2 k = 2 k = 1

P3 j = 2 j = 1

i = 2 k = 2 k = 1
i = 1 k = 1 k = 2

On the other hand, since (f1(2, 2), f2(2, 2), f3(2, 2)) = (2, 2, 2), (i, j, k) = (2, 2, 2) is a pure-
strategy Nash equilibrium, which is not isolated, see Figure 4.

(1,1,1)

(1,1,2)

(1,2,1)

(1,2,2)

(2,1,1)

(2,1,2)

(2,2,1)

(2,2,2)

Fig. 4 Point (2, 2, 2) is a pure-strategy Nash equilibrium, which is not isolated

5 Concluding remarks

In Section 3, we have extended the sufficient condition for the existence of a pure-strategy
Nash equilibrium in two directions. One is taking a subgame and the other is reordering the
pure-strategies of each player. By these extensions, we can deal with a wide range of non-
cooperative n-person games. Furthermore, when n = 2, we have proved that our sufficient
condition is very close to the necessary condition. In this sense, partial monotonicity of the best
response characterizes the existence of a pure-strategy Nash equilibrium in the case of n = 2.
However, when the number of players is three or more, there is still room for improvement.
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1)
(1)

MHF2006-27 Hiroshi KAWABI & Tomohiro MIYOKAWA
The Littlewood-Paley-Stein inequality for diffusion processes on general metric
spaces

MHF2006-28 Hiroki MASUDA
Notes on estimating inverse-Gaussian and gamma subordinators under high-
frequency sampling

MHF2006-29 Setsuo TANIGUCHI
The heat semigroup and kernel associated with certain non-commutative
harmonic oscillators

MHF2006-30 Setsuo TANIGUCHI
Stochastic analysis and the KdV equation

MHF2006-31 Masato KIMURA, Hideki KOMURA, Masayasu MIMURA, Hidenori MIYOSHI,
Takeshi TAKAISHI & Daishin UEYAMA
Quantitative study of adaptive mesh FEM with localization index of pattern

MHF2007-1 Taro HAMAMOTO & Kenji KAJIWARA
Hypergeometric solutions to the q-Painlevé equation of type A
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