
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Variation-Aware Software Techniques for Cache
Leakage Reduction using Value-Dependence of
SRAM Leakage due to Within-Die Process
Variation

Goudarzi, Maziar
Kyushu University

Ishihara, Tohru
Kyushu University

Noori, Hamid
Kyushu University

https://hdl.handle.net/2324/9191

出版情報：Lecture Notes in Computer Science. 4917, pp.224-239, 2008-01-18. Springer
バージョン：
権利関係：(c) 2008 Springer

Variation-Aware Software Techniques for Cache

Leakage Reduction using Value-Dependence of SRAM

Leakage due to Within-Die Process Variation

Maziar Goudarzi, Tohru Ishihara, Hamid Noori

Kyushu Univesity, Fukuoka, Japan

{goudarzi, ishihara}@slrc.kyushu-u.ac.jp, noori@c.csce.kyushu-u.ac.jp

Abstract. We observe that the same SRAM cell leaks differently, under within-

die process variations, when storing 0 and 1; this difference can be up to 3

orders of magnitude (averaging 57%) at 60mv variation of threshold voltage

(Vth). Thus, leakage can be reduced if most often the values with less leakage

are stored in the cache SRAM cells. We show applicability of this proposal by

presenting three binary-optimization and software-level techniques for reducing

instruction cache leakage: we (i) reorder instructions within basic-blocks so as

to match up the instructions with the less-leaky state of their corresponding

cache cells, (ii) statically apply register-renaming with the same aim, and (iii) at

boot time, initialize unused cache-lines to their corresponding less-leaky values.

Experimental results show up to 54%, averaging 37%, leakage energy reduction

at 60mv variation in Vth, and show that with technology scaling, this saving can

reach up to 84% at 100mv Vth variation. Since our techniques are one-off and

do not affect instruction cache hit ratio, this reduction is provided with only a

negligible penalty, in rare cases, in the data cache.

Keywords: Leakage power, power reduction, cache memory, process variation.

1 Introduction

Cache memories, as the largest component of today’s processor-based chips (e.g. 70%

of StrongARM [1]) are among the main sources of power dissipation in such chips. In

nanometer SRAM cells, most of the power is dissipated as leakage [2] due to lower

threshold-voltage (Vth) of transistors and higher Vth variation caused by random

dopant fluctuations (RDF) [3] when approaching atomic sizes. This inherent variation

impacts stability, power and speed of the SRAM cells. Several techniques exist that

reduce cache leakage power at various levels [4]-[11], but none of them takes

advantage of a new opportunity offered by this increasing variation itself: the

subthreshold leakage current (Ioff) of a SRAM cell depends on the value stored in it

and this difference in leakage increases with technology scaling. When transistor

channel length approaches atomic sizes, process variation due to random placement of

dopant atoms increases the variation in Vth of same-sized transistors even within the

same die [13]. This is an unavoidable physical effect which is even more pronounced

in SRAM cells as area-constrained devices that are typically designed with minimum

transistor sizes. Higher Vth-variation translates to much higher Ioff-variation

()))10ln(//((svexpI thoff −∝ where s is the subthreshold swing [13]) even in the transistors

of a single SRAM cell. Since some of these transistors leak when storing a 1 and

others when storing a 0, cell leakage differs in the two states. Thus cache leakage can

be reduced if the values stored in it can be better matched with the characteristics of

their corresponding cache cells; i.e., if most of the time a 0 is stored in a cache cell

that leaks less when storing a 0, and vice versa. To the best of our knowledge, no

previous work has observed this saving opportunity. Monte Carlo simulations in

Section 3 show that theoretically 70% leakage saving (comparing full match to the

full mismatch) would be available in a technology node with 60mv standard deviation

of within-die Vth variation.

In this paper, we (i) reschedule instructions inside each basic-block (BB) of a given

application to let them better match their corresponding cache cells, (ii) at the same

time, we use register-renaming to further improve the match between the instructions

and their cache cells, and (iii) the least-leaky values are stored in the cache-lines that

won’t be used by the embedded application. In total, these techniques result in up to

54.18% leakage reduction (36.96% on average) on our set of benchmarks, with only a

negligible penalty in the data-cache caused by the instruction-reordering since

techniques (i) and (ii) are applied offline and (iii) is only applied once at the processor

boot time. Furthermore, it is important to note that this technique reduces leakage in

the active- as well as standby-mode of system operation (even when the memory cells

are being accessed) and that it is orthogonal to current circuit/device-level techniques.

2 Related Works

Leakage in CMOS circuits can be reduced by power gating [4], source-biasing [2],

reverse- and forward-body-biasing [5][6] and multiple or dynamic Vth control [7]. For

cache memories, selective turn-off [8][9] and dual-supply drowsy caches [10] disable

or put into low-power drowsy mode those parts of the cache that are not likely to be

accessed again. All these techniques, however, need circuit/device-level modification

of the SRAM design while our proposal is a software technique and uses the cache as

is. Moreover, none of the above techniques specifically addresses the leakage

variation issue (neither variation from cell to cell, nor the difference between storing 0

and 1) caused by within-die process variation. We do that and we work at system-

level such that our technique is orthogonal to them. Furthermore, all previous works

focus on leakage power reduction when the SRAM cell is not likely to be in use, but

our above (i) and (ii) techniques save power even when the cell is actively in use.

The leakage-variation among various cache-ways in a set-associative cache is used

in [11] to reduce cache leakage by disabling the most-leaky cache ways. Our

techniques, in contrast, do not disable any part of the cache and use it at its full

capacity, and hence, do not incur any performance penalty due to reduced cache size.

Moreover, our techniques are applicable to direct-map caches as well.

In logic circuits, value-dependence of leakage power has been identified and used

in [12] to set the input vector to its leakage-minimizing value when entering standby

mode. We show this value-dependence exists, with increasing significance, in nano-

scale SRAM cells and can benefit power saving even out of standby time.

Register-renaming is a well-known technique that is often used in high-

performance computing to eliminate false dependence among instructions that

otherwise could not have been executed in parallel. It is usually applied dynamically

at runtime, but we apply it statically to avoid runtime overhead. To the best of our

knowledge, register-renaming has not been used in the past for power reduction.

Cache-initialization, normally done at processor reset, is traditionally limited to

resetting all valid-bites to indicate emptiness of the entire cache. We extend this

initialization to store less-leaky values in all those cache-lines that won’t be used by

the embedded application. This is similar to cache-decay [9] in addressing leakage

power dissipated by unused cache-lines, but our technique does not require circuit-

level modification of the cache design that has prevented cache-decay from

widespread adoption.

3 Motivation and Our Approach

Leakage is increasing in nanometer-scale technologies, especially in cache memories

which comprise the largest part of processor-based embedded systems. Fig. 1 shows

the breakdown of energy consumption of the 8KB instruction-cache of M32R

embedded processor [13] running MPEG2 application. The figure clearly shows that

although dynamic energy decreases with every technology node, the static (leakage)

energy increases such that, unlike in micrometer technologies, total energy of the

cache increases with the shrinking feature sizes. Thus it is increasingly more

important to address leakage reduction in cache memories in nanometer technologies.

We focus on Ioff as the primary contributor to leakage in nanometer caches [13].

Fig. 2 shows a 6-transistor SRAM cell storing a 1 logic value. Clearly, only M5, M2,

and M1 transistors can leak in this state while the other three may leak only when the

cell stores a 0 (note that bit-lines are precharged to supply voltage, VDD). Process

variation, especially in such minimum-geometry devices, causes each transistor to

0

50

100

150

200

250

300

350

180nm 90nm 65nm 45nm

Manufacturing Technology

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

u
J
)

Static energy Dynamic energy

54%
50%

30%

M32R RISC processor

 • 200MHz

 • 8KB, 2way I-cache

 • Application: MPEG2

 • Static and dynamic

 power obtained from

 CACTI ver. 4, 5 [15]

 •Miss penalty: 40 clock,

 40nJ

Fig. 1. Cache energy consumption in various technology nodes.

have a different Vth and consequently different Ioff value, finally resulting in different

subthreshold leakage currents when storing 1 and 0. Since the target Vth is in general

reduced in finer technologies, in order to keep the circuit performance when scaling

dimensions and VDD, the Ioff value is exponentially increased, and consequently, the

above leakage difference is no longer negligible.

Fig. 2. A 6-transistor SRAM cell storing a logic 1. Arrows show leakage paths.

To quantify this effect, we used Monte Carlo simulation to model several similar

caches and for each one computed maximum leakage difference once in each cell and

once more in the entire cache. Notations and formulas are:
• leak0 (leak1): leakage power of the cell when storing 0 (1).

• low = min(leak0, leak1)

• high = max(leak0, leak1)

highleakleaksavingcellper 10−=− (1)

∑∑∑ −=−
cellsallcellsallcellsall

highlowhighsavingcacheperofboundUpper)(
(2)

Eq. 1 gives leakage difference between less-leaky and more-leaky states of a single

cell, while Eq. 2 gives, in the entire cache, the difference between the worst case (all

cells storing more-leaky values) and the best case (all cells storing less-leaky values).

Variation in transistors Vth results from die-to-die (inter-die) as well as within-die

(intra-die) variation. We considered both in these experiments. Inter-die variation,

which results in varying average Vth among different chips, is generally modeled by

Gaussian distribution [16] while for intra-die variation, which results in different Vth

values for different transistors even within the same chip and the same SRAM cell,

independent Gaussian variables are used to define Vth of each transistor of the SRAM

cell [17][18]. We used the same techniques to simulate manufacturing of 1000 16KB

caches (direct-map, 512-set, 32-byte lines, 23 bits per tag) and obtained the maximum

theoretical per-cell and per-chip savings given in Fig. 3 for σVth-intra (i.e. standard-

deviation of intra-die Vth variations) varying from 10 to 100mv. We assumed each

cache is within a separate die and used a single σVth-inter=20mv for all dies. The mean

value of Vth was set to 320mv but our experiments with other values showed that the

diagrams are independent of the Vth mean value; i.e., although the absolute value of

the saving does certainly change with different Vth averages (and indeed increases

with lower Vth in finer technologies), but the maximum saving ratio (Eq. 1 and 2)

remains invariant for a given σVth-intra, but the absolute value of the saved power

increases with decreasing Vth. This makes sense since this saving opportunity is

enabled by the Vth variation, not the Vth average value.

Since WLintraVth ×∝
−

1σ [3], where L and W are effective channel length and width

respectively, the Vth variation is only to increase with technology scaling, and as Fig.

3 shows, this increases the significance of value-to-cell matching. In 0.13µm process,

empirical study [19] reports σVth-intra=22.1mv for W/L=4 which by extrapolation gives

σvth-intra>60mv in 90nm for minimum-geometry transistors; ITRS roadmap also shows

similar prospects [20]. (We found no public empirical report on 90nm and 65nm

processes, apparently due to sensitiveness and confidentiality.) Thus we present

results at various σvth-intra values, but consider 60mv as a typical case. Note that even if

the extrapolation is not accurate for 90nm process, σvth-intra=60 finally happens at a

finer technology node due to WLintraVth ×∝
−

1σ . Fig. 3 shows that maximum theoretical

saving using this phenomenon at 60mv variation can be as high as 70%.

70.62

57.08

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Intra-die Vth standard deviation (Sigma Vth-intra)

M
a
x
im

u
m

 p
o
s
s
ib

le
 s

a
v
in

g
 (
%

)

Per-cache

Per-cell

Fig. 3. Leakage saving opportunity increases with Vth-variation.

3.1 Our Approach

We propose three techniques applicable to instruction-caches: rescheduling

instructions within basic-blocks, static register-renaming, and initializing unused

cache-lines. We first illustrate them by examples before formal formulation.

Illustrative Example 1: Intra-BB Instructions Rescheduling. Fig. 4 illustrates

our approach applied to a small basic block (shown at left in Fig. 4) consisting of

three 8-bit instructions against a 512-set direct-mapped cache with 8-bit line size. The

arrow at the right of instruction-memory box represents dependence of instruction 2

to instruction 1. For simplicity, we assume (i) all the 3 instructions spend the same

amount of time in the cache, and (ii) the leakage-saving (i.e., |leak0-leak1|) is the

same for all bits of the 3 cache lines. An SRAM cell is called 1-friendly (0-friendly) or

equivalently prefers 1 (prefers 0), if it leaks less power when storing a 1 (a 0). This

leakage-preference of the cache lines are given in gray in the middle of Fig. 4; for

example, the leftmost bit of cache line number 490 prefers 0 (is 0-friendly) while its

rightmost bit prefers 1 (is 1-friendly). The Matching table in Fig. 4 shows the number

of matched bits for each (instruction, cache-line) pair. Due to instruction

dependencies, only three schedules are valid in this example: 1-2-3 (i.e., the original

one), 1-3-2, and 3-1-2 with respectively 3+1+3, 3+3+7, and 1+7+7 number of

matched bits (see the Matching table in Fig. 4). We propose to reschedule basic-

blocks, subject to dependencies among the instructions, so as to match up the

instructions with the leakage-preference of cache lines. Thus, the best schedule,

shown at right in Fig. 4, is 3-1-2 which improves leakage of this basic-block by 47%

(from 24-7 mismatches to 24-15 ones).

Obviously, the two simplifying assumptions in the above example do not hold in

general. Potential leakage-saving differs from cell to cell, and also the amount of time

spent in the cache differs from instruction to instruction even in the same BB. We

consider and analyze these factors in our formulation and experiments.

Fig. 4. An example illustrating instruction-rescheduling

Illustrative Example 2: Register-Renaming. Assume that the two right-most bits

of each instruction in Fig. 5 represent a source register and the two left-most bits give

the other source which is also the destination register. Fig. 5 depicts a simple example

of register-renaming on the cache in the middle of the figure; for presentational

purposes, we ignore instruction rescheduling here and merely apply register-renaming

although our algorithm applies both at the same time. When applying merely register-

renaming to these instructions, R0 can be renamed to R3 in the first two instructions

(note that this implies similar renaming in all predecessor, and successor, instructions

that in various control-flow scenarios produce, or consume, the value in R0; this is not

shown in the figure). Similarly, original R3 in the same two instructions can be

equally-well renamed to either R1 or R0; it is renamed to R1 in Fig. 5. For the third

instruction, there is no better choice since source and destination registers are the

same while their corresponding cache cells have opposite preferences (renaming to

R1, which results in only the same leakage-preference-matching, is inappropriate

since the instruction would then conflict with the now-renamed first instruction).

Fig. 5. An example illustrating register-renaming

Illustrative Example 3: Initializing Unused Cache-Lines. Depending on the

cache size and the application, some parts of the instruction cache may never be used

during application execution. Fig. 6 shows the histogram of cache-fill operations in

the 8KB instruction cache of M32R processor [13] (a 32-bit RISC processor) when

executing FFT application. 69 out of the 512 16-byte cache-lines are never used in

this case. We propose to initialize such unused cache-lines with values that best match

the leakage-preference of their SRAM cells. Many processors today are equipped

with cache-management instructions (e.g. ARM10 family [21] and NEC V830R

processor [22]) that can load arbitrary values to every cache location. Using these

instructions, the unused cache-lines can be initialized at boot time to effectively

reduce their leakage-power during the entire application execution. For instance, if in

Fig. 5 cache-line number 490 were not to be used at all by the application, it would be

initialized to 00000111 to fully match its leakage-preference. A minimum power-ON

duration is required to break even the dynamic energy for cache initialization and the

leakage energy saved. We consider this in our problem formulation and experiments.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100 120 140 160 180 200 220 240

Cache-set index

N
u

m
b

e
r

o
f

C
a

c
h

e
 W

ri
te

s

w
a
y
 1

w
a
y
 2

20

80

60

40

20

80

60

40

Unused cache-lines

Fig. 6. Unused cache-lines for FFT application (8KB 2-way cache with 16-byte cache-lines).

Leakage-Preference Detection. This can be incorporated in the manufacturing

test procedure that is applied to each chip after fabrication. Usually walking-1 and

walking-0 test sequences are applied to memory devices [23] to test them for stuck-at

and bridging faults. Leakage current can be measured at each step of this test

procedure (similar to delta-IDDQ testing [24]) to determine the leakage-preference of

cells. This can even be done in-house since commodity ammeters can easily measure

down to 0.1fA [25] while the nominal leakage of a minimum geometry transistor is

345pA in 90nm process available to us. For some cells, this difference may be

negligible, but one can detect more important cells that cause larger leakage

differences. Test time for an 8KB cache, assuming 1MHz current measurements,

would be 128ms (measuring leak0 and leak1 for each SRAM cell).

4 Problem Formulation

We formulate the problem using the following notation:

• Ns, Nw: The number of sets and ways of the cache.

• NBB: The number of basic-blocks in the given application.

• Ni(bb): The number of instructions in basic-block no. bb.

• L(i, bb, w): Leakage power dissipated by the corresponding word of the cache line
at way w of the cache when instruction number i of basic-block number bb is stored

there. Note that the cache set corresponding to the instruction is fixed, but the cache

way may differ over time.

• T(i, bb, w) or cache-residence time: The amount of time that instruction number i of

basic-block number bb remains in way w of the corresponding cache set.

• EBB: Total leakage energy of instruction cache due to basic-block instructions:

∑ ∑ ∑
= = =

×=
BB i wN

bb

bbN

i

N

w

BB wbbiTwbbiLE
1

)(

1 1

),,(),,((3)

Each term in this summation gives the leakage energy dissipated by instruction i of

basic-block bb at way w of cache.

• Tviable: The minimum amount of time that the embedded system should remain ON

so that the cache-initialization technique would be viable (i.e., would save energy).

The problem is formally defined as “For a given application and cache organization

(i.e. for given Ns, Nw, NBB, and Ni(bb) vector), (i) minimize EBB, and (ii) find Tviable.”

Algorithms. We use a list-scheduling algorithm for problem (i) above to achieve high

efficiency; register-renaming is performed at each iteration of the algorithm:

Algorithm 1: ListScheduling(G)

Inputs: (G: control-data-flow Graph of application)

Output: (S: obtained Schedule for instructions of the application)

1 S = empty-list;
2 foreach basic-block do

3 BA = Base-Address of the basic-block;

4 L = Length of the basic-block;
5 for addr=BA to BA + L do

6 lowestLeakage = +INFINITY; bestChoice = 0
7 for each i in ready-list(G, BA) do

8 (ni, src, dst, flag) = applyRegRenaming(i, addr);
9 leak = get_instruction_leakage(ni, addr)
10 if leak < lowestLeakage then

11 lowestLeakage = leak; bestChoice = ni;

12 bestRegs = (src, dst, flag);
13 endif

14 endfor

15 propagateRegRenamings(G, bestRegs);
16 S = S + {bestChoice};
17 Mark {bestChoice} as scheduled in G to update ready-list(G, BA);
18 endfor

19 endfor

20 return S

The algorithm sequentially processes each basic-block in the application binary

and stores the new schedule with the new register-names in S as output. It needs the

control-data-flow graph of the application for register-renaming so as to figure out

live registers and the instructions that produce and consume them. For each basic-

block, all ready instructions (i.e. those with all their predecessors already scheduled),

represented by ready-list(G, BA) in line 7, are tried and the one with the least

leakage is chosen (lines 9-13) and appended to the schedule (lines 16, 17); line 9

computes the leakage corresponding to the instruction by giving the innermost

summation of Eq. 3. Register-renaming is also applied to each ready-instruction (line

8) and if chosen as the best, its corresponding new register-names are propagated to

all predecessor and successor instructions (line 15); these procedures are given below:

Procedure: applyRegRenaming(i, addr)

Inputs: (i: the instruction binary to manipulate),
 (addr: the address of i in memory)

Outputs:(new_i: instruction after register-renaming),
 (src, dst: new source and destination regs),

 (flag: shows which regs were finally renamed)

1 src = first-source-register of i;

3 dst = destination-register of i;
3 flag = 0;
4 if src not affixed

5 src = get_best_src1_choice(i, addr); flag+=1;
6 if dst not affixed

7 dst = get_best_dest_choice(i, addr); flag+=2;

8 new_i = i with src, and dst;
9 return new_i, src, dst, flag;

This procedure checks the two source and destination registers (in M32R, the

destination register and the second source register are the same) and if each of them is

not affixed, tries to rename it to the best available choice. A source or destination

register is affixed if due to an already-applied register-renaming it is previously

determined and should be kept unchanged; the below procedure pseudo-code shows

this. In some cases, it may be beneficial to reconsider renaming since the leakage

reduction by the new register-renaming may outweigh the loss in previously renamed

instructions; we did not consider this for simplicity and efficiency.

Procedure: propagateRegRenamings(G, i, src, dst, flag)

Inputs: (G: control data flow Graph of application),
 (i: instruction before register-renaming),

 (src, dst: new source and destination regs)

 (flag: shows which regs are renamed)

1 org_src = first-source-register of i;

2 org_dst = destination-register of i;
3 if (flag & 1)

4 rename org_src to src, and mark it affixed, in all predecessors and
 successors of i in G
5 if (flag & 2)

6 rename org_dst to dst, and mark it affixed, in all predecessors and

 successors of i in G

The algorithm has a time complexity of O(m.n
2
) and memory usage of O(m.n)

where m and n respectively represents the number of basic-blocks in the application

and the number of instructions in the basic-block. Note that the algorithm correctly

handles set-associative caches since the innermost summation in Eq. 3 considers

individual leakages of each cache-way. The algorithm does not necessarily give the

absolute best schedule neither the best register-names, but comparing its experimental

results to that of exhaustive search in the feasible cases, which is still prohibitively

time-consuming, shows the results are no more than 12% less optimal than the

absolute best schedule.

5 Experimental Results

We used benchmarks from MiBench, MediaBench, and also Linux compress

(Table 1) in our experiments. Monte Carlo simulation was used to model within-die

process variation; independent Gaussian random values for Vth of each transistor of

the cache were generated with 320mv as the mean and 60mv as the standard

deviation. To consider the randomness of process variations, we simulated 1000 chips

and ran our algorithm on all of them. Die-to-die variations do not change the saving

percentage (see Section 3) and were not modeled in these experiments. Benchmarks

were compiled with no compiler optimization option and were simulated using M32R

instruction-set simulator to obtain cache-residence and cache-line usage statistics for

1 million instructions (FIR ran up to completion).

Table 1. Benchmarks specifications

Basic-block size (#instr.)
Benchmark

No of

basic-blocks Average Largest

MPEG2 encoder ver. 1.2 16000 5.36 596

FFT 12858 4.83 75

JPEG encoder ver. 6b 11720 5.68 248

Compress ver. 4.1 9586 5.11 718

FIR 450 7.59 57

DCT 508 4.96 64

Fig. 7 shows the average leakage powers (corresponding to an industrial 90nm

process) before and after applying our leakage-saving techniques, obtained over 1000

8KB direct-mapped caches with 16-byte cache-line size. Each bar is composed of two

parts: the leakage power dissipated by the cache-lines that were used during

application execution, and those that were never used. Our rescheduling algorithm

reduces the former, while the cache-initialization technique suppresses the latter.

0

50

100

150

200

250

mpeg2 fft jpeg compress fir dct

L
e

a
k

a
g

e
 p

o
w

e
r

(u
W

)

Accessed cache-lines Unused cache-lines

Improved

Original

53.52% saving

Fig. 7. Average leakage power on 1000 8KB direct-map caches.

Table 2 gives the individual average and maximum savings obtained by each

technique over the above 1000 chips; note that the values in rescheduling and

initializing columns respectively correspond to the leakage savings only in used and

only in unused cache-lines. The rescheduling and register-renaming technique saves

up to 31.31% of power for FIR while savings by the cache-initialization technique

reaches 58.36% for JPEG benchmark. Average saving obtained by cache-initialization

is 54.51% for all benchmarks since we assumed that before initialization, SRAM cells

in the unused cache-lines randomly contain 0 or 1 values.

Table 2. Average and maximum leakage savings by our techniques.

Average saving (%) Maximum saving (%)
Benchmark rescheduling initializing Together rescheduling initializing Together

MPEG2 20.10 54.51 26.78 21.67 56.16 28.25

FFT 20.50 54.51 36.28 22.43 55.7 37.36

JPEG 16.70 54.51 17.96 17.91 58.36 19.26

Compress 19.74 54.51 48.15 23.95 55.32 48.92

FIR 20.04 54.51 53.52 31.31 55.19 54.18

DCT 19.31 54.51 39.09 21.49 55.61 40.13

Different cache-sizes result in different number of unused cache-lines, and hence,

affect saving results. Fig. 8 depicts the savings for 16KB, 8KB, and 4KB direct-map

caches with 16-byte line-size. As the figure shows, in general, the leakage saving

reduces in smaller caches proportional to the reduction in the number of unused

cache-lines. This, however, does not affect the results of the rescheduling and

register-renaming techniques, and hence, increases their share in total leakage-

reduction (see Fig. 8). Consequently, when finally all cache-lines are used by the

application in a small cache, the leakage reduction reaches its minimum (as in

MPEG2 and JPEG cases in Fig. 8), which is equal to the saving achieved by the

rescheduling and register-renaming technique alone (compare MPEG2 and JPEG in

Fig. 8 to their corresponding rows in Table 2 under rescheduling column).

0

10

20

30

40

50

60

mpeg2 fft jpeg compress fir dct

A
v

e
ra

g
e

 l
e

a
k

a
g

e
-p

o
w

e
r

s
a

v
in

g
 (

%
)

Saving by cache-initializing

Saving by rescheduling & register-renaming

16KB 8KB 4KB 16KB 8KB 4KB 16KB 8KB 4KB 16KB 8KB 4KB 16KB 8KB 4KB16KB 8KB 4KB

Fig. 8. Effect of cache-size on average leakage-saving results.

Set-associative caches take better advantage of the available cache-lines and reduce

the number of unused ones. Fig. 9 shows the leakage savings in an 8KB cache when

the number of ways changes from 1 (direct-map) to 8. The leakage-saving by cache-

initialization reduces in caches with higher associativity, and finally total saving

reduces to that obtained by the rescheduling and register-renaming technique as is

again the case for MPEG2 and JPEG in Fig. 9.

0

10

20

30

40

50

60

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8A
v

e
ra

g
e

 l
e

a
k

a
g

e
-p

o
w

e
r

s
a

v
in

g
 (

%
)

Saving by cache-initialization

Saving by rescheduling & register-renaming

#ways #ways #ways #ways #ways #ways

mpeg fft jpeg compres fir dct

Fig. 9. Effect of set-associative caches on total leakage saving.

Furthermore, in set-associative caches, the location of each instruction in the cache

cannot be precisely determined since there are multiple cache-lines in the cache-set

that corresponds to the address of the instruction. This uncertainty is expected to

decrease the saving results of the rescheduling algorithm, however, our cache

simulator gives separate per-way residence-times for each instruction so as to direct

the matching process toward the cache-ways with higher probability of hosting the

instruction. Saving results of Algorithm 1 are given in Fig. 10; as in Fig. 9, cache size

and line-size are respectively fixed at 8KB and 16-bytes while the number of cache-

ways varies from 1 to 8. The figure confirms that the number of cache-ways only

slightly affects the results due to the above-mentioned technique for directing the

algorithm towards matching the instruction against the more likely used cache-way.

Some marginal increases are seen in Fig. 10 for MPEG2, Compress, and FIR at higher

cache associativity; these are random effects that happen since the algorithm does not

give the absolute optimal schedule and also the cache-lines that correspond to each

instruction changes when changing the number of cache-ways.

0

5

10

15

20

25

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8A
v

e
ra

g
e

 l
e

a
k

a
g

e
-p

o
w

e
r

s
a

v
in

g
 (

%
)

mpeg

2

fft jpeg compress fir dct

#ways #ways #ways #ways #ways #ways

Fig. 10. Effect of set-associative caches on rescheduling algorithm.

Execution-times of the rescheduling algorithm for the above caches are given in

Table 3; values are measured on a Xeon 3.8GHz processor with 3.5GB memory. The

execution time increases with the number of cache-ways, since more calculations are

necessary, but it remains reasonably low to be practical.

Table 3. Algorithm execution-time (in seconds).

Cache configuration (sets×ways×line_size)
Benchmark 512×1×16 256×2×16 128×4×16 64×8×16

MPEG2 0.15 0.33 0.55 1.04

FFT 0.08 0.19 0.31 0.60

JPEG 0.18 0.40 0.70 1.35

Compress 0.05 0.10 0.15 0.26

FIR 0.01 0.01 0.02 0.04

DCT 0.03 0.06 0.12 0.23

Average 0.08 0.18 0.31 0.59

Fig. 3 suggests that the achievable energy saving rises with the increase in Vth

variation caused by technology scaling. We repeated the experiments for 8KB, 512-

set direct-map cache with σVth-intra varying from 20 to 100mv (with mean-Vth=320mv

in all cases). Fig. 11 shows the trend in saving results which confirm the increasing

significance of the approach in future technologies where random within-die Vth

variation is expected to increase [20] due to random dopant fluctuation which is rising

when further approaching atomic sizes in nanometer processes.

20
30 40

50 60
70 80 90 100

jpeg
mpeg2

fft
dct

compress
fir

0

10

20

30

40

50

60

70

80

90
T

o
ta

l
le

a
k

a
g

e
 s

a
v

in
g

 (
%

)

Within-Die Sigma-Vth (mv)

Fig. 11. Saving improvement with technology scaling.

Costs of Intra-BB Rescheduling and Register-Renaming. Register-renaming

imposes absolutely no penalty. Instruction-rescheduling has no impact on instruction-

cache but may in rare cases marginally affect data-cache: since the order and address

of basic-blocks do not change, instruction cache performance is kept intact. In data

cache, however, reordering of instructions may change the sequence of accesses to

data elements, and hence, may change cache behavior. If a miss-causing instruction is

moved, the hit-ratio is kept, but residence-times (and hence leakage power) of the

evicted and fetched data items change negligibly. In addition, if two instructions that

access cache-conflicting data elements change their relative order, the cache hit-ratio

changes if the originally-first one was to be a hit. This case may also change the data

that finally remains in the cache after basic-block execution, and hence, potentially

affects leakage power of the data cache. It is, however, very unlikely to happen when

noting that due to locality of reference, two conflicting data accesses are unlikely to

follow closely in time (and in a single BB). In our experiments data cache power and

performance varied no more than 1%.

Cost of Cache Initialization. As explained in Section 3, the cache-initialization

technique consumes some dynamic power to execute the cache-management

instructions before it can save leakage power. Our implementation of M32R processor

with two separate 8KB instruction and data caches on a 0.18µ process technology

consumes 200mW at 50MHz clock frequency. This gives, on average, 4nJ per clock

cycle or pessimistically 20nJ per instruction in the 5-stage pipelined M32R processor.

Assuming all 512 cache-lines of the instruction cache are to be initialized, 10.24µJ is

consumed for cache-initialization. Tviable can now be calculated using the power-

saving values obtained by cache-initialization (Fig. 7). Results are given in Table 4

which confirm that most often a small fraction of a second is enough to make the

initialization technique viable. Even for the worst benchmark, JPEG, a few seconds is

enough. Assumptions in the estimations were pessimistic to not overestimate benefits:

(i) processor implementation in a finer technology (e.g. 90nm) would consume less

dynamic power, (ii) more than one instruction is often in the processor pipeline so

average power per instruction would be less than 20nJ, (iii) not all cache-lines need to

be initialized (e.g. for JPEG, only 14 cache-lines remain unused and should be

initialized). Thus, values in Table 4 should be considered as upper bounds for Tviable.

Table 4. Estimated Tviable upper bounds for different applications.

 MPEG2 FFT JPEG Compress FIR DCT

Tviable (s) 0.590 0.238 3.281 0.117 0.093 0.182

6 Conclusion

Our contributions here are (i) observing and analyzing a new opportunity for

reducing cache leakage in nanometer technologies enabled by the reducing Vth and

the increasing Vth-variation in such processes, and (ii) presenting first techniques that

take advantage of this opportunity and reduce leakage up to 54.18% (36.96% on

average) with negligible impact on system performance. It is important to note that

our techniques (i) become more effective with technology scaling, (ii) reduce leakage

also in the normal mode of system operation (in addition to standby mode) even when

the cache-lines are actively in use, and (iii) are orthogonal to other techniques for

leakage reduction such as body- and source-biasing. As future work, we are

investigating techniques similar to garbage-collection so as to invalidate the cache-

lines that won’t soon have a hit and to store the less-leaky values in them.

Acknowledgments. This work is supported by VDEC, The University of Tokyo with

collaboration of STARC, Panasonic, NEC Electronics, Renesas Technology, and

Toshiba. This work is also supported by CREST project of Japan Science and

Technology Corporation (JST). We are grateful for their support.

References

1. Moshnyaga, V.G., Inoue, K., Low-Power Cache Design. In: Piguet, C. (eds.) Low-Power

Electronics Design. CRC Press (2005)

2. Roy, K., et al., Leakage Current Mechanisms and Leakage Reduction Techniques in Deep-

Submicron CMOS Circuits. In Proc. IEEE (2003)

3. Taur, Y., Ning, T.H., Fundamentals of Modern VLSI Devices. Cambridge University

Press (1998)

4. Kao, J.T., Chandrakasan, A.P., Dual-Threshold Voltage Techniques for Low-Power

Digital Circuits. IEEE J. of Solid State Circuits 35, 1009-1018 (2000)

5. Fallah, F., Pedram, M., Circuit and System Level Power Management. In Pedram, M.,

Rabaey, J., (eds.) Power Aware Design Methodologies. Kluwer, pp. 373-412 (2002)

6. De, V., Borkar, S., Low Power and High Performance Design Challenge in Future

Technologies. In: Great Lake Symposium on VLSI (2000)

7. Kuroda, T., Fujita, T., Hatori, F., Sakurai, T., Variable Threshold-Voltage CMOS

Technology. IEICE Trans. on Fund. of Elec., Comm. and Comp. Sci. E83-C (2000)

8. Powell, M.D., et al., Gated-Vdd: a Circuit Technique to Reduce Leakage in Cache

Memories,” In: Int’l Symp. Low Power Electronics and Design (2000)

9. Kaxiras, S., Hu, Z., Martonosi, M., Cache Decay: Exploiting Generational Behavior to

Reduce Cache Leakage Power. In: Int’l Symp. on Computer Architecture, 240-251 (2001)

10. Flautner, K., et al., Drowsy Caches: Simple Techniques for Reducing Leakage Power. In:

Int’l Symp. on Computer Architecture (2002)

11. Meng, K., Joseph, R., Process Variation Aware Cache Leakage Management. In: Int’l

Symp. on Low Power Electronics and Design (2006)

12. Abdollahi, A., Fallah, F., Pedram, M., Leakage Current Reduction in CMOS VLSI

Circuits by Input Vector Control. IEEE Trans. VLSI 12(2), 140-154 (2004)

13. Clark, L., De, V., Techniques for Power and Process Variation Minimization. In: Piguet,

C. (eds.) Low-Power Electronics Design. CRC Press (2005)

14. M32R Family 32-bit RISC Microcomputers, http://www.renesas.com

15. CACTI Integrated Cache Access Time, Cycle Time, Area, Leakage, and Dynamic Power

Model, HP Labs., http://www.hpl.hp.com/personal/Norman_Jouppi/cacti4.html

16. Agarwal, A., Paul, B.C., Mahmoodi, H., Datta, A., Roy, K., A Process-Tolerant Cache

Architecture for Improved Yield in Nanoscale Technologies. IEEE Trans. VLSI 13(1)

(2005)

17. Luo, J., Sinha, S., Su, Q., Kawa, J., Chiang, C., An IC Manufacturing Yield Model

Considering Intra-Die Variations. In: Design Automation Conference, pp. 749-754 (2006)

18. Agarwal, K., Nassif, S., Statistical Analysis of SRAM Cell Stability. In: Design

Automation Conference (2006)

19. Toyoda, E., DFM: Device & Circuit Design Challenges. In: Int’l Forum on Semiconductor

Technology (2004)

20. International Technology Roadmap for Semiconductors—Design, 2006 Update,

http://www.itrs.net/Links/2006Update/2006UpdateFinal.htm

21. Hill, S., The ARM 10 Family of Embedded Advanced Microprocessor Cores. In: HOT-

Chips (2001)

22. Suzuki, K., Arai, T., Kouhei, N., Kuroda, I., V830R/AV: Embedded Multimedia

Superscalar RISC Processor. IEEE Micro 18(2), 36-47 (1998)

23. Hamdioui, S., Testing Static Random Access Memories: Defects, Fault Models and Test

Patterns, Kluwer (2004)

24. Thibeault, C., On the Comparison of Delta IDDQ and IDDQ Testing. In: VLSI Test

Symp., pp. 143-150 (1999)

25. DSM-8104 Ammeter,

http://www.nihonkaikeisoku.co.jp/densi/toadkk_zetuenteikou_dsm8104.htm

