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Abstract

In this paper, we present a streaming XML document fil-
ter named DXAXEN which is based on incremental con-
struction of path-trie. It runs very fast, and processes a
large number of XPath queries efficiently. Experimental
comparison with XMLTK, a well-known streaming XML
document filter, shows that DXAXEN is 2–5 times faster and
needs only 5–20 percent of memory.

1 Introduction

Querying XML streams is receiving much attention due
to its growing range of applications such as stock and sports
tickers, traffic information systems, electronic personal-
ized newspapers, and entertainment delivery. Existing ap-
proaches to querying XML streams assume that user inter-
ests are written as queries using XPath [7], a language for
specifying the selection of element nodes within XML doc-
uments. It is central to most XML-related technologies such
as XQuery, XSLT, and XML Schema, under the auspices of
W3C.

The deterministic finite-state automata (DFAs) can be
used effectively to evaluate a large collection of XPath
expressions on streaming XML data at high throughput,
compared with the nondeterministic finite-state automata
(NFAs). However, most of existing XPath evaluators on
XML streams such as XFilter [2], XTrie [5], YFilter [8]
avoided using DFAs because their size grows exponentially
with respect to the total size of XPath expressions. The lazy
DFA technique [13] is a good solution to the state explosion
problem. A lazy DFA is one whose states and transitions
are computed from the corresponding NFA at runtime, not
at compile time. Thanks to this technique, XMLTK [4] pro-

Table 1. Examples of XPath expressions DX-
AXEN supports.

//receiver/name linear path-pattern
/*/order[//sender] primitive path-pattern
/order//[contains(name, “mickey”)] substring match
/order//address[street or region] logical operation
//address[//region[//country and zipcode]] nested predicates
/order[//address]//zipcode predicate in any loca-

tion step
//sender[count(//region) > 2] aggregation

cesses a large collection of XPath expressions on streaming
XML data at guaranteed throughput.

Contribution We present a new XPath filtering technique
based on path-trie, a trie representing the set of sequences
of tagnames on the root-to-leaf paths. It incrementally
constructs path-trie, and using it as a DFA, it evaluates
a large number of XPath queries in parallel during single
pass through an XML data. We call our technique DX-
AXEN (dynamic XAXEN; XAXEN [18] is an abbrevia-
tion for “eXtremely-Accelerated XML filtering ENgine”).
Compared with the lazy DFA, our DFA is much simpler
and more time/space efficient. Although our DFA has often
a larger number of states than the lazy DFA does, the num-
ber of states of the two DFAs are bounded by the path-trie
size plus one, which is known to be typically very small for
XML data that has a fairly regular structure.

XPath fragment DXAXEN supports A linear XPath ex-
pression is one where (i) wildcards (‘*’) are allowed in node
test, (ii) only child and descendant axes (resp. ‘/’ and ‘//’)
are allowed in location steps (parent, ancestor and other axes
are forbidden) and (iii) no predicates are allowed in loca-
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Figure 1. An occurrence of primitive path-
pattern π1[π2] at locus (x, y) of XML tree is
illustrated, where x′ is the child of x on the
x-to-y path.

tion steps. Some of existing XPath evaluators on XML
streams (e.g., XFilter, YFilter, and XMLTK) focus mainly
on the linear fragment of XPath. XPath expressions with
predicates are processed by decomposing them into a set
of linear XPath expressions, evaluating them respectively,
and then combining the results appropriately. In contrast,
we focus on XPath expressions which possibly have predi-
cates in a restricted way: A primitive path-pattern is a linear
XPath expression π1 followed by a single predicate con-
taining a linear XPath expression π2, namely it is of the
form π1[π2]. The reason why we distinguish the predicate-
containing XPath expressions of this type from the ones of
general type will be clarified in Section 6.

For any node x of XML tree and any descendant y of x
(possibly x = y), a primitive path-pattern π1[π2] occurs at
locus (x, y) if π1 and π2, respectively, match the tagname
strings of the root-to-x path and the x′-to-y path, where x′ is
the child of x on the x-to-y path. Fig. 1 shows an occurrence
of primitive path-pattern π1[π2] at locus (x, y). We note
that a linear XPath expression can be viewed as a primitive
path-pattern π1[π2] with π2 = ε, for which no x′ exists and
x = y.

DXAXEN supports a large fragment of XPath based on
efficient evaluation techniques for primitive path-patterns
presented in this paper, although a detailed discussion is
outside the scope of this paper. Some expressions belonging
to the fragment are demonstrated in Table 1, which will be
briefly mentioned in Section 6. It is worth to mention here
that though the examples do not include ones with other
axes than child and descendant, it is easy to deal with other
forward axes such as following, following-self, and following-
sibling, and XPath expressions with backward axes can be
transformed into equivalent ones with forward axes only, of
size linear with their original size, based on the technique
by Olteanu et al. [20].

Paper organization The present paper is organized as
follows. Section 2 mentions some relative work. Section 3
how path-trie can be used in path matching. Section 4 then

describes a method of efficient filtering based on incremen-
tal construction of path-trie. Section 5 reports experimental
comparison of DXAXEN with XMLTK. Section 6 mentions
an extension to more complex XPath expressions. Section 7
concludes this paper.

2 Related work

Complexity of XPath evaluation Gottlob et al. [11]
pointed out that existing systems consume time exponential
with respect to query size, and showed the first polynomial-
time algorithms for the XPath 1.0 language. Also they pre-
sented two fragments of XPath for which linear-time algo-
rithms exist.1 The same authors showed in [12] that the
combined complexity (i.e., both the size of the data and
the query) for the full XPath 1.0 language is P-hard, and
then identified a large and important fragment for which
the combined complexity is LOGCFL-complete. XPath 1.0
supports a number of powerful modalities and it is rather
expensive to process. In practice, many applications do not
need the expressive power of the full language and use only
a fragment of XPath. It is thus required to develop efficient
algorithms for such fragments of XPath language.

Efficient XML data stream filtering The requirement
is more severe in streaming XML data filtering, where a
large number of XPath queries should be evaluated against
XML data streams at guaranteed throughput. The problem
of evaluating large collections of XPath queries on stream-
ing XML data was first introduced in the work of Altinel
and Franklin [2]. They proposed a publish-subscribe sys-
tem named XFilter. Improved techniques were discussed in
XTrie by Chan et al. [5], lazy DFAs by Green et al. [13] (im-
plemented as XMLTK [4]), and YFilter by Diao et al. [8].
Basically they are multi-query evaluation techniques for the
linear XPath fragment, and some of them can be extended
to support a larger XPath fragment.

Deterministic/nondeterministic finite-state automata
play key role in processing XPath expressions of the linear
XPath fragment. XFilter, XTrie, and YFilter explicitly
avoided using DFAs to guarantee their space bounds, but
they had no guarantee on throughput. DFAs effectively
process a large collection of XPath expressions at guaran-
teed throughput, but their size grows exponentially with
respect to the total size of XPath expressions. (See Fig. 2.)
The lazy DFA technique is a solution to the state explosion
problem: States and transitions are computed from the
corresponding NFA at runtime, not at compile time. The
number of states in the lazy DFA was proved in [13] to
be at most the size of path-trie plus one. XMLTK runs at

1By linear O(|D| · |Q|) running time is meant, where |D| and |Q|
denote the size of the XML data and the queries, respectively.
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high throughput based on the lazy DFA technique. Further
reduction of the number of states was addressed in [21].
Although the lazy DFA has a small number of states, its
memory usage is not very small. The reason follows. Each
of the lazy DFA states is represented as a list of states of
the corresponding NFA, and all the lists are kept for lazy
construction of DFA. Space requirement for NFA state lists
is the dominant in total space requirement for the lazy DFA
as reported in [13]. Also, when building a new transition
from a DFA state s, the list of next states is computed
from the NFA state list of s and then compared with all the
lists of existing DFA states in order to determine whether
the corresponding DFA state is already created. This
comparison task is time consuming as pointed out in [6].

Our approach In a previous work [15], we proposed a
method which uses the path-trie explicitly. In the method,
the path-trie is built by scanning whole XML data, outputs
are added to the path-trie nodes by running NFAs for queries
along the root-to-leaf paths in it, and then the XML data is
processed again using the output-added path-trie as a DFA.
This might seem far from stream processing since the data
stream is read twice. But it is not so in a setting where the
path-trie is created only once, attached to the XML packet,
then sent along with the XML stream, and used by every
consumer. A similar setting can be found around SIX, the
stream index technique proposed in [13].

In an XML message system, messages are often binary
representations of XML, rather than XML data in their na-
tive text format (see, e.g., [9]). In [18], we proposed one
such binary format: XML data is converted into the path-
trie and the binary one in which every start-tag is replaced
with a special symbol followed by a pointer to the corre-
sponding path-trie node and every end-tag is replaced with
another special symbol. The pointers enable us to skip per-
forming state-transitions of path-trie as DFA: We have only
to refer the outputs attached to the path-trie nodes. Our im-
plementation was named XAXEN (eXtremely-Accelerated
XML filtering ENgine).

The approach taken in this paper goes along another line.
We do not preprocess XML data to produce the path-trie:
We maintain a DFA based on the path-trie being constructed
incrementally, and by using it, we evaluate queries during
single pass through an XML data, similar to XMLTK.

3 Using path-trie

3.1 Path-tries and their size

An example XML data, its XML tree representation, and
its path-trie are shown in Fig. 4. Formally, an XML tree
is an ordered tree such that the interior nodes are labeled
with tagnames, and the leaves, called text nodes, are labeled
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Figure 2. NFA and DFA for Π = {P1, P2} are
displayed on the upper and on the lower, re-
spectively, where P1 = a//b and P2 = a/*/*/d.
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Figure 3. Lazy DFA and our DFA for the pat-
terns of Fig. 2 are displayed on the upper and
on the lower, respectively, where all possi-
ble tagname sequences are limited to S =
{a, ab, abc, abd, abcd}.

with text.2 Thus a path from an internal node u to another
internal node v spells out a string of tagnames. Let us call
it the tagname string of the u-to-v path. The path-trie of an
XML tree is the trie structure that represents all the tagname
strings of the XML tree. We note that path-trie is a kind of
DataGuide [10], which is a graph representing the database
structure, but it is simply a tree since the underlying data
(i.e. XML data) has tree structure.

It is observed in [14] that most of existing XML data
have DataGuide of small size, and therefore their path-trie
are also small. Generally speaking, if an XML data is highly
structured, then its path-trie becomes small accordingly. Ta-
ble 2 gives the path-trie sizes and other information about
the following XML data:

2In this paper an attribute node corresponding to “name=value” is re-
garded as an interior node labeled “@name” having a unique child (leaf)
labeled “value”.
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<a>
  <b>
    <c>...</c>
  </b>
  <b>
    <d>...</d>
  </b>
  <b>
    <c>
      <d>...</d>
      <b>
        <d>...</d>
      </b>
    </c>
  </b>
</a>

XML data Path trie

b
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d b
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8 9

10
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b

c d

d

d

1
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65
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b

XML tree

Figure 4. XML data and XML tree it represents are displayed on the left, where circles and squares
mean element and text nodes, respectively. Path-trie built from the XML data is displayed on the
right. Numbers adjacent to the nodes of XML tree and path-trie mean their IDs, and letters in the
circles (nodes) are their tagnames.

Table 2. Path-trie size of three XML data are
shown, together with the number of tag oc-
currences and the number of tagnames.

# tag occurrences # tagnames path-trie size
(a) 198,887,920 92 160
(b) 22,215,944 41 166
(c) 4,096,360 83 549

(a) XML data of UniProtKB/Swiss-Prot [3]. 2.2GB.

(b) XML data of DBLP [16]. 377MB.

(c) XML data generated randomly by xmlgen program of
XMark benchmark [23]. 116MB.

For (c), the XML tree has 4, 096, 360/2 = 2, 048, 180
nodes (excluding text nodes), while the path-trie has only
549 nodes, which is 0.03% of the XML tree nodes. The
ratios for (a) and (b) are much lower.

Next, we consider how the path-tries grow during their
construction as sequentially processing an XML data. Fig. 5
shows the growth of path-trie for each of the three XML
data, where we also display the increases of tag occurrences
and tagnames.

The data (a) has highly regular structure, and its path-
trie has grown up at early stage. Concerning the data (b),
the growth seems nearly stable except the early part and the
point around 240MB at which the underlying scheme alters.

For the data (c), the root has six children, which correspond
to six different categories having their own schemes, and
the path-trie size rapidly increases for every time the cat-
egory switches. After about 57MB point, increase of tag
occurrences got rapid.

3.2 Matching against path-trie, not XML
tree

As seen in Section 3, path-tries are much smaller than
their XML trees. Hence, performing path-matching against
path-trie and then referring to the results stored in its
nodes can be much more efficient than direct path-matching
against XML tree. Below, we gives some illustrative exam-
ples.

Linear path-pattern case. Fig. 6 illustrates occurrences
of the patterns P1 = //b/c and P2 = a/b//d within the XML
data and path-trie of Fig. 4. The pattern P1 occurs at node
3 and the pattern P2 occurs at nodes 4, 5, 7 in the path-trie.
We note that nodes 3, 7 of the XML tree correspond to node
3 of path-trie, and accordingly the pattern P1 occurs at the
nodes of the XML tree. A similar observation is obtained
for the pattern P2.

Primitive path-pattern case. Fig. 7 illustrates occur-
rences of the pattern P = a/b[//d] within the XML data
and path-trie of Fig. 4. The pattern P occurs at loci
(2, 4), (2, 5), (6, 7), (2, 7) in the path-trie, and the loci can
be obtained from output 〈P, 1〉 of node 4, output 〈P, 2〉 of
node 5, and outputs 〈P, 1〉, 〈P, 3〉 of node 7, respectively.
From the outputs, the loci of occurrences of P within XML

4
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Figure 5. Growth of path-tries when sequen-
tially scanning XML data are illustrated.
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Figure 6. Occurrences of linear path-patterns
P1 = //b/c and P2 = a/b//d in XML tree and path-
trie are displayed. For instance, the occur-
rence of P1 at node 3 of path-trie implies that
P1 occurs at the corresponding nodes 3 and
7 of XML tree.

tree can be obtained. For instance, since node 5 corresponds
to node 4 of path-trie with output 〈P, 1〉, it has the same out-
put. This implies that P occurs at locus (4, 5) of XML tree,
where 4 is the parent (the 1st ancestor) of 5.

4 Filtering with path-trie built incrementally

In this section, we describe a filtering method that se-
quentially scans an XML data stream and performs path-
matching over incrementally constructed path-trie. We re-
mark that the size of path-trie could be reduced by regarding
tagnames not appearing in patterns as one tagname.

4.1 Construction of path-trie

We parse input XML data sequentially to detect and re-
port occurrences of tags as events, which are to be input
to incremental path-trie construction and to path-matching.
We maintain a trie representing the ‘current’ set of tag-
names: If a current tagname is present in the set, then its
ID is returned; and otherwise a new ID is assigned to it and
then returned.

We illustrate the algorithm by using the XML data and
the path-trie of Fig. 4. We note that sequential process-
ing of an XML data stream gives a depth-first-traversal
of the corresponding XML tree. We start with an empty
path-trie, and proceed as follows. Suppose we have pro-
cessed the nodes 1 to 7 in the traversal of the XML tree.
At this moment, the path-trie has nodes 1 to 4 since the
path strings of the XML tree nodes 1 to 7 are, respectively,
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Figure 7. Occurrences of primitive path-
pattern P = a//b[//d] in XML tree and path-trie
are displayed, where the pairs 〈P, d〉 adjacent
to nodes y represent the occurrences of P at
(x, y) such that x is the d-th ancestor of y. For
instance, 〈P, 1〉 at node 4 of path-trie implies
that P occurs at locus (2, 4) of path-trie, and
at locus (4, 5) of XML tree.

a, ab, abc, ab, abd, ab, abc, and these are represented by the
path-trie nodes 1, 2, 3, 2, 4, 2, 3, respectively. Thus, we are
now at node 7 of XML tree and at node 3 of path-trie. The
next node of XML tree is 8 and the corresponding tagname
is d. Since the path-trie node 3 does not have a child with
tagname d, a new node, numbered 5, is created as a child
of 3. Thus a new path from 1 to 5 appears. We do path-
matching tasks for this new path for all queries.

Repeating the above process until the entire XML data
is passed through, we incrementally build the path-trie and
perform path-matching against it in parallel.

4.2 Matching against growing path-trie

This subsection describes path-matching algorithms ex-
ecuted when a new node is added to path-trie.

4.2.1 Linear path-pattern case

Suppose we are given a set Π of linear path-patterns. De-
note by ‖Π‖ the total length of the patterns in Π, and let
N be the set of tagnames appearing in patterns of Π. Two
possible implementations are considered here.

DXAXEN-A: One implementation would be to build an
NFA from Π in a way similar to YFilter [8]. A trie is built
from Π regarding tagnames, ‘*’, and ‘//’ as symbols, and for
every edge labeled ‘//’, the label is replaced with ε and a
loop labeled with ‘*’ is added to its sink node to produce an
NFA. The NFA construction requires O(‖Π‖· log |N |) time

using O(‖Π‖) space, where the factor log |N | comes from
use of the famous AVL-tree for lookup/insertion against the
set of transitions from an NFA state. We let path-trie nodes
v have lists of active states of NFA just after reading the
tagname string of the root-to-v path. When a new path-
trie node with tagname a ∈ N is created, we shall perform
nondeterministic state-transitions on a to create an active-
states list for it. We note that each NFA state has at most
one a-transition for every a ∈ N , at most one ε-transition,
and at most one ∗-transition from it. Finding a-transition
from it requires O(log |N |) time. Creation of active-states
list for a new path-trie node v requires O(‖Π‖·log |N |) time
and O(‖Π‖) space. This implementation is very similar to
the lazy DFA in that lists of active states are kept.

DXAXEN-B: Another implementation would be to
build an NFA for each linear path-pattern π ∈ Π, by ap-
plying the bit-parallel technique [19], in which a set of ac-
tive states of NFA is stored in one integer as a bit-vector.
The number of all states of the NFA is size(π) + 1, where
size(π) is defined to be the number of node tests in π. Thus,
the technique can be used only for linear path-patterns of
size at most the word length (typically 32 or 64 bits) minus
one. Since construction of each NFA requires O(|π| · |N |)
time using O(|N |) space and we build |Π| NFAs, totally we
need O(‖Π‖ · |N |) time using O(|Π| · |N |) space. Note that
if the bit-vector of an NFA consists only of ‘0’, the NFA is
dead (never accepts). Thus, each path-trie node v has a list
of pairs of an ‘alive’ NFA and its bit-vector just after having
processed the root-to-v path. Creation of such a list for a
new path-trie node requires only O(|Π|) time and space.

4.2.2 Primitive path-pattern case

Denote by L(π) ⊆ N ∗ the language of linear path-pattern
π. Suppose we are given a set Π of primitive path-patterns.
Let π1[π2] be any of Π. Suppose a sequence v1, . . . , vk of
nodes is a path from the root to vk in path-trie, and a new
node vk+1 is created as a child of vk. For this newly ap-
pearing path v1, . . . , vk+1, we have to check whether π1π2

matches it, and in case of match, we have to find i such
that π1 and π2, respectively match the v1-to-vi path and the
vi+1-to-vk+1 path. To implement this, we consider an NFA
that recognizes the two languages L(π1) and L(π1π2) with
two distinct accepting states. Let us call it the forward NFA
for π1[π2]. The forward NFA is easily constructed by build-
ing two NFAs with a unique initial state and a unique ac-
cepting state, that recognize L(π1) and L(π2), respectively,
and then combining them with an ε-transition from the ac-
cepting state of NFA for L(π1) to the initial state of NFA
for L(π2). Fig. 8 gives an example. We note that a set
of forward NFAs can be merged into a single NFA, similar
to the NFA discussed in DXAXEN-A. We also note that a
forward NFA can be implemented by the bit-parallel tech-
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Figure 8. Forward NFA for π1[π2] is displayed
on the upper, where π1 = a//b// and π2 = b//c.
It recognizes distinctively the two languages
L(π1) and L(π1π2), and is implemented as a
combination of two NFAs recognizing L(π1)
and L(π2), respectively. Backward NFA is dis-
played on the lower, which accepts the set of
reversals of strings in L(π2).

nique, similarly in DXAXEN-B. In both implementations,
the sets of active states are kept in path-trie nodes, and there-
fore we can find i for which π1 match the v1-to-vi path.
However, it should be emphasized that there is no guaran-
tee that π2 matches the vi+1-to-vk+1, even though we know
π1π2 matches the v1-to-vk+1 path. To confirm this, we use
another NFA which recognizes the languages of consisting
of the reverse strings of L(π2). We call such an NFA the
backward NFA for π1[π2]. The backward NFA is run along
the v1-to-vk+1 path backward whenever π1π2 matches the
path. We can merge a set of backward NFAs into a single
one if necessary. An example of the backward NFA is dis-
played in Fig. 8.

In DXAXEN-A implementation, time and space com-
plexity of constructing forward NFA and backward NFA
are the same as those of constructing NFA for linear path-
pattern case. Time complexity of running the forward NFA
and the backward NFA for a new path-trie node to compute
its output is h-multiple of the time complexity of running
NFA for linear path-pattern case, where h is the height of
XML tree. Space complexity is the same as the linear path-
pattern case. In DXAXEN-B implementation, time and
space complexities of constructing forward NFAs and back-
ward NFAs are the same as linear path-pattern case. Time
complexity of running the forward NFAs and the backward
NFAs for a new path-trie node is again h-multiple of the
time complexity for the linear path-pattern case. Space
complexity remains unchanged.

4.3 Total time and space complexity

Let D be input XML data whose XML tree has size s
and height h, and whose path-trie has size t. Let Π be input

set of linear/primitive path-patterns. When the DXAXEN-
A implementation is adopted, it runs in O(|D|+s·log |N |+
t · ‖Π‖ · log |N |) time using O(t · ‖Π‖) space. The factor
log |N | is dropped if the hashing technique substitutes for
the AVL-tree and works well as assumed in the lazy DFA
[13]. For primitive path-pattern case, the factor t · ‖Π‖ ·
log |N | in the time complexity is multiplied by h.

When the DXAXEN-B implementation is adopted, it
runs in O(‖Π‖ · |N | + |D| + s · log |N | + t · |Π|) time
using O(|N | · |Π| + t · |Π|) space, under the assumption
that for each pattern π in Π, size(π) + 1 fits word length.
For primitive path-pattern case, the factor t · |Π| in the time
complexity is multiplied by h again. We note that the factor
log N assumes use of the AVL-tree, and is dropped if the
hashing technique works effectively.

For the lazy DFA, the time and space complexity is sim-
ilar to DXAXEN-A, except that cost of searching the NFA-
state lists associated with existing DFA states for a newly
created list of NFA states should be considered. Since there
could be O(t) lists, each having size O(‖Π‖), the time com-
plexity is O(t · ‖Π‖). Totally, the lazy DFA based method
runs in O(|D|+s·log |N |+t·‖Π‖·(log |N |+t)) time using
O(t · ‖Π‖) space, where the factor log |N | can be dropped
assuming the hashing technique.

5 Computational Experiment

We carried out a series of computational experiments
against the two XML data: XML records of DBLP and
the random data of XMark benchmark, stated in Section 3.
Since XMLTK deals only with the linear XPath fragment,
we restricted ourselves to it in the experiments. We ran-
domly generated test sets of linear path-patterns by using
pathgenerator 3 with DTDs of the two XML data sets.4 We
did not use the XML data of UniProtKB/Swiss-Prot in the
experiments since no DTD is provided with it.

All experiments were executed on 2.4 GHz Intel Pentium
4, 2.0 GB RAM, running Red Hat Linux Advanced Server
2.1. Below, we report the result of performance comparison
of DXAXEN with XMLTK in the three points: memory us-
age, processing time and throughput. Although implemen-
tations of XFilter, YFilter, XSQ are available, we excluded
them in the comparison since their throughput is worse than
that of XMLTK as reported in [22, 18].

Memory usage comparison Table 3 compares size of
lazy DFA and reduced path-trie. The lazy DFA has smaller
number of states in comparison with our DFA. The total size
of NFA-state lists of lazy DFA states grows as NFA size in-

3http://yfilter.cs.berkeley.edu/code release.htm
4We generated pattern lists of size 1, 10, . . . , 100000, but there are

duplications. The numbers of distinct patterns were smaller.
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Table 3. Size of lazy DFA and our DFA are
compared against the DBLP data and the ran-
dom data.

(a) Random data whose path trie has 549 nodes.
# queries lazy DFA our DFA

# states NFA state lists # nodes
1 4 4 16

10 23 57 122
100 103 574 534

1,000 263 12,392 542
10,000 504 167,479 542

100,000 533 1,860,257 542

(b) DBLP data whose path trie has 166 nodes.
# queries lazy DFA our DFA

# states NFA state lists # nodes
1 4 4 12

10 13 37 49
100 68 583 156

1,000 119 6,397 156
10,000 150 80,169 156

100,000 151 791,589 156

Table 4. Memory usage comparison.
# queries memory usage (KB)

DXAXEN-A DXAXEN-B XMLTK
1 4,692 4,680 984

10 4,736 4,708 1,044
100 5,452 4,852 1,476

1,000 8,028 5,444 5,200
10,000 14,400 7,268 38,780

100,000 35,216 17,452 369,036

creases. The total size of active-state lists stored in path-trie
nodes grows similarly.

Table 4 compares the memory usage of the methods ap-
plied to the random data with linear path-patterns of size
1, 10, . . . , 100000. DXAXEN-B consumes 1/2 of mem-
ory required by DXAXEN-A. DXAXEN-B consumes 1/5
and 1/20 of memory that XMLTK requires for 10,000 and
100,000 queries. Thus, DXAXEN is much more space-
efficient than XMLTK when a large number of linear path-
patterns are dealt with.

Running time comparison Table 5 compares the pro-
cessing times against linear path-pattern sets of size
1, 10, . . . , 100000. Compared to XMLTK, DXAXEN-B is
approximately 1.5 to 7 times faster and 2 to 6 times faster

Table 5. Running time comparison.
(a) Random data from XMark

# queries elapsed time (sec)
DXAXEN-A DXAXEN-B XMLTK

1 1.46 1.49 2.22
10 1.50 1.49 2.58

100 1.63 1.58 3.04
1000 1.77 1.79 4.12

10,000 2.87 2.85 11.56
100,000 49.13 39.79 283.34

(b) DBLP
# queries elapsed time (sec)

DXAXEN-A DXAXEN-B XMLTK
1 5.81 5.82 11.34

10 6.15 6.05 11.29
100 6.89 6.72 18.06

1000 7.38 7.30 21.26
10,000 15.58 14.98 59.95

100,000 175.71 195.37 1242.58

against the DBLP data and the random data, respectively,
and the ratios become larger as the number of patterns in-
creases.

Throughput comparison Fig. 9 compares the through-
puts for sets of 100 and 10,000 queries against DBLP and
the random data, where the X-axis is the size of data already
processed from the left. Results show that DXAXEN-A and
-B outperforms XMLTK in throughput comparison.

Low throughput of XMLTK at early stage implies that
it is in “warm-up phase”, in which many states and transi-
tions of lazy DFA are created. This corresponds to rapid
increase of path-trie size at early part we have already seen
in Fig. 5. Compared with XMLTK, DXAXEN-A and -B in
their warm-up phase have relatively high throughput.

For the random data (see (a) and (b)), all methods cannot
have a stable throughput. Lower throughput after 57MB
point correspond to rapid increase of tag occurrences we
have seen in Fig. 5 (c). We note that a work of path-
matching is performed only when a tag occurrence is found
in all methods.

For the DBLP data (see (c) and (d)) which has a regu-
lar structure, the throughputs of the three method are stable
and high. In this case, DXAXEN-A and -B showed approx-
imately 4 times higher throughput than XMLTK does.

6 Complex XPath expressions

So far, we introduced a class of primitive path-patterns,
which are regarded as primitives for more complex XPath

8
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Figure 9. Throughput comparison.

expressions. Although a detailed discussion is outside the
scope of this paper, we shall briefly sketch how this XPath
fragment could be primitives.

Consider a series of assignments:

Q1 = π1
1 [π

1
2 : expr1]; . . . ; Qn = πn

1 [πn
2 : exprn]

where Qi is a logical variables, and expri is a boolean ex-
pression over keywords or one over Q1, . . . , Qn.

Substring match: DXAXEN does not use any existing
XML parser such as SAX [17]: It simultaneously performs
keyword search and XML parsing, that is, Aho-Corasick’
pattern matching machine (PMM for short) [1] is built
and run over XML data stream, and when the beginning
of tag (“<”) is detected our own parser is invoked to de-
tect a tagname string and process attribute expressions. A
drastically fast XML parsing is made possible in this way.
Since PMM simultaneously recognizes multipattern occur-
rences, we can process boolean expressions over multiple
keywords.

Logical operation: Consider Q = /order//address
[street or region]. Let Q1 = /order//address[street:true] and

Q2 = /order//address[region:true]. A locus of Q can be ob-
tained as a locus of Q1 or Q2. Therefore Q can be expressed
as Q3 = /order//address[ε: Q1 ∨ Q2].

Nested predicates: Consider Q = //address[//region
[//country and zipcode]]. Let Q1 = //address//region[//country:
true] and Q2 = //address//region[zipcode:true]. Then Q is rep-
resented as Q3 = //address[//region: Q1 ∧ Q2].

Predicate in any location steps: Consider Q =
/order[//address]//zipcode. Let Q1 = /order[//address: true]. Q
is expressed as Q2 = Q1//zipcode[ε:true], if we allow such
expressions. This expression can be evaluated by using a
lazy evaluation technique.

We note that Qi is a mapping that assigns truth-values
to XML-tree nodes. We extend this to assign integer values
to them, and allow expri be an arithmetic expression, not a
boolean expression. For Qi = π1[π2 : expri], the mapping
Qi assigns to an XML-tree node x the summation of the in-
teger values obtained by evaluating at node y the arithmetic
expression expri over all the nodes y such that π1[π2] oc-
curs at locus (x, y). To the nodes x such that there is no y

9



such that π1[π2] occurs at (x, y), the mapping Qi assigns 0.
Then, we can deal with aggregation functions as follows.

Aggregation: Consider Q = /sender[count(//region)>2].
Let Q1 = /order[//address: 1]. Then Q is expressed as Q2 =
/order[ε: (Q1 > 2)].

Thus, we can deal with complex XPath expressions such
as //b[//d]//c[//c][d]//e, based on efficient processing technique
for primitive path-patterns. XPath expressions with back-
ward axes can be dealt with after transforming equivalent
ones without backward axes [20].

7 Discussion

Let N be a set of tagnames, and let Π be a set of linear
XPath expressions. We note that the elements of Π are reg-
ular expressions over N . DFAs recognizing the language
L(Π) could have exponential number of states.5 The lazy
DFA is one that recognizes a superset of L(Π) ∩ S, not
L(Π), where S is the set of tagname strings of the paths
from the root.

The output-added path-trie of DXAXEN can be regarded
as a DFA, which recognizes exactly the language L(Π)∩S.
The graph structure of the DFA depends only on XML data,
not on XPath queries (unless the reduction technique men-
tioned in Section 4 is applied to), and the NFA recognizing
L(Π) is used to add outputs to the DFA states. In contrast,
the lazy DFA is built from NFA that recognizes L(Π), basi-
cally with the standard subset construction. For this reason,
the DFA construction time of our method is much smaller
than that of the lazy DFA. The size of lazy DFA is upper-
bounded by the size of path-trie representing S.

Using the lazy DFA, we have to pay a relatively high cost
in computing a state and a transition a runtime, although the
cost is recovered when the state and the transition are re-
used. The cost is mainly devoted to decrease the DFA size.
It, however, approaches the path-trie size as the number of
queries grows. DXAXEN requires a lower cost to compute
a state and a transition.
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