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Abstract. We observe that the same SRAM cell leaks differently, under within-

die process variations, when storing 0 and 1; this difference can be up to 3 

orders of magnitude (averaging 57%) at 60mv variation of threshold voltage 

(Vth). Thus, leakage can be reduced if most often the values with less leakage 

are stored in the cache SRAM cells. We show applicability of this proposal by 

presenting three binary-optimization and software-level techniques for reducing 

instruction cache leakage: we (i) reorder instructions within basic-blocks so as 

to match up the instructions with the less-leaky state of their corresponding 

cache cells, (ii) statically apply register-renaming with the same aim, and (iii) at 

boot time, initialize unused cache-lines to their corresponding less-leaky values. 

Experimental results show up to 54%, averaging 37%, leakage energy reduction 

at 60mv variation in Vth, and show that with technology scaling, this saving can 

reach up to 84% at 100mv Vth variation. Since our techniques are one-off and 

do not affect instruction cache hit ratio, this reduction is provided with only a 

negligible penalty, in rare cases, in the data cache.  

Keywords: Leakage power, power reduction, cache memory, process variation. 

1    Introduction 

Cache memories, as the largest component of today’s processor-based chips (e.g. 70% 

of StrongARM [ 1]) are among the main sources of power dissipation in such chips. In 

nanometer SRAM cells, most of the power is dissipated as leakage [ 2] due to lower 

threshold-voltage (Vth) of transistors and higher Vth variation caused by random 

dopant fluctuations (RDF) [ 3] when approaching atomic sizes. This inherent variation 

impacts stability, power and speed of the SRAM cells. Several techniques exist that 

reduce cache leakage power at various levels [ 4]-[ 11], but none of them takes 

advantage of a new opportunity offered by this increasing variation itself: the 

subthreshold leakage current (Ioff) of a SRAM cell depends on the value stored in it 

and this difference in leakage increases with technology scaling. When transistor 

channel length approaches atomic sizes, process variation due to random placement of 

dopant atoms increases the variation in Vth of same-sized transistors even within the 

same die [ 13]. This is an unavoidable physical effect which is even more pronounced 



in SRAM cells as area-constrained devices that are typically designed with minimum 

transistor sizes. Higher Vth-variation translates to much higher Ioff-variation 

( )))10ln(//(( svexpI thoff −∝  where s is the subthreshold swing [ 13]) even in the transistors 

of a single SRAM cell. Since some of these transistors leak when storing a 1 and 

others when storing a 0, cell leakage differs in the two states. Thus cache leakage can 

be reduced if the values stored in it can be better matched with the characteristics of 

their corresponding cache cells; i.e., if most of the time a 0 is stored in a cache cell 

that leaks less when storing a 0, and vice versa. To the best of our knowledge, no 

previous work has observed this saving opportunity. Monte Carlo simulations in 

Section  3 show that theoretically 70% leakage saving (comparing full match to the 

full mismatch) would be available in a technology node with 60mv standard deviation 

of within-die Vth variation. 

In this paper, we (i) reschedule instructions inside each basic-block (BB) of a given 

application to let them better match their corresponding cache cells, (ii) at the same 

time, we use register-renaming to further improve the match between the instructions 

and their cache cells, and (iii) the least-leaky values are stored in the cache-lines that 

won’t be used by the embedded application. In total, these techniques result in up to 

54.18% leakage reduction (36.96% on average) on our set of benchmarks, with only a 

negligible penalty in the data-cache caused by the instruction-reordering since 

techniques (i) and (ii) are applied offline and (iii) is only applied once at the processor 

boot time. Furthermore, it is important to note that this technique reduces leakage in 

the active- as well as standby-mode of system operation (even when the memory cells 

are being accessed) and that it is orthogonal to current circuit/device-level techniques. 

2    Related Works 

Leakage in CMOS circuits can be reduced by power gating [ 4], source-biasing [ 2], 

reverse- and forward-body-biasing [ 5][ 6] and multiple or dynamic Vth control [ 7]. For 

cache memories, selective turn-off [ 8][ 9] and dual-supply drowsy caches [ 10] disable 

or put into low-power drowsy mode those parts of the cache that are not likely to be 

accessed again. All these techniques, however, need circuit/device-level modification 

of the SRAM design while our proposal is a software technique and uses the cache as 

is. Moreover, none of the above techniques specifically addresses the leakage 

variation issue (neither variation from cell to cell, nor the difference between storing 0 

and 1) caused by within-die process variation. We do that and we work at system-

level such that our technique is orthogonal to them. Furthermore, all previous works 

focus on leakage power reduction when the SRAM cell is not likely to be in use, but 

our above (i) and (ii) techniques save power even when the cell is actively in use. 

The leakage-variation among various cache-ways in a set-associative cache is used 

in [ 11] to reduce cache leakage by disabling the most-leaky cache ways. Our 

techniques, in contrast, do not disable any part of the cache and use it at its full 

capacity, and hence, do not incur any performance penalty due to reduced cache size. 

Moreover, our techniques are applicable to direct-map caches as well. 

In logic circuits, value-dependence of leakage power has been identified and used 

in [ 12] to set the input vector to its leakage-minimizing value when entering standby 



mode. We show this value-dependence exists, with increasing significance, in nano-

scale SRAM cells and can benefit power saving even out of standby time. 

Register-renaming is a well-known technique that is often used in high-

performance computing to eliminate false dependence among instructions that 

otherwise could not have been executed in parallel. It is usually applied dynamically 

at runtime, but we apply it statically to avoid runtime overhead. To the best of our 

knowledge, register-renaming has not been used in the past for power reduction. 

Cache-initialization, normally done at processor reset, is traditionally limited to 

resetting all valid-bites to indicate emptiness of the entire cache. We extend this 

initialization to store less-leaky values in all those cache-lines that won’t be used by 

the embedded application. This is similar to cache-decay [ 9] in addressing leakage 

power dissipated by unused cache-lines, but our technique does not require circuit-

level modification of the cache design that has prevented cache-decay from 

widespread adoption. 

3    Motivation and Our Approach 

Leakage is increasing in nanometer-scale technologies, especially in cache memories 

which comprise the largest part of processor-based embedded systems. Fig. 1 shows 

the breakdown of energy consumption of the 8KB instruction-cache of M32R 

embedded processor [ 13] running MPEG2 application. The figure clearly shows that 

although dynamic energy decreases with every technology node, the static (leakage) 

energy increases such that, unlike in micrometer technologies, total energy of the 

cache increases with the shrinking feature sizes. Thus it is increasingly more 

important to address leakage reduction in cache memories in nanometer technologies. 

We focus on Ioff as the primary contributor to leakage in nanometer caches [ 13]. 

Fig. 2 shows a 6-transistor SRAM cell storing a 1 logic value. Clearly, only M5, M2, 

and M1 transistors can leak in this state while the other three may leak only when the 

cell stores a 0 (note that bit-lines are precharged to supply voltage, VDD). Process 

variation, especially in such minimum-geometry devices, causes each transistor to 
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Fig. 1. Cache energy consumption in various technology nodes. 



have a different Vth and consequently different Ioff value, finally resulting in different 

subthreshold leakage currents when storing 1 and 0. Since the target Vth is in general 

reduced in finer technologies, in order to keep the circuit performance when scaling 

dimensions and VDD, the Ioff value is exponentially increased, and consequently, the 

above leakage difference is no longer negligible. 

 

Fig. 2. A 6-transistor SRAM cell storing a logic 1. Arrows show leakage paths. 

To quantify this effect, we used Monte Carlo simulation to model several similar 

caches and for each one computed maximum leakage difference once in each cell and 

once more in the entire cache. Notations and formulas are: 
• leak0 (leak1): leakage power of the cell when storing 0 (1). 

• low = min(leak0, leak1)   

• high = max(leak0, leak1) 

highleakleaksavingcellper 10−=−  (1) 

∑∑∑ −=−
cellsallcellsallcellsall

highlowhighsavingcacheperofboundUpper )(  
(2) 

Eq. 1 gives leakage difference between less-leaky and more-leaky states of a single 

cell, while Eq. 2 gives, in the entire cache, the difference between the worst case (all 

cells storing more-leaky values) and the best case (all cells storing less-leaky values). 

Variation in transistors Vth results from die-to-die (inter-die) as well as within-die 

(intra-die) variation. We considered both in these experiments. Inter-die variation, 

which results in varying average Vth among different chips, is generally modeled by 

Gaussian distribution [ 16] while for intra-die variation, which results in different Vth 

values for different transistors even within the same chip and the same SRAM cell, 

independent Gaussian variables are used to define Vth of each transistor of the SRAM 

cell [ 17][ 18]. We used the same techniques to simulate manufacturing of 1000 16KB 

caches (direct-map, 512-set, 32-byte lines, 23 bits per tag) and obtained the maximum 

theoretical per-cell and per-chip savings given in Fig. 3 for σVth-intra (i.e. standard-

deviation of intra-die Vth variations) varying from 10 to 100mv. We assumed each 

cache is within a separate die and used a single σVth-inter=20mv for all dies. The mean 

value of Vth was set to 320mv but our experiments with other values showed that the 

diagrams are independent of the Vth mean value; i.e., although the absolute value of 

the saving does certainly change with different Vth averages (and indeed increases 

with lower Vth in finer technologies), but the maximum saving ratio (Eq. 1 and 2) 

remains invariant for a given σVth-intra, but the absolute value of the saved power 

increases with decreasing Vth. This makes sense since this saving opportunity is 

enabled by the Vth variation, not the Vth average value. 



Since WLintraVth ×∝
−

1σ  [ 3], where L and W are effective channel length and width 

respectively, the Vth variation is only to increase with technology scaling, and as Fig. 

3 shows, this increases the significance of value-to-cell matching. In 0.13µm process, 

empirical study [ 19] reports σVth-intra=22.1mv for W/L=4 which by extrapolation gives 

σvth-intra>60mv in 90nm for minimum-geometry transistors; ITRS roadmap also shows 

similar prospects [ 20]. (We found no public empirical report on 90nm and 65nm 

processes, apparently due to sensitiveness and confidentiality.) Thus we present 

results at various σvth-intra values, but consider 60mv as a typical case. Note that even if 

the extrapolation is not accurate for 90nm process, σvth-intra=60 finally happens at a 

finer technology node due to WLintraVth ×∝
−

1σ . Fig. 3 shows that maximum theoretical 

saving using this phenomenon at 60mv variation can be as high as 70%. 
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Fig. 3. Leakage saving opportunity increases with Vth-variation. 

3.1    Our Approach  

We propose three techniques applicable to instruction-caches: rescheduling 

instructions within basic-blocks, static register-renaming, and initializing unused 

cache-lines. We first illustrate them by examples before formal formulation. 

Illustrative Example 1: Intra-BB Instructions Rescheduling. Fig. 4 illustrates 

our approach applied to a small basic block (shown at left in Fig. 4) consisting of 

three 8-bit instructions against a 512-set direct-mapped cache with 8-bit line size. The 

arrow at the right of instruction-memory box represents dependence of instruction 2 

to instruction 1. For simplicity, we assume (i) all the 3 instructions spend the same 

amount of time in the cache, and (ii) the leakage-saving (i.e., |leak0-leak1|) is the 

same for all bits of the 3 cache lines. An SRAM cell is called 1-friendly (0-friendly) or 

equivalently prefers 1 (prefers 0), if it leaks less power when storing a 1 (a 0). This 

leakage-preference of the cache lines are given in gray in the middle of Fig. 4; for 

example, the leftmost bit of cache line number 490 prefers 0 (is 0-friendly) while its 

rightmost bit prefers 1 (is 1-friendly). The Matching table in Fig. 4 shows the number 

of matched bits for each (instruction, cache-line) pair. Due to instruction 

dependencies, only three schedules are valid in this example: 1-2-3 (i.e., the original 

one), 1-3-2, and 3-1-2 with respectively 3+1+3, 3+3+7, and 1+7+7 number of 

matched bits (see the Matching table in Fig. 4). We propose to reschedule basic-

blocks, subject to dependencies among the instructions, so as to match up the 



instructions with the leakage-preference of cache lines. Thus, the best schedule, 

shown at right in Fig. 4, is 3-1-2 which improves leakage of this basic-block by 47% 

(from 24-7 mismatches to 24-15 ones). 

Obviously, the two simplifying assumptions in the above example do not hold in 

general. Potential leakage-saving differs from cell to cell, and also the amount of time 

spent in the cache differs from instruction to instruction even in the same BB. We 

consider and analyze these factors in our formulation and experiments. 

 

Fig. 4. An example illustrating instruction-rescheduling 

Illustrative Example 2: Register-Renaming. Assume that the two right-most bits 

of each instruction in Fig. 5 represent a source register and the two left-most bits give 

the other source which is also the destination register. Fig. 5 depicts a simple example 

of register-renaming on the cache in the middle of the figure; for presentational 

purposes, we ignore instruction rescheduling here and merely apply register-renaming 

although our algorithm applies both at the same time. When applying merely register-

renaming to these instructions, R0 can be renamed to R3 in the first two instructions 

(note that this implies similar renaming in all predecessor, and successor, instructions 

that in various control-flow scenarios produce, or consume, the value in R0; this is not 

shown in the figure). Similarly, original R3 in the same two instructions can be 

equally-well renamed to either R1 or R0; it is renamed to R1 in Fig. 5. For the third 

instruction, there is no better choice since source and destination registers are the 

same while their corresponding cache cells have opposite preferences (renaming to 

R1, which results in only the same leakage-preference-matching, is inappropriate 

since the instruction would then conflict with the now-renamed first instruction). 

 

Fig. 5. An example illustrating register-renaming 

Illustrative Example 3: Initializing Unused Cache-Lines. Depending on the 

cache size and the application, some parts of the instruction cache may never be used 

during application execution. Fig. 6 shows the histogram of cache-fill operations in 

the 8KB instruction cache of M32R processor [ 13] (a 32-bit RISC processor) when 

executing FFT application. 69 out of the 512 16-byte cache-lines are never used in 

this case. We propose to initialize such unused cache-lines with values that best match 



the leakage-preference of their SRAM cells. Many processors today are equipped 

with cache-management instructions (e.g. ARM10 family [ 21] and NEC V830R 

processor [ 22]) that can load arbitrary values to every cache location. Using these 

instructions, the unused cache-lines can be initialized at boot time to effectively 

reduce their leakage-power during the entire application execution. For instance, if in 

Fig. 5 cache-line number 490 were not to be used at all by the application, it would be 

initialized to 00000111 to fully match its leakage-preference. A minimum power-ON 

duration is required to break even the dynamic energy for cache initialization and the 

leakage energy saved. We consider this in our problem formulation and experiments. 
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Fig. 6. Unused cache-lines for FFT application (8KB 2-way cache with 16-byte cache-lines). 

Leakage-Preference Detection. This can be incorporated in the manufacturing 

test procedure that is applied to each chip after fabrication. Usually walking-1 and 

walking-0 test sequences are applied to memory devices [ 23] to test them for stuck-at 

and bridging faults. Leakage current can be measured at each step of this test 

procedure (similar to delta-IDDQ testing [ 24]) to determine the leakage-preference of 

cells. This can even be done in-house since commodity ammeters can easily measure 

down to 0.1fA [ 25] while the nominal leakage of a minimum geometry transistor is 

345pA in 90nm process available to us. For some cells, this difference may be 

negligible, but one can detect more important cells that cause larger leakage 

differences. Test time for an 8KB cache, assuming 1MHz current measurements, 

would be 128ms (measuring leak0 and leak1 for each SRAM cell). 

4    Problem Formulation 

We formulate the problem using the following notation: 

• Ns, Nw: The number of sets and ways of the cache. 

• NBB: The number of basic-blocks in the given application. 

• Ni(bb): The number of instructions in basic-block no. bb. 

• L(i, bb, w): Leakage power dissipated by the corresponding word of the cache line 
at way w of the cache when instruction number i of basic-block number bb is stored 



there. Note that the cache set corresponding to the instruction is fixed, but the cache 

way may differ over time. 

• T(i, bb, w) or cache-residence time: The amount of time that instruction number i of 

basic-block number bb remains in way w of the corresponding cache set. 

• EBB: Total leakage energy of instruction cache due to basic-block instructions: 

∑ ∑ ∑
= = =

×=
BB i wN

bb

bbN

i

N

w

BB wbbiTwbbiLE
1

)(

1 1

),,(),,(  (3) 

Each term in this summation gives the leakage energy dissipated by instruction i of 

basic-block bb at way w of cache.  

• Tviable: The minimum amount of time that the embedded system should remain ON 

so that the cache-initialization technique would be viable (i.e., would save energy). 

The problem is formally defined as “For a given application and cache organization 

(i.e. for given Ns, Nw, NBB, and Ni(bb) vector), (i) minimize EBB, and (ii) find Tviable.” 

Algorithms. We use a list-scheduling algorithm for problem (i) above to achieve high 

efficiency; register-renaming is performed at each iteration of the algorithm: 

Algorithm 1: ListScheduling(G) 

Inputs: (G: control-data-flow Graph of application) 

Output: (S: obtained Schedule for instructions of the application)  

1  S = empty-list;  
2  foreach basic-block do 

3    BA = Base-Address of the basic-block; 

4    L  = Length of the basic-block; 
5    for addr=BA to BA + L do 

6      lowestLeakage = +INFINITY; bestChoice = 0 
7      for each i in ready-list(G, BA) do 

8        (ni, src, dst, flag) = applyRegRenaming(i, addr); 
9        leak = get_instruction_leakage(ni, addr) 
10       if leak < lowestLeakage then 

11         lowestLeakage = leak;     bestChoice = ni; 

12         bestRegs = (src, dst, flag); 
13       endif 

14     endfor 

15     propagateRegRenamings( G, bestRegs ); 
16     S = S + {bestChoice}; 
17     Mark {bestChoice} as scheduled in G to update ready-list(G, BA); 
18   endfor 

19 endfor 

20 return S 

The algorithm sequentially processes each basic-block in the application binary 

and stores the new schedule with the new register-names in S as output. It needs the 

control-data-flow graph of the application for register-renaming so as to figure out 

live registers and the instructions that produce and consume them. For each basic-

block, all ready instructions (i.e. those with all their predecessors already scheduled), 

represented by ready-list(G, BA) in line 7, are tried and the one with the least 

leakage is chosen (lines 9-13) and appended to the schedule (lines 16, 17); line 9 

computes the leakage corresponding to the instruction by giving the innermost 

summation of Eq. 3. Register-renaming is also applied to each ready-instruction (line 

8) and if chosen as the best, its corresponding new register-names are propagated to 

all predecessor and successor instructions (line 15); these procedures are given below: 



Procedure: applyRegRenaming(i, addr) 

Inputs: (i: the instruction binary to manipulate), 
        (addr: the address of i in memory) 

Outputs:(new_i: instruction after register-renaming), 
        (src, dst: new source and destination regs), 

        (flag: shows which regs were finally renamed) 

1  src = first-source-register of i; 

3  dst = destination-register of i; 
3  flag = 0; 
4  if src not affixed 

5     src = get_best_src1_choice(i, addr); flag+=1; 
6  if dst not affixed 

7     dst = get_best_dest_choice(i, addr); flag+=2; 

8  new_i = i with src, and dst; 
9  return new_i, src, dst, flag; 

This procedure checks the two source and destination registers (in M32R, the 

destination register and the second source register are the same) and if each of them is 

not affixed, tries to rename it to the best available choice. A source or destination 

register is affixed if due to an already-applied register-renaming it is previously 

determined and should be kept unchanged; the below procedure pseudo-code shows 

this. In some cases, it may be beneficial to reconsider renaming since the leakage 

reduction by the new register-renaming may outweigh the loss in previously renamed 

instructions; we did not consider this for simplicity and efficiency. 

Procedure: propagateRegRenamings(G, i, src, dst, flag) 

Inputs: (G: control data flow Graph of application), 
        (i: instruction before register-renaming), 

        (src, dst: new source and destination regs) 

        (flag: shows which regs are renamed) 

1 org_src = first-source-register of i; 

2 org_dst = destination-register of i; 
3 if (flag & 1)  

4   rename org_src to src, and mark it affixed, in all predecessors and 
    successors of i in G 
5 if (flag & 2)  

6   rename org_dst to dst, and mark it affixed, in all predecessors and  

    successors of i in G 

The algorithm has a time complexity of O(m.n
2
) and memory usage of O(m.n) 

where m and n respectively represents the number of basic-blocks in the application 

and the number of instructions in the basic-block. Note that the algorithm correctly 

handles set-associative caches since the innermost summation in Eq. 3 considers 

individual leakages of each cache-way. The algorithm does not necessarily give the 

absolute best schedule neither the best register-names, but comparing its experimental 

results to that of exhaustive search in the feasible cases, which is still prohibitively 

time-consuming, shows the results are no more than 12% less optimal than the 

absolute best schedule. 

5    Experimental Results 

We used benchmarks from MiBench, MediaBench, and also Linux compress 

(Table 1) in our experiments. Monte Carlo simulation was used to model within-die 



process variation; independent Gaussian random values for Vth of each transistor of 

the cache were generated with 320mv as the mean and 60mv as the standard 

deviation. To consider the randomness of process variations, we simulated 1000 chips 

and ran our algorithm on all of them. Die-to-die variations do not change the saving 

percentage (see Section  3) and were not modeled in these experiments. Benchmarks 

were compiled with no compiler optimization option and were simulated using M32R 

instruction-set simulator to obtain cache-residence and cache-line usage statistics for 

1 million instructions (FIR ran up to completion).  

Table 1. Benchmarks specifications 

Basic-block size (#instr.) 
Benchmark 

No of  

basic-blocks Average   Largest 

MPEG2 encoder ver. 1.2 16000 5.36 596 

FFT 12858 4.83 75 

JPEG encoder ver. 6b 11720 5.68 248 

Compress ver. 4.1 9586 5.11 718 

FIR 450 7.59 57 

DCT 508 4.96 64 

Fig. 7 shows the average leakage powers (corresponding to an industrial 90nm 

process) before and after applying our leakage-saving techniques, obtained over 1000 

8KB direct-mapped caches with 16-byte cache-line size. Each bar is composed of two 

parts: the leakage power dissipated by the cache-lines that were used during 

application execution, and those that were never used. Our rescheduling algorithm 

reduces the former, while the cache-initialization technique suppresses the latter. 
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Fig. 7. Average leakage power on 1000 8KB direct-map caches. 

Table 2 gives the individual average and maximum savings obtained by each 

technique over the above 1000 chips; note that the values in rescheduling and 

initializing columns respectively correspond to the leakage savings only in used and 

only in unused cache-lines. The rescheduling and register-renaming technique saves 

up to 31.31% of power for FIR while savings by the cache-initialization technique 

reaches 58.36% for JPEG benchmark. Average saving obtained by cache-initialization 



is 54.51% for all benchmarks since we assumed that before initialization, SRAM cells 

in the unused cache-lines randomly contain 0 or 1 values. 

Table 2. Average and maximum leakage savings by our techniques. 

Average saving (%) Maximum saving (%) 
Benchmark rescheduling initializing Together rescheduling initializing Together 

MPEG2 20.10 54.51 26.78 21.67 56.16 28.25 

FFT 20.50 54.51 36.28 22.43 55.7 37.36 

JPEG 16.70 54.51 17.96 17.91 58.36 19.26 

Compress 19.74 54.51 48.15 23.95 55.32 48.92 

FIR 20.04 54.51 53.52 31.31 55.19 54.18 

DCT 19.31 54.51 39.09 21.49 55.61 40.13 

Different cache-sizes result in different number of unused cache-lines, and hence, 

affect saving results. Fig. 8 depicts the savings for 16KB, 8KB, and 4KB direct-map 

caches with 16-byte line-size. As the figure shows, in general, the leakage saving 

reduces in smaller caches proportional to the reduction in the number of unused 

cache-lines. This, however, does not affect the results of the rescheduling and 

register-renaming techniques, and hence, increases their share in total leakage-

reduction (see Fig. 8). Consequently, when finally all cache-lines are used by the 

application in a small cache, the leakage reduction reaches its minimum (as in 

MPEG2 and JPEG cases in Fig. 8), which is equal to the saving achieved by the 

rescheduling and register-renaming technique alone (compare MPEG2 and JPEG in 

Fig. 8 to their corresponding rows in Table 2 under rescheduling column). 
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Fig. 8. Effect of cache-size on average leakage-saving results. 

Set-associative caches take better advantage of the available cache-lines and reduce 

the number of unused ones. Fig. 9 shows the leakage savings in an 8KB cache when 

the number of ways changes from 1 (direct-map) to 8. The leakage-saving by cache-

initialization reduces in caches with higher associativity, and finally total saving 

reduces to that obtained by the rescheduling and register-renaming technique as is 

again the case for MPEG2 and JPEG in Fig. 9. 
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Fig. 9. Effect of set-associative caches on total leakage saving. 

Furthermore, in set-associative caches, the location of each instruction in the cache 

cannot be precisely determined since there are multiple cache-lines in the cache-set 

that corresponds to the address of the instruction. This uncertainty is expected to 

decrease the saving results of the rescheduling algorithm, however, our cache 

simulator gives separate per-way residence-times for each instruction so as to direct 

the matching process toward the cache-ways with higher probability of hosting the 

instruction. Saving results of Algorithm 1 are given in Fig. 10; as in Fig. 9, cache size 

and line-size are respectively fixed at 8KB and 16-bytes while the number of cache-

ways varies from 1 to 8. The figure confirms that the number of cache-ways only 

slightly affects the results due to the above-mentioned technique for directing the 

algorithm towards matching the instruction against the more likely used cache-way. 

Some marginal increases are seen in Fig. 10 for MPEG2, Compress, and FIR at higher 

cache associativity; these are random effects that happen since the algorithm does not 

give the absolute optimal schedule and also the cache-lines that correspond to each 

instruction changes when changing the number of cache-ways. 
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Fig. 10. Effect of set-associative caches on rescheduling algorithm. 

Execution-times of the rescheduling algorithm for the above caches are given in 

Table 3; values are measured on a Xeon 3.8GHz processor with 3.5GB memory. The 



execution time increases with the number of cache-ways, since more calculations are 

necessary, but it remains reasonably low to be practical. 

Table 3. Algorithm execution-time (in seconds). 

Cache configuration (sets×ways×line_size) 
Benchmark 512×1×16 256×2×16 128×4×16 64×8×16 

MPEG2 0.15 0.33 0.55 1.04 

FFT 0.08 0.19 0.31 0.60 

JPEG 0.18 0.40 0.70 1.35 

Compress 0.05 0.10 0.15 0.26 

FIR 0.01 0.01 0.02 0.04 

DCT 0.03 0.06 0.12 0.23 

Average 0.08 0.18 0.31 0.59 

Fig. 3 suggests that the achievable energy saving rises with the increase in Vth 

variation caused by technology scaling. We repeated the experiments for 8KB, 512-

set direct-map cache with σVth-intra varying from 20 to 100mv (with mean-Vth=320mv 

in all cases). Fig. 11 shows the trend in saving results which confirm the increasing 

significance of the approach in future technologies where random within-die Vth 

variation is expected to increase [ 20] due to random dopant fluctuation which is rising 

when further approaching atomic sizes in nanometer processes. 
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Fig. 11. Saving improvement with technology scaling. 

Costs of Intra-BB Rescheduling and Register-Renaming. Register-renaming 

imposes absolutely no penalty. Instruction-rescheduling has no impact on instruction-

cache but may in rare cases marginally affect data-cache: since the order and address 

of basic-blocks do not change, instruction cache performance is kept intact. In data 

cache, however, reordering of instructions may change the sequence of accesses to 

data elements, and hence, may change cache behavior. If a miss-causing instruction is 

moved, the hit-ratio is kept, but residence-times (and hence leakage power) of the 

evicted and fetched data items change negligibly. In addition, if two instructions that 

access cache-conflicting data elements change their relative order, the cache hit-ratio 

changes if the originally-first one was to be a hit. This case may also change the data 



that finally remains in the cache after basic-block execution, and hence, potentially 

affects leakage power of the data cache. It is, however, very unlikely to happen when 

noting that due to locality of reference, two conflicting data accesses are unlikely to 

follow closely in time (and in a single BB). In our experiments data cache power and 

performance varied no more than 1%. 

Cost of Cache Initialization. As explained in Section  3, the cache-initialization 

technique consumes some dynamic power to execute the cache-management 

instructions before it can save leakage power. Our implementation of M32R processor 

with two separate 8KB instruction and data caches on a 0.18µ process technology 

consumes 200mW at 50MHz clock frequency. This gives, on average, 4nJ per clock 

cycle or pessimistically 20nJ per instruction in the 5-stage pipelined M32R processor. 

Assuming all 512 cache-lines of the instruction cache are to be initialized, 10.24µJ is 

consumed for cache-initialization. Tviable can now be calculated using the power-

saving values obtained by cache-initialization (Fig. 7). Results are given in Table 4 

which confirm that most often a small fraction of a second is enough to make the 

initialization technique viable. Even for the worst benchmark, JPEG, a few seconds is 

enough. Assumptions in the estimations were pessimistic to not overestimate benefits: 

(i) processor implementation in a finer technology (e.g. 90nm) would consume less 

dynamic power, (ii) more than one instruction is often in the processor pipeline so 

average power per instruction would be less than 20nJ, (iii) not all cache-lines need to 

be initialized (e.g. for JPEG, only 14 cache-lines remain unused and should be 

initialized). Thus, values in Table 4 should be considered as upper bounds for Tviable. 

Table 4. Estimated Tviable upper bounds for different applications. 

 MPEG2 FFT JPEG Compress FIR DCT 

Tviable  (s) 0.590 0.238 3.281 0.117 0.093 0.182 

6    Conclusion 

Our contributions here are (i) observing and analyzing a new opportunity for 

reducing cache leakage in nanometer technologies enabled by the reducing Vth and 

the increasing Vth-variation in such processes, and (ii) presenting first techniques that 

take advantage of this opportunity and reduce leakage up to 54.18% (36.96% on 

average) with negligible impact on system performance. It is important to note that 

our techniques (i) become more effective with technology scaling, (ii) reduce leakage 

also in the normal mode of system operation (in addition to standby mode) even when 

the cache-lines are actively in use, and (iii) are orthogonal to other techniques for 

leakage reduction such as body- and source-biasing. As future work, we are 

investigating techniques similar to garbage-collection so as to invalidate the cache-

lines that won’t soon have a hit and to store the less-leaky values in them. 
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