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Abstract. This paper addresses the problem of speeding up string match-
ing by text compression, and presents a compressed pattern matching
(CPM) algorithm which finds a pattern within a text given as a collage
system 〈D,S〉 such that variable sequence S is encoded by byte-oriented
Huffman coding. The compression ratio is high compared with existing
CPM algorithms addressing the problem, and the search time reduction
ratio compared to the Knuth-Morris-Pratt algorithm over uncompressed
text is nearly the same as the compression ratio.

1 Introduction

The compressed pattern matching (CPM in short) problem is to find occurrences
of a pattern in a compressed text without decompressing it. One goal of this
problem is to perform a faster search in a compressed text in comparison with
decompression followed by an ordinary search (Goal 1).

A more ambitious goal is to perform a faster search in a compressed text
in comparison with an ordinary search in the original text (Goal 2). We note
that in the setting of Goal 1, users compress their text data using their favored
compression methods for the traditional purpose, i.e., saving disk storage or data
transmission cost. On the contrary, the aim of compression is not only to reduce
disk storage requirement but also to speed up string searching in the setting
of Goal 2. Let td, tu, and tc be the times for decompression, for searching in
uncompressed text, and for searching in compressed text, respectively. Goal 2
aims for tu > tc while Goal 1 does for td + tu > tc. Goal 2 is thus more difficult
to achieve than Goal 1, and most Goal 2-oriented researches involve in designing
a new compression scheme appropriate for it, rather than using existing scheme
with high compression ratio.

We introduced in [3] a useful CPM-oriented abstraction of compression for-
mats, named collage systems, where a text is represented as a pair of dictionary
D and sequence S of variables in D. Algorithms designed for collage systems
can be implemented for many different compression formats. We designed in
the same paper a general Knuth-Morris-Pratt (KMP) type algorithm on collage
systems, and in [14] a general Boyer-Moore (BM) type algorithm on collage sys-
tems. Then we specialized in [13, 14] the algorithms for the byte-pair encoding
(BPE) [2]. The obtained algorithms are, respectively, faster than their original



algorithms over uncompressed text. BPE compression thus accelerates string
matching, but its compression ratio is poor. In this paper we try to improve
both the compression ratio and the search time reduction ratio.

Main contributions. We consider a general compression scheme which
transforms texts to truncation-free collage systems and encodes them using byte-
oriented Huffman coding. The dictionary size can be tuned by a parameter n, the
number of internal nodes of the Huffman tree. The compression ratio can then
be much better than those of the compression schemes used by existing Goal 2-
oriented CPM algorithms. Then we develop a new KMP type CPM algorithm
which runs O(|S| + occ) time after O(|D| · |P |) time and space preprocessing,
where P is a pattern and occ is the number of pattern occurrences. We note
that the bound O(|D| · |P |) improves the preprocessing time and space bound
O(|D| · |P |+ |P |2) of straightforward application of [3]. The proposed algorithm
runs practically fast and the search time reduction compared to uncompressed
KMP matching is almost the same as the compression ratio.

Related work. There are two lines in CPM studies addressing Goal 2. One
is to put restriction on compression scheme so that every pattern occurrence can
be identified simply as a substring of encoded text that is identical to encoded
pattern. The advantage is that any favored pattern matching algorithm can
be used to search encoded text for encoded pattern. The works of Manber [7]
and Rautio et al. [12] are along this line. The drawback is that the restriction
sacrifices the compression ratio. The work of Moura et al. [9] uses a word-based
Huffman encoding with a byte-oriented code, and shows a high compression ratio.
However it is limited to word-based search. The other line is to develop CPM
algorithms for coping with compression scheme in which some occurrences of
encoded pattern can be false matches, and/or pattern possibly occurs in several
different forms within encoded text. The work of Miyazaki et al. [8], our previous
works [13, 14] for BPE, and the present paper are along this line. While all of
the works [7, 12, 8, 13, 14] mentioned here achieve Goal 2, the compression ratios
are poor: BPE is the best among them.

2 Preliminaries

Let Σ be a finite alphabet. An element of Σ∗ is called string. Strings x, y, and
z are said to be a prefix, factor, and suffix of the string s = xyz, respectively. A
prefix, factor, and suffix of a string s is said to be proper if it is not s. The length
of a string s is denoted by |s|. The ith symbol of a string s is denoted by s[i] for
1 ≤ i ≤ |s|, and the factor of s that begins at position i and ends at position
j is denoted by s[i..j] for 1 ≤ i ≤ j ≤ |s|. Denote by [i]s (resp. s[i]) the string
obtained from s by removing the length i prefix (resp. suffix) for 0 ≤ i ≤ |s|.
The concatenation of i copies of the same string s is denoted by si. For a set A
of integers and an integer k, let A ⊕ k = {i + k | i ∈ A}.

For strings x, y, and z, let Occx(y) =
{
|v|

∣∣ ∃u, ∃v : y = uxv
}

and Occ�
x(y, z) ={

d
∣∣ d ∈ Occx(yz) ∧ |x| + d > |z| > d

}
. Note that Occ�

x(y, z) is the set of occur-
rences of x within yz which cover the boundary between y and z.
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A period of a string s is an integer p, 0 < p ≤ |s|, such that s[i] = s[i + p] for
all i ∈ {1, . . . , |s| − p}. The next lemma follows from the periodicity lemma [1].

Lemma 1 ([3]). Let x and y be strings. If Occx(y) has more than two elements
and the difference of the maximum and the minimum elements is at most |x|,
then it forms an arithmetic progression whose step is the smallest period of x.

Corollary 1. Occ�
x(y, z) forms an arithmetic progression for any strings x, y, z.

3 Collage systems and compressed pattern matching

3.1 Collage systems

A collage system is a pair 〈D,S〉 defined as follows. D is a sequence of assignments
X1 =expr1; X2 =expr2; · · · ; Xn =exprn, where, for each k = 1, . . . , n, Xk is a
variable and exprk is any of the form:

a for a ∈ Σ ∪ {ε}, (primitive assignment)
XiXj for i, j < k, (concatenation)
[j]Xi for i < k and a positive integer j, (j length prefix truncation)
X

[j]
i for i < k and a positive integer j, (j length suffix truncation)

(Xi)j for i < k and a positive integer j. (j times repetition)

The size of D is the number n of assignments and denoted by |D|. The height
of D is the height of the dependence tree of D and denoted by h(D). S is a
sequence Xi1 · · ·Xi�

of variables defined in D. The length of S is the number
� of variables and denoted by |S|. The variables Xk represent the strings Xk

obtained by evaluating their expressions. A collage system 〈D,S〉 represents
the string obtained by concatenating the strings Xi1 , . . . , Xi�

represented by
variables Xi1 , . . . , Xi�

of S.
A collage system is said to be truncation-free if D contains no truncation op-

eration, and regular if D contains neither repetition nor truncation operation. For
example, the collage systems for the run-length encoding is truncation-free, and
those for RE-PAIR [6], SEQUITUR [11], BPE [2], and the grammar-transform
based compression [5] are regular. In the Lempel-Ziv family, the collage systems
for LZ78/LZW are regular, while those for LZ77/LZSS are not truncation-free.

3.2 CPM algorithm over collage systems

The algorithm of [3] has two stages: First it preprocesses D and P , and second it
processes the variables of S. In the second stage, it simulates the KMP automa-
ton on uncompressed text, by using two functions Jump and Output, both take
as input a state q and a variable X . The former is used to substitute just one
state transition for the consecutive state transitions of the KMP automaton for
the string X for each variable X of S, and the latter is used to report all pattern
occurrences found during the state transitions. Thus the two functions form a
Mealy-type finite-state transducer. Let us call it compressed pattern matching
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machine (CPMM in short). Formally, let δ be the state-transition function of
the KMP automaton. The definition of the functions is as follows.

Jump(q, X) = δ(q, X)

Output(q, X) =
{
|X | − |w|

∣∣∣∣w is a non-empty prefixes of X
such that δ(q, w) is the final state.

}

An example of CPMM and its move are displayed in Fig. 1 and 2, respectively.

a b a c a
0 1 2 3 4 5

b, c, d

δ(q, s)
a b c d

0 1 0 0 0
1 1 2 0 0
2 3 0 0 0
3 1 2 4 0
4 5 0 0 0
5 1 2 0 0

D
X1 = a
X2 = b
X3 = c
X4 = d
X5 = X2X1
X6 = X3X1
X7 = X6X1
X8 = X1X5
X9 = X5X6
X10 = X6X9

Jump(q, Xi)/Output(q, Xi)
state X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

0 1/∅ 0/∅ 0/∅ 0/∅ 1/∅ 1/∅ 1/∅ 3/∅ 1/∅ 5/{0}
1 1/∅ 2/∅ 0/∅ 0/∅ 3/∅ 1/∅ 1/∅ 3/∅ 5/{0} 5/{0}
2 3/∅ 0/∅ 0/∅ 0/∅ 1/∅ 1/∅ 1/∅ 3/∅ 1/∅ 5/{0}
3 1/∅ 2/∅ 4/∅ 0/∅ 3/∅ 5/{0} 1/{1} 3/∅ 5/{0} 5/{4, 0}
4 5/{0} 0/∅ 0/∅ 0/∅ 1/∅ 1/∅ 1/∅ 3/{2} 1/∅ 5/{0}
5 1/∅ 2/∅ 0/∅ 0/∅ 3/∅ 1/∅ 1/∅ 3/∅ 5/{0} 5/{0}

Fig. 1. KMP automaton for P = abaca is shown on the upper-left, where the state-
transition function δ is represented by the goto and the failure functions (depicted by
the solid and the broken arrows, respectively), and the deterministic version of δ is
displayed on the upper-right. The functions Jump and Output built from the KMP
automaton for the dictionary D shown on the lower-left, are shown on the lower-right.

a b a c a b a b a c a b a c a

X8 X3 X8 X5 X10

{2} {4, 0}

S :

Original text :

 :

Output :
Jump :

Fig. 2. Move of CPMM of Fig. 1 against S = X8X3X8X5X10 is demonstrated.

Lemma 2 ([3]). The function Jump can be built in O(|D| · h(D) + |P |2) time
using O(|D|+ |P |2) space, so that it responds in constant time. The factor h(D)
disappears if D is truncation-free.

Lemma 3 ([3]). The function Output can be built in O(|D| · h(D) + |P |2) time
using O(|D| + |P |2) space, so that it responds in O(h(D) + �) time, where � is
the answer size. The factor h(D) disappears if D is truncation-free.

Theorem 1 ([3]). The CPM problem can be solved in O
(
(|D| + |S|) · h(D) +

|P |2 + occ
)

time using O(|D| + |P |2) space, where occ is the number of pattern
occurrences. The factor h(D) is dropped for truncation-free collage systems.
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3.3 Practical aspect

Theorem 1 suggests that compression schemes which describe texts in terms
of truncation-free collage systems might be suitable for CPM. For example,
it implies that LZW (truncation-free) is suitable compared with LZ77 (not
truncation-free). This coincides with the observation by Navarro and Raffinot [10]
that CPM for LZW achieves Goal 1, whereas CPM for LZ77 does not so.

From practical CPM viewpoints, we have to pay attention to the way collage
systems 〈D,S〉 are encoded. Desirable conditions of compression scheme other
than the truncation-freeness can be summarized as follows [14].

– D is encoded separately from S.
– D is so small to fit the two-dimensional array implementation of Jump.
– The variables of S can be decoded without bit-level computation: A byte-

oriented code is preferable.

LZW satisfies none of these conditions, and it was observed in [4] that CPM for
LZW is too slow to achieve Goal 2 though it achieves Goal 1. On the other hand,
BPE [2] satisfies all of them. It transforms a text into a regular collage system
〈D,S〉 such that |D| ≤ 256 and each variable of S is encoded in one byte. It is
shown in [13] that BPE reduces the searching time at nearly the same ratio as
the compression ratio, compared with KMP algorithm over original text.

The compression ratio of BPE is, however, poor. In the next section, we raise
the restriction on |D| and encode S with byte-oriented Huffman coding, in order
to improve the compression ratio and keep satisfying the above conditions.

4 New Method

4.1 Basic idea

We encode the variables of S by byte-oriented Huffman coding, that is, we use
a prefix code Φ that maps the variables of D to strings over the byte alphabet
Γ = {00, . . . , FF}. Although we are interested only in the case that both the
source alphabet Σ and the coding alphabet Γ are of size 256, we illustrate our
method using an example with Σ = {a, b, c, d} and Γ = {A, B, C, D} for the
sake of simplicity in explanation.

Fig. 3 shows a prefix code Φ that maps variables X1, . . . , X10 to strings
over Γ = {A, B, C, D} and its code tree. Using this code, the variable sequence
S = X8X3X8X5X10 of Fig. 2 is encoded as AD D AD AB AAC. Input to our
problem is thus a string over Γ representing S.

One naive solution to the problem would be to use the code tree as a decoder
and to apply the CPM technique discussed in the previous section to the decoded
variables. However, the processing is not very fast in practice.

The method we propose in this paper is to embed the decoder (code tree) into
the CPMM. That is, we replace every transition by Xi from state s to state t of
CPMM with a consecutive transitions from s to t that spells out the codeword
of Xi. The decoder-embedded CPMM (DCPMM for short) is thus a Mealy-type
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finite-state transducer with state-transition function Δ and output function Λ.
In the running example, the transition Jump(3, X10) = 5 of CPMM is replaced
with the transitions Δ(3, A) = 9, Δ(9, A) = 15, and Δ(15, C) = 5, where 9 and
15 are newly introduced states. All but last transitions have no outputs, that is,
Λ(3, A) = Λ(9, A) = ∅, and Λ(15, C) = Output(3, X10). Fig. 4 displays DCPMM.

4.2 Definition

A formal definition follows. Let Γ be a coding alphabet and Φ be a prefix code
that maps the variables in D to strings over Γ . The code tree of Φ, denoted by
TΦ, is a trie representing the set of codewords of Φ such that (1) the leaves are
one-to-one associated with variables in D, and (2) the path from the root to the
leaf associated with Xi spells out the codeword Φ(Xi).

Let I be the set of internal nodes of the code tree TΦ. Let Q̃ = Q× I, which
is the set of states of DCPMM. The state transition function Δ and the output
function Λ of DCPMM are defined on Q̃ × Γ . Let ((j, t), γ) be any element in
Q̃ × Γ . Let t′ be the child of t such that the edge (t, t′) is labeled γ ∈ Γ in TΦ.
The definitions of Δ and Λ are as follows.

– If t′ is a leaf of TΦ associated with variable Xi, then Δ((j, t), γ) = Jump(j, Xi)
and Λ((j, t), γ) = Output(j, Xi).

– If t′ is an internal node of TΦ, then Δ((j, t), γ) = (j, t′) and Λ((j, t), γ) = ∅.

In the sequel we assume code trees are full, that is, every internal node
has exactly |Γ | children. Then a code tree with n internal nodes has exactly
(|Γ | − 1)n + 1 leaves, and hence |D| = (|Γ | − 1)n + 1. A two-dimensional table
J storing the values of Jump is of size |Q| × |D| = (|P | + 1)(255n + 1) and
a two-dimensional table storing Δ is of size |Q̃| × |Γ | = (|P | + 1) · 256n. The
fraction is 256n

255n+1 = 256
255 (1 − 1

255n+1 ) ≤ 256
255 . Thus, the size of the table storing

Δ is almost the same as the table J .

4.3 Storing dictionary and code tree

A code tree with n internal nodes can be represented by the bit-string obtained
during a preorder traversal over it such that every internal node is represented

Code Φ

variable codeword variable codeword

X1 B X6 AC
X2 C X7 AAA
X3 D X8 AD
X4 AAD X9 AAB
X5 AB X10 AAC

X7

X9

X10

X4

X5

X6

X8

X1

X2

X3

A

B

C

D

A

B

C

D
A

B

C

D

Fig. 3. A prefix code Φ that maps the variables X1, . . . , X10 to strings over Γ =
{A, B, C, D} is shown on the left, and its code tree is displayed on the right.
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A
 /
B  /
C / D /

A
 /
B  /
C / D /

1 2 49

3 5 315

5 5 01

A
 /
B  /
C / D /

A
 /
B  /
C / D /

3 0 08

1 1 314

1 5 01

A
 /
B  /
C / D /

A
 /
B  /
C / D /

1 0 06

1 1 312

1 5 01

A
 /
B  /
C / D /

A
 /
B  /
C / D /

1 2 07

3 1 313

5 5 01

A
 /
B  /
C / D /

A
 /
B  /
C / D /

5 0 010

1 1 316

1 5 01

A
 /
B  /
C / D /

A
 /
B  /
C / D /

1 2 011

3 1 317

5 5 01

A
 /
B  /
C / D /

A
 /
B  /
C / D /

A
 /
B  /
C / D /

A
 /
B  /
C / D /

A
 /
B  /
C / D /

A
 /
B  /
C / D /

0 1 2 3 4 5

Fig. 4. DCPMM is displayed, where the numbers in circles represent the states, and
the numbers not in circles imply the states with the same numbers. The path consist-
ing of the edges (3, 9), (9, 15), and (15, 5) which are labeled A/∅, A/∅, and C/{4, 0},
respectively, implies that Jump(3, X10) = 5 and Output(3, X10) = {4, 0}. The number
of states of DCPMM is 18, which is 3 times larger than the original CPMM of Fig. 1
as the number of internal nodes of the code tree of Fig. 3 is 3.

a b a c a b a b a c a b a c aoriginal text :

Δ:
A D D A D A B A A Ccompressed text :
X8 X3 X8 X5 X10S :

{2} {4, 0}Λ:

 :

Fig. 5. Move of DCPMM for input ADDADABAAC is demonstrated.

by ‘0’ and every leaf is represented by ‘1’ followed by a �log2 |D|�-bit integer
indicating the corresponding variable, and thus stored in |D|(�log2 |D|�+ 1) + n
bits. It suffices to store the right-hand-sides (RHSs) of the assignments for storing
D. Since the RHSs of primitive assignments can be omitted, we have only to
store the RHSs of concatenation and repetition assignments. A dictionary D
can be stored as (|D| − |Σ|)-pairs of �log2 |D|�-bits integers, where we assume
that k ≤ |D| for every repetition assignment X = Y k. Table 1 shows space
requirement for dictionary and code tree for |Σ| = |Γ | = 256.

Table 1. Space requirement for dictionary and code tree are given, where |Σ| = |Γ | =
256. We note that the total size 299414 bits for n = 30 is approximately 37 Kbytes,
which is much smaller than text size we are expecting.

n = 2 n = 5 n = 10 n = 15 n = 20 n = 25 n = 30

|D| = 255n + 1 511 1276 2551 3826 5101 6376 7651

dictionary (in bits) 4590 22440 55080 85680 125970 159120 192270
code tree (in bits) 5112 15317 33173 49753 71434 89289 107144

total size (in bits) 9702 37757 88253 135433 197404 248409 299414
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5 Algorithm

Given a collage system 〈D,S〉 and a code Φ, our algorithm first builds CPMM
consisting of Jump and Output, and then convert it into DCPMM according to
Φ. The conversion is rather straightforward: If we have built a table J of size
|Q| × |D| storing Jump, we can construct a table of size |Q̃| × |Γ | storing Δ in
O(|Q̃| · |Γ |) time and space. Similarly, if we have built a data structure storing
Output, then we can construct a data structure for Λ in O(|Q̃| · |Γ |) time and
space. Thus, we shall concentrate on construction of the table J for Jump and
the data structure for Output below.

5.1 Direct construction of two-dimensional array storing Jump

Consider to build a two-dimensional array J that stores the values of Jump,
namely, J [q, X ] = Jump(q, X) for any q ∈ Q = {0, . . . , |P |} and any variable
X defined in D. A straightforward application of the algorithm of [3] requires
O(|D| · |P |+ |P |2) time and space, where the O(|P |2) factor is needed for solving
a subproblem named “factor concatenation problem” [3]. Since we use the two-
dimensional array J , we can avoid this problem and take a more direct way.
Below we reduce the time and space complexity to O(|D| · |P |).

It is easy to build J for regular collage systems: first we set J [q, X ] = δ(q, a)
for every primitive assignment X = a and for any q ∈ Q, and then set J [q, X ] =
J [J [q, Y ], Z] for every concatenation assignment X = Y Z and for any q ∈ Q,
assuming the entries J [p, Y ] and J [p, Z] are already filled for any p ∈ Q.

Now, we consider the case where repetition assignments X = Y k (k ≥ 3)
occur in D. We can fill the entries J [q, X ] for all q ∈ Q in the following fashion.

(1) Initialize J [q, X ] by nil for all q ∈ Q.
(2) Compute the value δ(0, X), and set J [0, X ] to it.
(3) For each q ∈ Q such that X occurs at position q of P , set J [q, X ] = q + |X |.
(4) For each q ∈ Q in increasing order, set J [q, X ] = J [f(q), X ], if J [q, X ] = nil,

where f is the failure function of the KMP automaton, i.e., f(q) is the length
of longest prefix of P that is also a proper suffix of P [1..q].

For the computation of δ(0, X) in (2), we set p := 0, repeat p := J [p, Y ]
exactly �-times, and then set J [0, X ] := p, where � is k, if k|Y | ≤ |P |; and � is
the smallest integer such that |P | ≤ �|Y |, otherwise. This takes only O(|P |) time
since � ≤ |P |+1. For (3), let rep(q) denote the largest integer � ≥ 0 such that the
string Y

�
occurs at position q of P . We assume rep(q) = 0 for q not in Q. Then

the string X occurs at position q if and only if rep(q) ≥ k. We note that rep(q)
is at most one larger than rep(q + |Y |), and rep(q) = rep(q + |Y |)+1 if and only
if Y occurs at position q (equivalently J [q, Y ] = q + |Y |). This observation tells
us that the entries J [q, X ] for all q ∈ Q can be filled in O(|P |) time.

Throughout the construction of the array J , the extra space we need is a
one-dimensional array of size |D| that stores |X| for all variables X in D.

Lemma 4. A two-dimensional array J which stores the function Jump can be
built in O(|P | · |D|) time and space, if D is truncation-free.
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5.2 Construction of Output

Consider to build a data structure which takes q ∈ Q and variable X in D as
input and returns the set Output(q, X) in linear time w.r.t. its size. A straight-
forward application of the algorithm of [3] again requires O(|D| · |P |+ |P |2) time
and space. Below we reduce this to O(|D| · |P |).

We have
Output(q, X) = Occ�

P (P [1..q], X) ∪ OccP (X).

By Corollary 1, Occ�
P (P [1..q], X) forms an arithmetic progression for any q and

any X and therefore it can be represented as a triple of integers. Hence the
sets Occ�

P (P [1..q], X) for all possible combinations of q and X can be stored in
O(|P | · |D|) space. Computation of Occ�

P (P [1..q], X) is as follows.
When X = a, Occ�

P (P [1..q], X) is {0} if |P | > 1, q = |P |−1, and P [|P |] = a;
and ∅ otherwise.

When X = Y Z, Occ�
P (P [1..q], X) is the union of Occ�

P (P [1..q], Y )⊕ |Z| and
Occ�

P (P [1..r], Z)−Occ�
P (Y , Z), where r = J [q, Y ]. We note that Occ�

P (P [1..q], X)⊕
|Z| is an arithmetic progression and the union is obtained as an extension of the
progression.

When X = Y k, we have two cases to consider.
Case 1: |P | ≤ |Y |. We have Occ�

P (P [1..q], X) = Occ�
P (P [1..q], Y ).

Case 2: |Y | < |P |. In general Occ�
P (P [1..q], X) is the union of {|X| + q −

|P | | P is a prefix of P [1..q]X} and Occ�
P (P [1..f(q)], X), where f is the failure

function of the KMP automaton, and hence we have only to determine the
integers q such that P [q + 1..|P |] is a prefix of X = Y

k
in O(|P |) time using

O(|P |) space. We note that P [q + 1..|P |] is a prefix of X if and only if: (1) |Y |
is a period of P [q + 1..|P |]; and (2) P [q + 1..q + |Y |] = Y . Let w be the longest
suffix of P such that |Y | is a period of w. The length of w can be computed in
O(|P |) time and space. The condition (1) holds if and only if |w| ≥ |P | − q. The
condition (2) holds if and only if J [q, Y ] = q + |Y |. Thus, we can enumerate the
integers q satisfying the conditions in O(|P |) time and space.

Lemma 5. A two-dimensional table which stores the sets Occ�
P (P [1..q], X) can

be built in O(|P | · |D|) time and space, if D is truncation-free.

Now, we shift our attention to OccP (X). For regular collage systems we have:

OccP (X) =
{
{0 | P = a}, if X = a;
OccP (Y ) ⊕ |Z| ∪ OccP (Z) ∪ Occ�

P (Y , Z), if X = Y Z.

For any variable X , we can enumerate OccP (X) in time linear in its size, by
traversing the dependence tree rooted X with short-cut pointers as shown in [3].

Next we consider the case where repetition assignments X = Y k (k ≥ 3)
occur in D. There are two cases to consider.

Case 1: |P | ≤ |Y |. We have OccP (X) = OccP (Y Y )⊕{i·|Y | | i = 0, . . . , k−2}.
We have only to store Occ�

P (Y , Y ).
Case 2: |Y | < |P |. Let y = Y and let w = y� with sufficiently large integer

�. We note that OccP (w) �= ∅ if and only if (i) Y is a factor of P and (ii) |Y | is
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a period of P . We can determine whether (i) holds in O(|P |) time by finding q
such that J [q, Y ] = q + |Y |. We can also determine whether (ii) holds in O(|P |)
time by checking P [i] = P [i+ |Y |] for all i = 1, . . . , |P |− |Y |. Suppose that both
(i) and (ii) hold. Let p (p < |y|) be the smallest integer in OccP (w). We have
p + |y| ∈ OccP (w) since |y| is a period of P . Let d be the smallest period of P .
We have two subcases to consider.

1. |y| is not a multiple of d. We assume for a contradiction that there exists p′

with p < p′ < p + |y| such that p′ ∈ OccP (w). Then, p′ − p and p + |y| − p′

are periods of P , and (p′ − p) + (p + |y| − p′) = |y| < |P |. Since d is the
smallest period of P , we have (p′ − p) + d < |P | and d + (p + |y| − p′) <
|P |. By Periodicity Lemma, the periods (p′ − p) and (p + |y| − p′) must be
multiples of d, and therefore their sum |y| must be a multiple of d, which
is a contradiction. We now have proved that OccP (w) = {p + i · |y| | i =
0, 1, . . .} ∩ {0, 1, . . . , |w| − |P |}.

2. |y| is a multiple of d. We can prove that there is no p′ with p < p′ < p + d
such that p′ ∈ OccP (w). Hence we have OccP (w) = {p+ i ·d | i = 0, 1, . . .}∩
{0, 1, . . . , |w| − |P |}.

To summarize, we have

OccP (X) = {p + i · h | i = 0, 1, . . .} ∩ {0, 1, . . . , k · |Y | − |P |},

where h = d, if |Y | is a multiple of d; and h = |Y |, otherwise. Let q (0 ≤ q ≤ |P |)
be the smallest integer such that J [q, Y ] = q + |Y |. Then, p = |Y |+ h− |P |+ q.

Lemma 6. A data structure can be built in O(|D| · |P |) time and space which
enumerates OccP (X) in time linear in its size, if D is truncation-free.

Lemma 7. The function Output can be built in O(|D| · |P |) time and space so
that it responds in time linear in the answer size, if D is truncation-free.

Theorem 2. DCPMM can be built in O(|D| · |P |) time and space, so that the
values of the functions Δ and Λ, respectively, can be returned in constant time
and in time linear in the answer size, if D is truncation-free.

6 Experimental results

We implemented the proposed CPM algorithm in C language and evaluated their
performance by a series of computational experiments. All the experiments were
carried out on a PC with a 2.66 GHz Intel Core 2 Duo processor and 8.0 GB
RAM running Linux (kernel 2.6.18). The text files we used are as follows.

Medline. A clinically-oriented subset of Medline, consisting of 348,566 refer-
ences. The file size is 60.3 Mbytes.

Genbank. The file consisting only of accession numbers and nucleotide se-
quences taken from a data set in Genbank. The file size is 17.1 Mbytes.
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To transform the texts into collage systems, we used the recursive-pairing [6]
with upper-limit 255n + 1 to |D| where n varied from 2 to 30. We next encoded
the obtained collage systems with byte-oriented Huffman coding method. Then
we ran the proposed CPM algorithm over these compressed files. The patterns
searched for are substrings of the original texts.

Table 2 compares the compression ratios of our method and other compres-
sors. Although the compression ratio of our method is poor compared to the
standard compressors gzip and bzip2, it is higher than those of the Goal 2-
oriented compressors.

Table 2. Compression ratios (in %) are compared, where gzip and bzip2 were executed
with “-9” option (yielding “best” compression ratios).

standard compressors compressors for Goal 2

compress gzip bzip2 BPE [12]
proposed method

n = 10 n = 20 n = 30

Medline 42.34 33.29 24.13 56.41 66.51 44.42 39.53 36.79

Genbank 26.80 21.98 22.71 31.37 51.54 29.21 29.41 29.74

Fig. 6 displays the compression ratios and the ratios |Φ(S)|/|T | (the com-
pression ratios which ignores D and Φ) of our method with n varying from 2 to
30. The ratio |Φ(S)|/|T | monotonically decreases as n grows, whereas the change
of compression ratio is not necessarily monotonic because the encoding size of
D and Φ increases due to as n grows. The figure also shows the search time
reduction ratios of our method in comparison with the KMP algorithm running
over the original texts (the preprocessing times are negligible compared with the
search times and excluded). Basically the search time reduction ratios are linear
in |Φ(S)|/|T |, although the DCPMM size grows linearly proportional to n, which
possibly increases the L2-cache miss rate.
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Fig. 6. Compression ratios and search-time reduction ratios are displayed of proposed
method with n varying from 2 to 30, where pattern lengths are 2, 6, and 10.
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7 Conclusion

The CPM algorithm presented in this paper takes as input truncation-free collage
systems encoded using byte-oriented Huffman coding. Recursive-pairing used
in our experiments produces regular collage systems, rather than truncation-
free. To develop a new compression algorithm producing truncation-free collage
systems of smaller size is one interesting future work.

Experimental results (omitted for lack of space) show that the method of
Rautio et al. [12] is faster than ours in long pattern case, based on the Horspool
variant of the BM algorithm, although the compression ratio is much worse than
ours. To develop a BM-type algorithm for our scheme will be our future work.
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