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Abstract

As pervasive computing environments become popular,
RFID tags are introduced into our daily life. However, there
exists a privacy problem that an adversary can trace users’
behavior by linking the tag’s ID. Although a hash-chain
scheme can solve this privacy problem, the scheme needs a
long identification time or a large amount of memory. In this
paper, we propose an efficient identification scheme using
Bloom filters, which are space-efficient probabilistic data
structures. Our Bloom pre-calculation scheme provides a
high-speed identification with a small amount of memory by
storing pre-calculated outputs of the tags in Bloom filters.

1 Introduction

RFID (Radio Frequency IDentification) is a technology
to identify humans and objects through RFID tag; that is,
silicon chips with IDs and radio frequency functions. As
pervasive computing environments become more common-
place, RFID tags are becoming part of our daily life.

Privacy is a serious concern when RFID is used. For ex-
ample, the location privacy problem – the possibility that an
adversary can trace a user’s behavior by reading and linking
a tag’s ID – is a privacy issue.

Unlinkability is a property which means an adversary
cannot recognize whether outputs are from the same user,
and this property is important with respect to the privacy
problem. The hash-chain scheme [1, 2] provides unlinka-
bility against an adversary by using one-way hash functions.
However, the scheme needs a long identification time or a
large amount of memory.

In this paper, we propose an efficient identification
scheme using Bloom filters. A Bloom filter is a space-
efficient probabilistic data structure that is used to test
whether an element d is a member of a set X [3]. The filter
can separate effectively any element that is not in the set,
with small error probability. Our Bloom pre-computation
scheme provides a high-speed identification with a small

amount of memory by storing pre-calculated outputs of the
tags in Bloom filters.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the hash-chains scheme and defines the
identification problem. Section 3 explains the Bloom fil-
ter. Section 4 proposes the Bloom pre-computation scheme.
Section 5 compares our scheme with other scheme. Sec-
tion 6 concludes this paper.

2 Hash-chain Scheme

2.1 Overview

The hash-chain scheme, proposed by Ohkubo et al. [1,
2], is one of the schemes that provide unlinkability against
an adversary by using one-way hash functions. In this
scheme, two different one-way hash functions H and G,
a ROM, and a non-volatile memory are embedded within
each RFID tag. Let N be the number of RFID tags in an
RFID system where the ID idi of an RFID tag i is a bit
string of length l for 1 ≤ i ≤ N . We assume that if
i �= j, then idi �= idj for 1 ≤ i, j ≤ N , and 2l � N .
For s, t ∈ {0, 1}∗, we denote by s‖t the concatenation of s
and t. Let L be the length of the one-way hash functions H
and G.

The RFID tag i stores idi in the ROM, and stores secret
information si,1 ∈ {0, 1}L in the non-volatile memory. The
server stores the pair (idi, si,1) (1 ≤ i ≤ N) of all tags.

The j-th output of the RFID tag i (denoted oi,j) is given
as follows:

oi,j = H(idi‖si,j)

The RFID tag i updates the secret information as follows:

si,j+1 = G(si,j)

We assume oi,j = oi′,j′ ⇐⇒ i = i′ and j = j′.
We suppose that for every tag i, the server maintains an

expected counter value li s.t. li + 1 ≤ latesti ≤ li + M ,
where oi,latesti

is the latest output of the tag i. An ade-
quate M helps to prevent out of synchronism even if there



is several readers that cannot be controlled by the server.
The server can find (i, j) corresponding to an output d by
checking d = H(idi‖si,j) for all 1 ≤ i ≤ N and all
li + 1 ≤ j ≤ li + M . After the identification of oi,j , li
is updated to j.

There are two calculating policies in identification.
One policy is calculating H(idi‖si,j) for each identifica-
tion. Another policy is using pre-calculated results Oi =
{oi,li+1, · · · , oi,li+M}, which are stored in a memory. We
call the former identification policy sequential search. And
we call the later one LUT search.

We define successful of identification as outputting cor-
rect i when d ∈ Oi is given as challenge. And we define
successful of denial as outputting ⊥ when o is given, where
∀i, o /∈ Oi. The successful rates of identification by the
sequential search and the LUT search are 100%. And also
their successful rates of denial are 100%.

X = H(idi‖si,j) is not fixed because si,j changes every
time. It is computationally difficult to get idi from X due
to the property of one-way hash function. Therefore, this
scheme provides unlinkability against an adversary.

2.2 Problems of Hash-chain Scheme

The existing search methods of the hash-chain scheme,
has to perform NM one-way hash calculations in aver-
age(sequential search) or prepare NML[bit] memory(LUT
search). Therefore, it is difficult to apply the existing hash-
chain schemes to a large-scale system, where NM is large.

Now, we define the identification problem. Let f be a
bijective function from a set X to a set Y . f is also an
one-way hash function that is easy to compute but “hard to
invert”. Let A be a subset of X . Y is a subset of a set Z.
We assume |Y | 
 |Z|.

We define a function gA : Z → A is as follows.

gA(z) =
{

a ∃a ∈ A, z = f(a)
⊥ otherwise

(1)

The corresponding relations between the above formal-
ization and the hash-chain scheme are as follows: X ↔
{(i, j)}, Y ↔ {oi,j}, f ↔ H(idi‖si,j) and Z ↔ {0, 1}L.
Then, we can translate the identification problem of the
hash-chain scheme into the problem how to construct an
algorithm and data structure that have two properties given
as follows:

1. gA(z) can be computed efficiently with lower memory

2. The data structure can be changed efficiently when A
is changing to A′ ⊂ X

Changing from A to A′ is corresponding to a change Oi

owing to an update of li.

Table 1. List of Notation
Symbol Short Description
H , G One-way hash function
N Number of RFID tags in the system
M Margin for synchronization
oi,j j-th output of the RFID tag i
li Expected counter value of the tag i
Oi Output set of the tag i
L Output length of one-way hash functions
m Length of an array of a Bloom filter
k Number of hash functions using a filter
n Number of the elements stored in a filter
ε Probability of false positives of a filter

BLOOMi Bit array of the Bloom filter that stores Oi

d Input
c Memory parameter

2.3 Notation

Table 1 shows the symbols that are used in this paper. At
the first opportunity, we explain the other symbols that are
not explained in this section.

3 Bloom Filter

The Bloom filter, proposed by Burton H. Bloom, is a
space-efficient probabilistic data structure that is used to
test whether an element d is a member of a set X [3]. The
Bloom filter outputs ‘Positive’ if the filter concludes d is a
member of X; otherwise the filter outputs ‘Negative’.

The Bloom filter never yields false negative error, which
the filter outputs ‘Negative’ in spite of d ∈ X . However, the
filter may yields false positive error, which the filter outputs
‘Positive’ in spite of d /∈ X .

3.1 Algorithm

The data structure of a Bloom filter is a bit array of m
bits. BLOOM [i] denotes the i-th element of the array
BLOOM . The Bloom filter uses k independent random
hash functions, h1, h2, · · · , hk with range [1,m]. hi doesn’t
need the ‘one-way’ property.

3.1.1 Initialization

To clear the set X , all the bits of BLOOM are set to
0. Algorithm 1 shows the initialization process written in
pseudo-code.



Algorithm 1 InitBloom(BLOOM)
Input: BLOOM
Output: BLOOM

1: for i = 1 to m do
2: BLOOM [i]← 0
3: end for

3.1.2 Insertion

To insert an element d into the set X , the BLOOM [hi(d)]
are set to 1 for 1 ≤ i ≤ k. Algorithm 2 shows the insertion
process written in pseudo-code.

Algorithm 2 AddBloom(d,BLOOM)
Input: d,BLOOM
Output: BLOOM

1: for i = 1 to k do
2: BLOOM [hi(d)]← 1
3: end for

3.1.3 Query

To check whether an element d is a member of the set X ,
we check whether all BLOOM [hi(d)] are set to 1 for 1 ≤
i ≤ k. If not, it is clear that d is not a member of X . If all
BLOOM [hi(d)] are set to 1, we assume that d is a member
of the set X although the filter may yield a false positive
error.

Algorithm 3 shows the query process written in pseudo-
code.

Algorithm 3 QueryBloom(d,BLOOM)
Input: d,BLOOM
Output: Positive or Negative

1: for i = 1 to k do
2: if BLOOM [hi(d)] = 0 then
3: return Negative
4: end if
5: end for
6: return Positive

3.2 Probability of false positive error

Let n be the number of elements in the set X . The proba-
bility of a false positive error (denoted ε) is given as follows.

ε = [1− (1− 1/m)kn]k ≈ (1− e−kn/m)k

For given m and n, we can find the value of k that mini-
mizes the probability ε is

k =
m

n
ln 2.

The minimized false positive error rate is given as follows.

ε = 0.5k ≈ 0.6185m/n

4 Bloom Pre-computation Scheme

In this section, we propose a Bloom pre-computation
scheme, which realizes efficient identification using Bloom
filters. The scheme has three phases, 1) pre-computing
phase, 2) identification phase, and 3) update phase. The
pre-computing phase is done only once. The identification
phase and the update phase are executed for each identifica-
tion.

4.1 Pre-computing Phase

We prepare the N Bloom filters. Each Bloom filter is
corresponding to each tag. BLOOMi denotes the filter cor-
responding to the tag i. The BLOOMi stores the output set
Oi.

Algorithm 4 shows the procedures of pre-computing
phase written in pseudo-code. make output(i, j) is a func-
tion to obtain oi,j .

Algorithm 4 Pre-computing Phase
Input: BLOOM1, · · · , BLOOMN , l1, · · · , lN
Output: BLOOM1, · · · , BLOOMN , l1, · · · , lN

1: for i = 1 to N do
2: li ← 0
3: InitBloom(BLOOMi)
4: for j = 1 to M do
5: id← make output(i, j)
6: AddBloom(id,BLOOMi)
7: end for
8: end for

Since we need to calculate oi,1, oi,2, · · · , oi,M for each
tag, the number of the one-way hash calculations for pre-
computing is 2NM .

And since each Bloom filter stores Oi, the parameters
n,m, k are given as follows: n = M , m = n log0.6185 ε =
M log0.6185 ε and k = log0.5 ε. Therefore, memory usage
of the scheme is mN = NM log0.6185 ε[bit], and the num-
ber of random hash calculation hi is MNk = MN log0.5 ε.

4.2 Identification Phase

To search idi from d, we query all Bloom filters whether
d is a member of the set. If d is the j-th output of the tag i,
BLOOMi returns ‘Positive’. Therefore we can obtain idi

by searching a filter that returns ‘Positive’.
However, we may not determine the ID because some

Bloom filters may return ‘Positive’ due to false positive



errors. To solve this problem, we execute the sequential
search, described in section 2.1 for all the tags whose Bloom
filters return ‘Positive’. By sequential search, we can also
obtain j.

Algorithm 5 shows the procedures of pre-computing
phase written in pseudo-code.

Algorithm 5 Identification Phase
Input: d,BLOOM1, · · · , BLOOMN , l1, · · · , lN
Output: (i, j) or ⊥

1: for i = 1 to N do
2: if QueryBloom(d,BLOOMi) = Positive then
3: for j = li + 1 to li + M do
4: if d = make output(i, j) then
5: return (i, j)
6: end if
7: end for
8: end if
9: end for

10: return ⊥

The Bloom filters that output ‘Positive’, consist of one
Bloom filter which stores d ∈ X and any Bloom filters
that yield false positive error. The expected number of the
Bloom filter that outputs ‘Positive’ is ε(N−1)+1 � εN+1.
Since we need to calculate the output M/2 times on aver-
age for each tag i, the expected number of the one-way hash
calculation is {ε(N − 1) + 1}M � (εN + 1)M .

The number of random hash calculation hi is only k =
log0.5 ε because all Bloom filters use same hi values in iden-
tification phase.

Since a Bloom filter never yields false negative error, the
successful rate of identification is 100%. And since we ex-
ecute sequential search for all the tags whose Bloom filters
return ‘Positive’, the successful rate of denial is also 100%.

4.3 Update Phase

In update phase, we update li and BLOOMi using (i, j)
which can be obtained in above identification phase.

Firstly, we update li ← j. Secondly, we clear the
BLOOMi to delete all stored elements. Finally, we insert
new Oi into the BLOOMi.

Algorithm 6 shows the procedures of update phase of
Bloom filter written in pseudo-code.

Since we need to generate oi,j+1, · · · , oi,j+M and store
them into the BLOOMi, the number of one-way hash cal-
culations in update phase is 2M and the number of random
hash calculation hi is Mk = M log0.5 ε.

Algorithm 6 Update Phase
Input: BLOOMi, li, i, j
Output: BLOOMi, li

1: li ← j
2: InitBloom(BLOOMi)
3: for k = li + 1 to li + M do
4: id← make output(i, k)
5: AddBloom(id,BLOOMi)
6: end for

5 Comparison

In this section, we first introduce related work. Af-
ter that, we compare the proposed schemes with existing
schemes. Last, we show the implementation result of the
proposed schemes.

5.1 Related Work

5.1.1 Bloomier Filter

The Bloomier filter is an extension to Bloom filter for com-
pactly encoding a function to support approximate evalu-
ation queries [4]. The problem definition of the Bloomier
filter is similar to our problem definition. The difference
between the Bloomier filter and the proposed scheme is as
follows.

1. In a Bloomier filter, f−1 is given instead of f .

2. A Bloomier filter may not output ⊥ in spite of ∀a ∈
A, z �= f(a).

3. Bloomier filter doesn’t consider the update of A

5.1.2 Avoine’s scheme

Avoine et al. [5] developed a specific time-memory trade-
off that reduces the amount of computation in the hash-
chain scheme. The purpose of the Avoine’s scheme is same
as that of the proposed scheme.

However, the Avoine’s scheme needs to calculate one-
way hash function O(NM2) times in pre-computing pro-
cess. And there is a problem that pre-computing process
is needed when A is updated because the scheme doesn’t
consider the update of A.

Reducing the frequency of update decreases the load of
update; however the virtual margin for synchronization M
also reduces. Therefore, the tolerance against out of syn-
chronism becomes weaker. In addition, there is a security
risk in that an adversary can guess a tag’s count number [6].

In Avoine’s scheme, the successful rate of identification
is less than 100% although the successful rate of denial is
100%.



5.2 Comparison

Table 2 compares the memory and the time needed for
each scheme. In the table, c is the memory size parameter
for Avoine’s scheme, and SRI is stand for Successful Rate
of Identification. Note that the memory amount does not
include the space for the ID list, which is required for every
scheme. The number of random hash calculations hi on
Bloom filters is given in brackets. The calculation load of
the random hash functions hi is lighter that that of the one-
way hash functions H and G because hi doesn’t need one-
way property.

5.3 Implementation

We implemented the sequential search scheme, the LUT
search scheme, the Avoine’s scheme and the proposed
scheme. We set N is 102400, and M is 256. We vary the
memory usage of the proposed scheme.

The following is the execution environments of the
server.

• OS: CentOS5 (kernel-2.6.18)

• CPU: AMD Athlon64 3000+

• Memory: 1GB

• Compiler: GCC 4.1 with O2 option

We adopted SHA-1 [7], whose output length L is 160bit,
as the one-way hash functions H and G.

Table 3 shows the implementation results for execution
time.

Compared with the proposed scheme and the LUT
scheme, our scheme (except for 25MB) can identify with
faster time and lower memory although our scheme need
longer time for pre-computing. Also the total execution
time (=identification+update) of our scheme is faster than
the LUT scheme.

The total time of our scheme is about 1000 times faster
than that of the sequential scheme.

Compared with our scheme and the Avoine’s scheme,
the identification time of the Avoine’s scheme is faster than
that of our scheme under the same memory usage. How-
ever, the total execution time of our scheme is about 10000
times faster than that of the Avoine’s because the Avoine’s
scheme needs heavy calculation for updating. Therefore,
our scheme is more suitable for environments in which ad-
versary can access the tag easily because our scheme can
always keep the constant margin for synchronization.

Compared with our schemes varying memory usage,
87.5MB, not 100MB is the best memory usage which gives
the fastest total executing time. We can recognize this re-
sult as follows. The large memory usage reduces the ex-
pected number of the one-way hash calculation H and G.

On the other side, the large memory usage increases the
number of random hash calculation hi. Therefore, the us-
age of 87.5MB memory gives the best balance between the
load of the one-way hash functions H,G and the load of the
random hash calculations hi.

6 Conclusion

In this paper, we proposed a Bloom pre-computation
scheme, which realizes efficient identification using Bloom
filters. Our scheme provides a high-speed identification
with a small amount of memory by storing pre-calculated
outputs of the tags in Bloom filters.

Compared with the Avoine’s scheme, our scheme can
update the pre-calculation results efficiently and can always
keep the constant margin for synchronization. Our scheme
is more suitable for environments in which adversary can
access the tag easily.
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Table 2. Comperison of required memory and time
Average Number of Hash Calculations

SRI[%]
Memory[bit] Identify Update Pre-comp.

LUT NML 0 M 2NM 100
Proposed NM log0.6185 ε (εN + 1)M [+ log0.5 ε] 2M [+M log0.5 ε] 2NM [+NM log0.5 ε] 100

Avoine cNL
108M3(log NM)2

c3L2

21NM2

2c
+ NM

21NM2

2c
+ NM 99.9

Sequential 0 NM 0 0 100

Table 3. Implementation Results for Execution time
Memory[MB] Identify[msec] Update[msec] Total[msec] Pre-comp.[sec] SRI[%]

LUT 500 119.1 0.108 119.2 22.9 100
100 4.9 0.524 5.4 53.2
87.5 4.7 0.482 5.2 48.9
75 4.8 0.455 5.2 46.0

Proposed 62.5 5.4 0.410 5.8 41.7 100
50 10.1 0.368 10.5 37.4

37.5 37.8 0.325 38.1 33.1
25 246.4 0.297 246.7 30.2
180 0.1 1.23e5 1.23e5 122.7 100
60 0.9 2.78e5 2.78e5 278.4 100

Avoine 30 5.2 5.52e5 5.52e5 552.0 100
12 72.2 1.11e6 1.11e6 1111.2 96.1
6 579.0 2.02e6 2.02e6 2021.8 94.2

Sequential 0 10614.7 0.001 10614.7 0.0 100


